Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5265-2023
https://doi.org/10.5194/gmd-16-5265-2023
Model description paper
 | 
14 Sep 2023
Model description paper |  | 14 Sep 2023

AutoQS v1: automatic parametrization of QuickSampling based on training images analysis

Mathieu Gravey and Grégoire Mariethoz

Related authors

QuickSampling v1.0: a robust and simplified pixel-based multiple-point simulation approach
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 13, 2611–2630, https://doi.org/10.5194/gmd-13-2611-2020,https://doi.org/10.5194/gmd-13-2611-2020, 2020
Short summary
A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys
Lionel Benoit, Aurelie Gourdon, Raphaël Vallat, Inigo Irarrazaval, Mathieu Gravey, Benjamin Lehmann, Günther Prasicek, Dominik Gräff, Frederic Herman, and Gregoire Mariethoz
Earth Syst. Sci. Data, 11, 579–588, https://doi.org/10.5194/essd-11-579-2019,https://doi.org/10.5194/essd-11-579-2019, 2019
Short summary

Related subject area

Numerical methods
A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023,https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Implementation and application of ensemble optimal interpolation on an operational chemistry weather model for improving PM2.5 and visibility predictions
Siting Li, Ping Wang, Hong Wang, Yue Peng, Zhaodong Liu, Wenjie Zhang, Hongli Liu, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 16, 4171–4191, https://doi.org/10.5194/gmd-16-4171-2023,https://doi.org/10.5194/gmd-16-4171-2023, 2023
Short summary
A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling
Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski
Geosci. Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023,https://doi.org/10.5194/gmd-16-3907-2023, 2023
Short summary
GStatSim V1.0: a Python package for geostatistical interpolation and conditional simulation
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023,https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023,https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary

Cited articles

Abdollahifard, M. J., Baharvand, M., and Mariéthoz, G.: Efficient training image selection for multiple-point geostatistics via analysis of contours, Comput. Geosci., 128, 41–50, https://doi.org/10.1016/j.cageo.2019.04.004, 2019. 
Baninajar, E., Sharghi, Y., and Mariethoz, G.: MPS-APO: a rapid and automatic parameter optimizer for multiple-point geostatistics, Stoch. Environ. Res. Risk Assess., 33, 1969–1989, https://doi.org/10.1007/s00477-019-01742-7, 2019. 
Boisvert, J. B., Pyrcz, M. J., and Deutsch, C. V.: Multiple Point Metrics to Assess Categorical Variable Models, Nat. Resour. Res., 19, 165–175, https://doi.org/10.1007/s11053-010-9120-2, 2010. 
Dagasan, Y., Renard, P., Straubhaar, J., Erten, O., and Topal, E.: Automatic Parameter Tuning of Multiple-Point Statistical Simulations for Lateritic Bauxite Deposits, Minerals, 8, 220, https://doi.org/10.3390/min8050220, 2018. 
Gómez-Hernández, J. J. and Wen, X.-H.: To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology, Adv. Water Resour., 21, 47–61, https://doi.org/10.1016/s0309-1708(96)00031-0, 1998. 
Download
Short summary
Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training image. The use of these methods relies on the possibility of finding optimal training images and parametrization of the simulation algorithms. Here, we propose finding an optimal set of parameters using only the training image as input. The main advantage of our approach is to remove the risk of overfitting an objective function.