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Abstract. Multiple-point geostatistics are widely used to
simulate complex spatial structures based on a training
image. The practical applicability of these methods relies
on the possibility of finding optimal training images and
parametrization of the simulation algorithms. While meth-
ods for automatically selecting training images are available,
parametrization can be cumbersome. Here, we propose to
find an optimal set of parameters using only the training im-
age as input. The difference between this and previous work
that used parametrization optimization is that it does not re-
quire the definition of an objective function. Our approach is
based on the analysis of the errors that occur when filling ar-
tificially constructed patterns that have been borrowed from
the training image. Its main advantage is to eliminate the risk
of overfitting an objective function, which may result in vari-
ance underestimation or in verbatim copy of the training im-
age. Since it is not based on optimization, our approach finds
a set of acceptable parameters in a predictable manner by us-
ing the knowledge and understanding of how the simulation
algorithms work. The technique is explored in the context of
the recently developed QuickSampling algorithm, but it can
be easily adapted to other pixel-based multiple-point statis-
tics algorithms using pattern matching, such as direct sam-
pling or single normal equation simulation (SNESIM).

Highlights.

– Adaptive calibration as a function of the simulation progres-
sion

– Calibration depends on each training image

– Robust parametrization based on a rapid prior analysis of the
training image

1 Introduction

Geostatistics is extensively used in natural sciences to map
spatial variables such as surface properties (e.g., soils, ge-
omorphology, meteorology) and subsurface geological fea-
tures (e.g., porosity, hydraulic conductivity, 3D geological
facies). Its main applications involve the estimation and sim-
ulation of natural phenomena. In this paper, we focus on sim-
ulation approaches.

Traditional two-point geostatistical simulations preserve
the histogram and variogram inferred from point data (Math-
eron, 1973). However, inherent limitations make the repro-
duction of complex structures difficult (Gómez-Hernández
and Wen, 1998; Journel and Zhang, 2006). Multiple-point
statistics (MPS), by accounting for more complex rela-
tions, enables the reproduction of such complex structures
(Guardiano and Srivastava, 1993) but comes with its own
limitations (Mariethoz and Caers, 2014). The main require-
ments for using MPS algorithms are (1) analog images
(called training images) and (2) appropriate parametrization,
while training images can often be provided by expert knowl-
edge, and several methods have been proposed to automati-
cally select one or a subset of appropriate training images
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among a set of candidates (Pérez et al., 2014; Abdollahifard
et al., 2019). However, the parametrization of an MPS al-
gorithm depends not only on the chosen training image but
also on the specifics of the algorithm. This makes the task
of finding a good parametrization cumbersome, and there-
fore users often have to resort to trial-and-error approaches
(Meerschman et al., 2013). Here we will mainly focus on
QuickSampling (QS) (Gravey and Mariethoz, 2020), which
has two main parameters: n, which defines the maximum
number of conditional data points to consider during the
search process, and k, which is the number of best candi-
dates from which to sample the simulated value. Addition-
ally, QS supports a kernel that allows weighting each condi-
tioning pixel in the pattern based on its position related to the
simulated pixel. Direct sampling (DS) has the following pa-
rameters: n, which has an identical role as in QS; “th”, which
represents the pattern acceptance threshold, or the degree of
similarity between local data patterns and the training im-
age; and f , which is the maximum proportion of the image
that can be explored for each simulated pixel. In summary,
n controls the spatial continuity, and k or “th” and f control
the variability.

Over the last few years, several studies have addressed
the challenge of automatically finding appropriate parame-
ters for MPS simulation. These can be categorized in two
approaches. The first approach is to assume that an optimal
parametrization is related to the simulation grid (including
possible conditioning data), the training image, and the MPS
algorithm. In this vein, Dagasan et al. (2018) proposed a
method that uses the known hard data from the simulation
grid as a reference for computing the Jensen–Shannon di-
vergence between histograms. Following this, they employ a
simulated annealing optimization to update the MPS param-
eters until the metrics achieve the lowest divergence. This
method is flexible enough to be adapted to any other metric.
The second type of approach assumes that the parametriza-
tion is only related to the training image and the MPS al-
gorithm. Along these lines, Baninajar et al. (2019) propose
the MPS automatic parameter optimizer (MPS-APO) method
based on the cross-validation of the training image (TI) to
optimize simulation quality and CPU cost. In this approach,
artificially generated gaps in the high-gradient areas of the
training image are created, and a MPS algorithm is used to
fill those gaps. The performance of a particular parametriza-
tion is quantified by assessing the correspondence between
the filled and original training data. By design, this approach
is extremely interesting for gap-filling problems. The authors
state that it can be used for the parametrization of uncondi-
tional simulations; however, the use of limited gaps cannot
guarantee the reproduction of long-range dependencies. Fur-
thermore, due to the design of the framework for generating
gaps, only MPS algorithms able to handle gap-filling prob-
lems can be used.

While both approaches yield good results based on their
objective functions, they all rely on a stochastic optimization

process; therefore, the duration of the optimization process
cannot be predetermined or controlled by the user. Further-
more, an objective function is needed, which can be difficult
because it depends on the training image used: many metrics
can be accounted for in the objective function, such as his-
togram, variogram, pattern histogram, connectivity function,
and Euler characteristic, among others (Boisvert et al., 2010;
Renard and Allard, 2013; Tan et al., 2013), or a weighted
combination of these. Similarly, one has to define meta-
parameters linked to the optimization algorithm itself, such
as the cooling rate in simulated annealing or maximum num-
ber of iterations. As a result, MPS parameter optimization
approaches tend to be complex and difficult to use.

In this contribution, we propose a simplified optimization
procedure for simulating complex systems. Rather than us-
ing a complex optimization algorithm, our approach focuses
on finding optimal parameters to accurately simulate a single
pixel in the system. The underlying principle of our approach
is that if each pixel is accurately simulated, the resulting se-
quence of pixels will converge to an accurate representation
of the real-world system being simulated. The goal is there-
fore to find the optimal parameters to simulate a single pixel
using the training image as the only reference. Baninajar et
al. (2019) showed that computing the prediction error (i.e.,
the error between the simulation and the reference) is an ap-
propriate metric to identify optimal parameters. To find the
optimal parameters for simulating a single pixel, we propose
an exhaustive exploration of the parameter space and a com-
putation of the prediction error between the simulation and
the reference image.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the proposed method. Section 3 evaluates the
approach in terms of quantitative and qualitative metrics. Fi-
nally, Sect. 4 discusses the strengths and weaknesses of the
proposed approach and presents the conclusions of this work.

2 Understanding and addressing verbatim copy in
multiple-point simulation

The principle underlying multiple-point simulation is that
the neighborhood of a given pixel x (the pattern gener-
ated by known or previously simulated pixels) is informa-
tive enough to constrain the probability density function of
the value Z(x). This requires a training image with several
pattern repetitions. The extended normal equation simula-
tion (ENESIM) algorithm (Guardiano and Srivastava, 1993)
computes the full probability distribution for each simulated
pixel. To ensure that enough samples are used, the SNESIM
(Strebelle, 2002) and the Impala (Straubhaar et al., 2011) al-
gorithms include a parameter to define a minimum number
of pattern replicates. Direct sampling (DS) (Mariethoz et al.,
2010) adopts a different strategy by allowing for the inter-
rupted exploration of the training image. It includes a dis-
tance threshold parameter that defines what is an acceptable
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match for a neighborhood; however, too small a threshold
typically results in a single acceptable pattern in the training
image, leading to exact replication of parts of the training im-
age – a phenomenon known as verbatim copy. To reduce this
issue, a parameter f is introduced, controlling the fraction of
the explored training image. QuickSampling (QS) (Gravey
and Mariethoz, 2020) also suffers from verbatim copy when
the number of candidate patterns is set to k = 1; the authors
recommend the use of k > 1 and highlight that k is similar
to the number of replicates in SNESIM or IMPALA. A value
k = 1.5 in QS can be seen as SNESIM with a minimum num-
ber of replicates of 1 for 50 % of the simulated values and 2
for the remaining values.

The definition of verbatim copy is the unintended pasting
of a large section from the training image to the simulation
(patch-based approaches do so intentionally, e.g., Rezaee et
al., 2013). This means that the relative position of the sim-
ulated values is the same as that in the training image. This
occurs when the neighborhood constraints on the simulated
pixels are too strong, and only the exact same patterns as
those in the training image are acceptable. To detect this is-
sue, a common strategy is to create a position map (similar
to the index map), which represents the provenance of sim-
ulated values by mapping their original coordinates in the
training image, as shown in Fig. 1.

Figure 1 illustrates the most common forms of verbatim
copy. The pure verbatim (the most common type of verba-
tim copy) is a simple copy of a large part of the image, with
all pixels in the same order inside of the patches. Block ver-
batim typically appears when there are many replicates of a
very specific type of pattern in the training image and few
replicates of all other patterns. Consequently, the MPS algo-
rithm uses common patterns for transitioning between copied
blocks resulting from rare patterns. Structural verbatim oc-
curs when the copied portion spreads throughout the simula-
tion without giving a direct impression of copying (e.g., pure
verbatim over a subset of pixels). Structural verbatim tends
to appear when large-scale structures are unique in the train-
ing image, which often allows a visually satisfying image to
be quickly obtained, but with large non-stationary features
identical to the training image. Often, users are willing to
allow verbatim on large-scale structures, but this can easily
introduce bias between simulations. This is one of the hard-
est types of verbatim to detect. Typically, this can occur when
the maximum neighborhood radius is too large, leading to the
duplication of large structures in the initial phase of the sim-
ulation. Finally, no verbatim, which is the expected result of
simulations, occurs when the position of pixels does not have
any particular structure (i.e., their position is unpredictable).

3 Method

The objective of the approach presented here is to find an
optimal set of parameters using only the training image and

Algorithm 1 The sequential simulation algorithm. n, k, and
ω, the parametrization for QS.

Inputs:
T : training images
S: simulation grid, including the conditioning data
P : simulation path
θ : parametrization

n: number of neighbors

k: the number of best candidates

ω: the kernel, by default uniform

1: for each unsimulated pixel x following the path P : do
2: Find the neighborhoodN (x) in S composed of the n(θ) clos-

est neighbors
3: Find a candidate in T those matches N (x) using the

parametrization θ
4: Assign the value of the selected candidate to x in S
5: end for

knowledge of the simulation algorithm’s mechanics. The
simulation algorithm is not used in this context; in fact, sim-
ulations are not required to obtain a proper calibration with
the proposed method. The main target application of the
presented approach is the pattern-matching simulation al-
gorithm QuickSampling (QS), where the values, at a pixel
scale, are directly sampled from the training image. The
method is suitable for the simulation of continuous and/or
categorical variables.

Simulation algorithms such as QS can be summarized by
Algorithm 1. The key operation occurs at Line 3, which is
when the algorithm searches for an optimal match based on
the neighboring conditioning data.

Here, we propose a divide-and-conquer approach that
splits any pixel-based sequential simulation into its atomic
operation: the simulation of a single pixel. We assume that
if all pixels are perfectly simulated, then the resulting sim-
ulation should also be good. By a perfectly simulated pixel,
we mean a pixel that respects the conditional probability dis-
tribution. When simulating a pixel, there may be numerous
potential valid values, but at the very least, there should be
one valid value; i.e., the conditional probability distribution
should be represented in the data. This can be formalized by
the following condition:

|{A|P (A|N(x)) > 0}| ≥ 1, (1)

where |.| represents the cardinality of a set. P (A|N (x)) de-
notes the probability of A (a given value) knowingN (x), the
neighborhood.

The proposed approach consists of finding a set of param-
eters that results in accurate samples for each pattern. At the
same time, we want to avoid systematically sampling per-
fect matches (the exact same neighborhood is available in
the training image), which results in verbatim copy.

The search for the optimal parametrization is carried out
by exhaustive exploration (Algorithm 2), and the choice of
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Figure 1. Visualization of verbatim copies using a position map. This is an extreme case that highlights that verbatim is not defined by the
values simulated but by their position in the training image.

Algorithm 2 The AutoQS algorithm.

Inputs:
D: list of stages of the simulation (i.e., pattern decimation lev-
els, equivalent to fractions of the simulation path)
θ : list of discretized parameters
T the training images
V a set of random positions (in practice we generated the ran-
dom position on the fly)

1: for each possible combination of D and θ do for all v ∈ V :
2: Sample a neighborhood N (v) from T and decimate it ac-

cording to stage D
3: Using θ , find a candidate in T that matches N (v) excluding

for v itself
4: Compute the error ε between the selected candidate and

Z(v)

5: end for
6: Analyze the errors ε to determine the best θ for each D

optimal parameters is based on a prediction error defined as
the difference between the original value of the pattern and
the value of the selected pattern in the training image.

The proposed algorithm explores a discretized parameter
space θ (Algorithm 2, Line 1) (e.g., for QS: nkω). While this
discretization is natural for some parameters, such as n that
is an integer, it can require an explicit discretization for other
parameters, such as the kernel in QS (or “th” in DS). Fur-
thermore, a key component of our method is the exploration
of the parameter space for several representative stages D of
the simulation (Algorithm 2, Line 1). In the case of a ran-
dom path, the progress of the simulation is directly related to
the density of the neighborhoods; i.e., when x% of the pixels
are simulated, on average x% of neighbors are informed. To
reproduce this behavior, at each stage D, we randomly deci-
mate patterns extracted from the TI by keeping only x% pix-
els informed. For each combination D and θ , multiple mea-
sures over a set of random locations V (500< |V |< 10000)

are computed in Lines 1–5 in Algorithm 2, with their mathe-
matical expression shown in Eq. (2):

ε (θ,D,T )=√√√√ 1
|V |

∑
v∈V

(
Z(v)−Z

(
Cand
Tr{v}

(θ,N (v, D))

))2

, (2)

where Cand(θ,N) returns a single candidate position for a
given neighborhood N and follows the parametrization θ .
N (v,D) denotes a neighborhood around v that is decimated
according to stage D. V represents a random set of positions
in the training image, and Z(v) refers to the actual value at
position v ∈ V in the training image. To avoid parameters
that generate verbatim copy of the training image, the po-
sition v and its direct neighbors (in a small radius (here 5
pixels)) are excluded from the set of potential candidates.
The set of candidates considering this exclusion is denoted
by T r {v} in Eq. (2). Furthermore, in the case of equality
between several optimal options, we set as a rule to take the
cheapest parameter set in terms of computational cost (e.g.,
the smallest n). Figure 2 graphically represents the entire al-
gorithm. Finally, for each stage considered, the set of param-
eters with the minimum associated error ε is considered op-
timal (Algorithm 2, Line 6):

ε
(
θoptimal,D,T

)
=min

θ
ε (θ,D,T ) . (3)

4 An efficient implementation

In practice, the implementation of Algorithm 2 separates θ
into two parameter subsets: θh and θs. The θh subset consists
of all parameters that influence the calculation of a single
pattern match, which varies depending on the algorithm used.
For instance, in QS, it includes the number of neighbors n
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Figure 2. All steps for a single pattern, summarizing Algorithm 2, Lines 2–4.

and the kernel ω, while in DS, it comprises the threshold “th”
and n. On the other hand, θs encompasses parameters related
to the sampling process of the training image. For QS, this
includes the number of candidates to keep k, while for DS, it
involves the fraction f of the training image being scanned.

Our implementation precomputes and stores all matches
for a specific θh parametrization (e.g., a value of n and all
matches for k). Consequently, the saved matches of θh can
be employed to swiftly evaluate all options for the parameters
in θ = θh× θs (e.g., we can process for k = 1,2,3, . . .kmax).
This two-phase approach considerably decreases redundant
calculations.

The algorithm can be further accelerated by terminating
the estimation of ε if the error remains at a high level after
assessing only a small amount of samples from V (here set
to 500). To this end, we increase V for the parameter combi-
nations of interest, i.e., parametrization with potentially the
lowest ε. This entails iterating and verifying at each step
whether additional computations are required. Only places
respecting the following inequality are refined with extra
measures:

ε (θ,D,T )− ε (θmin,D,T ) <
1
2
σ (θ,D,T )+

1
2
σ (θmin,D,T ), (4)

with

ε (θmin,D,T )=min
θ
ε (θ,D,T )

σ (θ,D,T )=√√√√ 1
|V |

∑
v∈V

((
Z(v)−Z

(
Cand
Tr{v}

(θ,N (v,D))

))
− ε (θ,D,T )

)2

,

where ε(.) represents the error and σ(.) represents the stan-
dard deviation of all differences, between estimated and true
values.

5 Results

5.1 Optimization of two parameters

All experimental tests in this section are performed using the
training image shown in Fig. 2, and the stages D are dis-
tributed following a logarithmic scale.

As a first test, we use the configuration θh = {n} and θs =

{k}. The kernel ω is defined as uniform, meaning that it has
a constant value and is not part of the optimization. The out-
come is represented in Fig. 3, with the optimal number of
candidates k and number of neighbors n as a function of the
densityD, which is assimilated to the progression during the
simulation. The ignorance threshold is defined as the average
error between elements of the marginal distribution. It repre-
sents the error value at which no further information can be
derived from the neighborhood, meaning that the simulated
values can equivalently be drawn from the marginal distribu-
tion.

The optimal k remains small (in fact 1) throughout the
simulation, which is probably due to the limited size of the
training image in this case. It seems important to use many
neighbors in the early stages of the simulation. The number
of neighbors increases until approximately 3 % of the simu-
lation. This is followed by a subsequent drastic reduction, in-
dicating that once the large structures are informed, only the
few direct neighbors are important. It seems logical that MPS
algorithms simulate large structure first and then smaller pat-
terns in a hierarchical manner where each smaller structure
is part of the larger one. We, however, note that it remains
generally difficult to predict the optimal settings as a func-
tion of the simulation stage. This indicates that the use of a
single parametrization for the entire MPS simulation is gen-
erally suboptimal, and the parameters should be adapted as
the simulation progresses.

Figure 4 shows the evolution of ε as a function of the num-
ber of neighbors n and the simulation progression D. Two
regimes are visible: in the first percentages of the simulation,
each extra neighbor is informative and improves simulation
quality. However, as the neighborhoods become denser, the
importance of spatial continuity takes over, and only the few
neighbors are really informative. This two-step process is ex-
pected, as random large-scale features are generated first, and
then the image is filled with consistent fine-scale structures.
Furthermore, it shows that using a large number of neigh-
bors at the end of the simulation generates suboptimal results,
which could explain the small-scale noise that is sometimes
visible in some MPS simulations.
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Figure 3. Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, with the associated
prediction error (in black). The red line represents the ignorance threshold. The dashed blue line indicates the average maximal number of
neighbors.

Figure 4. Pattern error as a function of the number of neighbors n, with k = 1, where each curve represents a neighborhood density D.

5.2 Optimization of three parameters

Here, we use the following configuration θh = {n, α} and
θs = {k}, and we consider kernels as having a radial exponen-
tial shape, i.e., ωi = e−α.di . The weight of a given position i
in the kernel ω is defined as ωi and its distance to the kernel
center as di .

The results presented in Fig. 5 demonstrate the impact
of the number of neighbors and narrow kernels (character-
ized by high α values) on the evolution of the QS param-
eters. Specifically, it can be observed that interactions arise
between these two factors, resulting in slightly erratic cal-
ibrated parameters. As the number of neighbors increases,

the weights assigned to the furthest neighbors become neg-
ligible with larger α values. This means that these far-away
neighbors, despite being considered, have very little influ-
ence. This insensitivity only occurs for large n values, lead-
ing to minimal differences between possible configurations
and noise in the metric.

As expressed in the methodology section, in cases of a
similar error, the cheapest solution is considered. In the case
of QS, having a large number of neighbors can marginally
increase the computational time; therefore, we introduce a
small tolerance that results in favoring small n values. It is
formulated as a small cost for each extra neighbor, i.e., by
adding 5×10−5

×(max(T )−min(T )) for each extra neigh-
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Figure 5. Optimal parameters for QS (k in green, number of neighbors in blue, and best kernel in magenta), as a function of the simulation
progress, with the associated prediction error (in black). The dashed blue line indicates the average density for the neighborhood considered.
The ignorance threshold in red.

Figure 6. Optimal parameters for QS (k in green, number of neighbors in blue, and the best kernel in magenta) as a function of the progression,
with the associated prediction error (in black). The dashed blue line is the average density for the neighborhood considered. The ignorance
threshold is in red.

bor. However, the speed-up during simulation was limited to
up to 10 %. Figure 6 shows a quality similar (ε curves) to that
in Fig. 5 but with the added tolerance. As expected, the num-
ber of neighbors required during the simulation drastically
decreases as advanced simulation stages and the fluctuations
in n are avoided.

5.3 Sequential simulation using automatic calibration

Figure 7 shows qualitative results using the evolutive
parametrization resulting from the proposed autocalibration,
using a case study that was published in Gravey and Mari-
ethoz (2020). QS with an adaptive kernel refers to the use
of different values of α for the kernel as a function of the
simulation progression. In this case, the results are similar to

state-of-the-art simulations using a manual calibration. Tests
using QS with a uniform kernel fail to reproduce some struc-
tures; in particular, the size of the objects is incorrect. Each
position map shows few homogenous areas; therefore, real-
izations are produced with a low rate of verbatim copy.

From a quantitative evaluation, Fig. 8 illustrates different
metrics (variograms, connectivity as a structural indicator,
and the Euler characteristic as noise indicator) (Renard and
Allard, 2013) across a set of 100 realizations. The automatic
calibration method proposed here allows obtaining better-
quality simulations than in Gravey and Mariethoz (2020).

Figure 8 shows that variogram and connectivity metrics
are well reproduced, although they have not been directly
constrained in the calibration process. Indeed, the parameter

https://doi.org/10.5194/gmd-16-5265-2023 Geosci. Model Dev., 16, 5265–5279, 2023
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Figure 7. Simulation using QS with parameters generated by the automatic calibration.

optimization only considers the simulation of single pixels
and never computes global metrics over an entire grid.

6 Discussion and conclusion

The proposed method allows for the automatic calibration
of QS and potentially similar pixel-based MPS approaches,
reaching a quality similar to or better than that of man-
ual parametrization from both quantitative and qualitative
points of view. Furthermore, it demonstrates that the opti-
mal parametrization should not remain constant and instead
needs to evolve with the simulation progression. The met-
rics confirm the good reproduction of training patterns, and
the method finds a calibration that avoids verbatim copy. One
major advantage of our approach is the absence of a complex
objective function, which often itself requires calibration.

A limitation of our approach is that it cannot be used to
determine an optimal simulation path because it focuses on
the simulation of a single pixel. It also does not optimize the
computational cost required for a simulation.

The computation time necessary to identify the appro-
priate parameters is contingent upon the expected quality.
However, the maximum time required for completion is pre-
dictable and depends on the number of patterns tested. If re-
quired, the calibration can be further refined based on prior
outcomes without restarting the entire process; this can be
achieved by adjusting D, incorporating additional kernels,
or increasing |V |. In certain instances, adjusting the ker-
nel parameter offers only minor improvements while neces-
sitating a substantial number of computations. Employing
a more streamlined parameter space can yield comparable
calibration and significantly reduce the computational cost.

Figure 8. Benchmark between QS with an adaptive kernel (Fig. 6)
and a uniform (without) kernel (Fig. 3) over 100 simulations for five
different metrics.
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This streamlined parameter space can be established, for in-
stance, by subsampling the number of neighbors according
to a squared function (2, 4, 9, 16, 25, etc.) or by leveraging
external or expert knowledge.

The proposed methodology was evaluated in multivari-
ate scenarios, resulting in a more expansive parameter space
compared to single-variable cases. Although the approach
yields satisfactory parameters, the inclusion of extra param-
eters significantly extends the computation time, rendering
the process impractical, particularly when dealing with four
or more variables.

In the context of testing the generality of our approach, cal-
ibration was computed on multiple training images (found in
the Appendix). The calibration pattern with two regimes (n
large, then n small) seems to be universal, at least for uni-
variate simulations. While the position of the abrupt transi-
tion between regimes seems to vary greatly (between 0.5 %
and 20 % of the path), the overall shape remains the same.
Therefore, the approach proposed by Baninajar et al. (2019),
in which long ranges are not considered, could be extended
by using large n values in the early stages of the simulation.

While we show that it is possible to calibrate a parametric
kernel, in future work one can envision the optimization of
a nonparametric kernel where the weight of each individual
neighborwi is considered a variable to optimize using ε as an
objective function (e.g., using a machine learning regression
framework).

The study of the evolution of parameters shows a smooth
behavior of the average error. Therefore, the use of multivari-
ate fitting approaches to estimate the error surface with fewer
evaluations could be an interesting solution to speed up the
parametrization. The use of machine learning to take advan-
tage of transfer learning between training images also has a
high potential.
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Appendix A

This appendix contains a similar calibration for other training
images.

A1 Stone

Figure A1. Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, with the associated
prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is the average density for the neighborhood
considered. The dot-dashed line represents the variability in 1 % of the error.

A2 Strebelle

This section studies the application of the proposed method
using the Strebelle training image (Strebelle, 2002).

Figure A2. Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, with the associated
prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is the average density for the neighborhood
considered. The dot-dashed line represents the variability in 1 % of the error.
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Figure A3. Optimal parameters for QS (k in green, number of neighbors in blue, and the best kernel in magenta) as a function of the
progression, with the associated prediction error (in red). The dashed blue line is the average density for the neighborhood considered.

Figure A4. Simulation using QS using parameters generated by the automatic calibration.
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Figure A5. Benchmark between QS with adaptive kernel (Fig. A3) and uniform (without) kernel (Fig. A2) over 100 simulations for five
different metrics.

A3 Lena river delta

This section studies the application of the proposed method
using the Lena river delta training image (Mahmud et al.,
2014).

Figure A6. Optimal parameters for QS (k in green and number of neighbors in blue) as a function of the progression, with the associated
prediction error (in red). The red line represents the ignorance threshold. The dashed blue line is the average density for the neighborhood
considered. The dot-dashed line represents the variability in 1 % of the error.
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Figure A7. Optimal parameters for QS (k in green, number of neighbors in blue, and the best kernel in magenta) as a function of the
progression, with the associated prediction error (in red). The dashed blue line is the average density for the neighborhood considered.

Figure A8. Simulation using QS and using parameters generated by the automatic calibration.
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Figure A9. Benchmark between QS with adaptive kernel (Fig. A7)
and uniform (without) kernel (Fig. A6) over 100 simulations for five
different metrics.

Code availability. The source code of the AutoQS al-
gorithm is available as part of the G2S package at
https://github.com/GAIA-UNIL/G2S (last access: 1 May 2023)
under the GPLv3 license, and it is permanently available at
https://doi.org/10.5281/zenodo.7792833 (Gravey et al., 2023). Plat-
form: Linux/macOS/Windows 10+. Language: C/C++. Interfacing
functions in MATLAB, Python3, and R.

Data availability. The datasets used in this paper are avail-
able at https://github.com/GAIA-UNIL/TrainingImagesTIFF (Ma-
riethoz et al., 2023).
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