Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-4977-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4977-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Falko Ueckerdt
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Robert Pietzcker
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Adrian Odenweller
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Global Energy Systems Analysis, Technische Universität Berlin, Berlin, Germany
Wolf-Peter Schill
German Institute for Economic Research (DIW Berlin), Berlin, Germany
Martin Kittel
German Institute for Economic Research (DIW Berlin), Berlin, Germany
Gunnar Luderer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Global Energy Systems Analysis, Technische Universität Berlin, Berlin, Germany
Related authors
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, https://doi.org/10.5194/gmd-13-3571-2020, 2020
Short summary
Short summary
This study provides the future greenhouse gas (GHG) concentrations under the new set of so-called SSP scenarios (the successors of the IPCC SRES and previous representative concentration pathway (RCP) scenarios). The projected CO2 concentrations range from 350 ppm for low-emission scenarios by 2150 to more than 2000 ppm under the high-emission scenarios. We also provide concentrations, latitudinal gradients, and seasonality for most of the other 42 considered GHGs.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Related subject area
Integrated assessment modeling
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation
Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China
MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts
Minimum-variance-based outlier detection method using forward-search model error in geodetic networks
Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0)
GCAM-CDR v1.0: enhancing the representation of carbon dioxide removal technologies and policies in an integrated assessment model
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with Coupled Model Intercomparison Project (CMIP) climate data
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Improved CASA model based on satellite remote sensing data: simulating net primary productivity of Qinghai Lake basin alpine grassland
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
TIM: modelling pathways to meet Ireland's long-term energy system challenges with the TIMES-Ireland Model (v1.0)
ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description
Nested leave-two-out cross-validation for the optimal crop yield model selection
GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework
GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024, https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary
Short summary
CLASH is a numerical model that portrays land allocation between different uses, land carbon stocks, and agricultural and forestry production globally. CLASH can help in examining the role of land use in mitigating climate change, providing food and biogenic raw materials for the economy, and conserving primary ecosystems. Our demonstration with CLASH confirms that reduction of animal-based food, shifting croplands and storing carbon in forests are effective ways to mitigate climate change.
Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais
Geosci. Model Dev., 17, 2663–2682, https://doi.org/10.5194/gmd-17-2663-2024, https://doi.org/10.5194/gmd-17-2663-2024, 2024
Short summary
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024, https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
Short summary
A comprehensive comparison study is conducted targeting the performances of three two-way coupled meteorology and air quality models (WRF-CMAQ, WRF-Chem, and WRF-CHIMERE) for eastern China during 2017. The impacts of aerosol–radiation–cloud interactions on these models’ results are evaluated against satellite and surface observations. Further improvements to the calculation of aerosol–cloud interactions in these models are crucial to ensure more accurate and timely air quality forecasts.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Utkan M. Durdağ
Geosci. Model Dev., 17, 2187–2196, https://doi.org/10.5194/gmd-17-2187-2024, https://doi.org/10.5194/gmd-17-2187-2024, 2024
Short summary
Short summary
This study introduces a novel approach to outlier detection in geodetic networks, challenging conventional and robust methods. By treating outliers as unknown parameters within the Gauss–Markov model and exploring numerous outlier combinations, this approach prioritizes minimal variance and eliminates iteration dependencies. The mean success rate (MSR) comparisons highlight its effectiveness, improving the MSR by 40–45 % for multiple outliers.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
David R. Morrow, Raphael Apeaning, and Garrett Guard
Geosci. Model Dev., 16, 1105–1118, https://doi.org/10.5194/gmd-16-1105-2023, https://doi.org/10.5194/gmd-16-1105-2023, 2023
Short summary
Short summary
GCAM-CDR is a variant of the Global Change Analysis Model that makes it easier to study the roles that carbon dioxide removal (CDR) might play in climate policy. Building on GCAM 5.4, GCAM-CDR adds several extra technologies to permanently remove carbon dioxide from the air and enables users to simulate a wider range of CDR-related policies and controls.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Théo Le Guenedal, Philippe Drobinski, and Peter Tankov
Geosci. Model Dev., 15, 8001–8039, https://doi.org/10.5194/gmd-15-8001-2022, https://doi.org/10.5194/gmd-15-8001-2022, 2022
Short summary
Short summary
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country level from climate data and open-source socioeconomic indicators. The framework couples statistical and physical modeling of tropical cyclones to bridge the gap between general circulation and integrated assessment models providing a precise description of tropical-cyclone-related damages.
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022, https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Chengyong Wu, Kelong Chen, Chongyi E, Xiaoni You, Dongcai He, Liangbai Hu, Baokang Liu, Runke Wang, Yaya Shi, Chengxiu Li, and Fumei Liu
Geosci. Model Dev., 15, 6919–6933, https://doi.org/10.5194/gmd-15-6919-2022, https://doi.org/10.5194/gmd-15-6919-2022, 2022
Short summary
Short summary
The traditional Carnegie–Ames–Stanford Approach (CASA) model driven by multisource data such as meteorology, soil, and remote sensing (RS) has notable disadvantages. We drove the CASA using RS data and conducted a case study of the Qinghai Lake basin alpine grassland. The simulated result is similar to published and measured net primary productivity (NPP). It may provide a reference for simulating vegetation NPP to satisfy the requirements of accounting carbon stocks and other applications.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Olexandr Balyk, James Glynn, Vahid Aryanpur, Ankita Gaur, Jason McGuire, Andrew Smith, Xiufeng Yue, and Hannah Daly
Geosci. Model Dev., 15, 4991–5019, https://doi.org/10.5194/gmd-15-4991-2022, https://doi.org/10.5194/gmd-15-4991-2022, 2022
Short summary
Short summary
Ireland has significantly increased its climate mitigation ambition, with a recent commitment to reduce greenhouse gases by an average of 7 % yr-1 in the period to 2030 and a net-zero target for 2050. This article describes the TIMES-Ireland model (TIM) developed to inform Ireland's energy system decarbonisation challenge. The paper also outlines a priority list of future model developments to better meet the challenge, taking into account equity, cost-effectiveness, and technical feasibility.
Haiyan Jiang, Slobodan P. Simonovic, and Zhongbo Yu
Geosci. Model Dev., 15, 4503–4528, https://doi.org/10.5194/gmd-15-4503-2022, https://doi.org/10.5194/gmd-15-4503-2022, 2022
Short summary
Short summary
The Yangtze Economic Belt is one of the most dynamic regions of China. The fast urbanization and strong economic growth in the region pose severe challenges for its sustainable development. To improve our understanding of the interactions among coupled human–natural systems in the Belt and to provide the foundation for science-based policy-making for the sustainable development of the Belt, we developed an integrated system-dynamics-based simulation model (ANEMI_Yangtze) for the Belt.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Colm Duffy, Remi Prudhomme, Brian Duffy, James Gibbons, Cathal O'Donoghue, Mary Ryan, and David Styles
Geosci. Model Dev., 15, 2239–2264, https://doi.org/10.5194/gmd-15-2239-2022, https://doi.org/10.5194/gmd-15-2239-2022, 2022
Short summary
Short summary
The GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) model is a new high-resolution integrated
bottom-upbiophysical land use model capable of identifying broad pathways towards climate neutrality in the agriculture, forestry, and other land use (AFOLU) sector. The model is intended to bridge the gap between hindsight representations of national emissions and much larger globally integrated assessment models.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Phillip D. Alderman
Geosci. Model Dev., 14, 6541–6569, https://doi.org/10.5194/gmd-14-6541-2021, https://doi.org/10.5194/gmd-14-6541-2021, 2021
Short summary
Short summary
This paper documents a framework for accessing crop model input data directly from spatially referenced file formats and running simulations in parallel across a geographic region using the Decision Support System for Agrotechnology Transfer Cropping Systems Model (a widely used crop model system). The framework greatly reduced the execution time when compared to running the standard version of the model.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Cited articles
Alimou, Y., Maïzi, N., Bourmaud, J.-Y., and Li, M.: Assessing the
security of electricity supply through multi-scale modeling: The
TIMES-ANTARES linking approach, Appl. Energ., 279, 115717,
https://doi.org/10.1016/j.apenergy.2020.115717, 2020.
Aryanpur, V., O'Gallachoir, B., Dai, H., Chen, W., and Glynn, J.: A review
of spatial resolution and regionalisation in national-scale energy systems
optimisation models, Energy Strateg. Rev., 37, 100702,
https://doi.org/10.1016/j.esr.2021.100702, 2021.
Azevedo, I., Bataille, C., Bistline, J., Clarke, L., and Davis, S.: Net-zero
emissions energy systems: What we know and do not know, Energy Clim. Change,
2, 100049, https://doi.org/10.1016/j.egycc.2021.100049, 2021.
Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S., Hilaire, J.,
Eom, J., Krey, V., Kriegler, E., Mouratiadou, I., Sytze de Boer, H., van den
Berg, M., Carrara, S., Daioglou, V., Drouet, L., Edmonds, J. E., Gernaat,
D., Havlik, P., Johnson, N., Klein, D., Kyle, P., Marangoni, G., Masui, T.,
Pietzcker, R. C., Strubegger, M., Wise, M., Riahi, K., and van Vuuren, D.
P.: Shared Socio-Economic Pathways of the Energy Sector – Quantifying the
Narratives, Global Environ. Chang., 42, 316–330,
https://doi.org/10.1016/j.gloenvcha.2016.07.006, 2017.
Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Gong, C. C., Dietrich, J. P., Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A., Madeddu, S., Malik, A., Merfort, A., Merfort, L., Odenweller, A., Pehl, M., Pietzcker, R. C., Piontek, F., Rauner, S., Rodrigues, R., Rottoli, M., Schreyer, F., Schultes, A., Soergel, B., Soergel, D., Strefler, J., Ueckerdt, F., Kriegler, E., and Luderer, G.: REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits, Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, 2021.
Bhaskar, A., Assadi, M., and Nikpey Somehsaraei, H.: Decarbonization of the
Iron and Steel Industry with Direct Reduction of Iron Ore with Green
Hydrogen, Energies, 13, 758, https://doi.org/10.3390/en13030758, 2020.
Bistline, J. E. T.: The importance of temporal resolution in modeling deep
decarbonization of the electric power sector, Environ. Res. Lett., 16,
084005, https://doi.org/10.1088/1748-9326/ac10df, 2021.
Blanford, G. J. and Weissbart, C.: A Framework for Modeling the Dynamics of
Power Markets – The EU-REGEN Model, ifo Working Paper Series, ifo Institute
– Leibniz Institute for Economic Research at the University of Munich, https://www.ifo.de/en/publications/2019/working-paper/framework-modeling-dynamics-power-markets-eu-regen-model (last access: 22 January 2022), 2019.
Böttger, D. and Härtel, P.: On wholesale electricity prices and
market values in a carbon-neutral energy system, Energy Econ., 106, 105709,
https://doi.org/10.1016/j.eneco.2021.105709, 2022.
Brinkerink, M.: Assessing 1.5–2 ∘C scenarios of integrated
assessment models from a power system perspective – Linkage with a detailed
hourly global electricity model, Monograph, IIASA, Laxenburg, Austria, https://pure.iiasa.ac.at/id/eprint/16957/ (last access: 22 January 2022), 2020.
Brinkerink, M., Zakeri, B., Huppmann, D., Glynn, J., Ó Gallachóir,
B., and Deane, P.: Assessing global climate change mitigation scenarios from
a power system perspective using a novel multi-model framework, Environ.
Modell. Softw., 150,
105336, https://doi.org/10.1016/j.envsoft.2022.105336, 2022.
Brown, T. and Reichenberg, L.: Decreasing market value of variable
renewables can be avoided by policy action, Energy Econ., 100, 105354,
https://doi.org/10.1016/j.eneco.2021.105354, 2021.
Brown, T., Hörsch, J., and Schlachtberger, D.: PyPSA: Python for Power
System Analysis, J. Open Res. Softw., 6, 4,
https://doi.org/10.5334/jors.188, 2018a.
Brown, T., Schlachtberger, D., Kies, A., Schramm, S., and Greiner, M.:
Synergies of sector coupling and transmission reinforcement in a
cost-optimised, highly renewable European energy system, Energy, 160,
720–739, https://doi.org/10.1016/j.energy.2018.06.222, 2018b.
Brunner, C., Deac, G., Braun, S., and Zöphel, C.: The future need for
flexibility and the impact of fluctuating renewable power generation, Renew.
Energy, 149, 1314–1324, https://doi.org/10.1016/j.renene.2019.10.128,
2020.
Butnar, I., Li, P.-H., Strachan, N., Portugal Pereira, J., Gambhir, A.,
and Smith, P.: A deep dive into the modelling assumptions for biomass with
carbon capture and storage (BECCS): A transparency exercise, Environ. Res.
Lett., 15, 084008, https://doi.org/10.1088/1748-9326/ab5c3e, 2019.
Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C.,
Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S.,
Waldhoff, S., and Wise, M.: The SSP4: A world of deepening inequality, Global
Environ. Chang., 42, 284–296,
https://doi.org/10.1016/j.gloenvcha.2016.06.010, 2017.
Chang, M., Thellufsen, J. Z., Zakeri, B., Pickering, B., Pfenninger, S.,
Lund, H., and Østergaard, P. A.: Trends in tools and approaches for
modelling the energy transition, Appl. Energ., 290, 116731,
https://doi.org/10.1016/j.apenergy.2021.116731, 2021.
Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A., and Jewell, J.:
National growth dynamics of wind and solar power compared to the growth
required for global climate targets, Nat. Energy, 6, 742–754,
https://doi.org/10.1038/s41560-021-00863-0, 2021.
Clarke, L., Wei, Y.-M., De La Vega Navarro, A., Garg, A., Hahmann, A. N.,
Khennas, S., Azevedo, I. M. L., Löschel, A., Singh, A. K., Steg, L.,
Strbac, G., and Wada, K.: Energy Systems, in: IPCC, 2022: Climate Change
2022: Mitigation of Climate Change, Contribution of Working Group III to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
219, https://doi.org/10.1017/9781009157926.008, 2022.
Conejo, A. J., Castillo, E., Mínguez R., and García-Bertrand, R.:
Decomposition techniques in mathematical programming, Springer-Verlag Berlin
Heidelberg, https://doi.org/10.1007/3-540-27686-6, 2006.
Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., and
Pietzcker, R. C.: The underestimated potential of solar energy to mitigate
climate change, Nat. Energy, 2, 17140,
https://doi.org/10.1038/nenergy.2017.140, 2017.
Deane, J. P., Chiodi, A., Gargiulo, M., and Ó Gallachóir, B. P.:
Soft-linking of a power systems model to an energy systems model, Energy,
42, 303–312, https://doi.org/10.1016/j.energy.2012.03.052, 2012,
E3MLab, PRIMES Model Version 2018 – detailed model description,
http://www.e3mlab.ntua.gr/e3mlab/PRIMES (last access: 4 May 2023), 2018.
Ellenbeck, S. and Lilliestam, J.: How modelers construct energy costs:
Discursive elements in Energy System and Integrated Assessment Models,
Energy Res. Soc. Sci., 47, 69–770,
https://doi.org/10.1016/j.erss.2018.08.021, 2019.
Figueiredo, N. C. and da Silva, P. P.: The price of wind power generation in
Iberia and the merit-order effect, International Journal of Sustainable Energy Planning and Management, 15,
21–30, https://doi.org/10.5278/ijsepm.2018.15.4, 2018.
Frysztacki, M. M., Hörsch, J., Hagenmeyer, V., and Brown, T.: The strong
effect of network resolution on electricity system models with high shares
of wind and solar, Appl. Energ., 291, 116726,
https://doi.org/10.1016/j.apenergy.2021.116726, 2021.
Fuso Nerini, F., Keppo, I., and Strachan, N.: Myopic decision making in energy
system decarbonisation pathways. A UK case study, Energy Strateg. Rev., 17,
19–26, https://doi.org/10.1016/j.esr.2017.06.001, 2017.
Gaete-Morales, C., Kittel, M., Roth, A., and Schill, W.-P.: DIETERpy: A
Python framework for the Dispatch and Investment Evaluation Tool with
Endogenous Renewables, SoftwareX, 15, 100784,
https://doi.org/10.1016/j.softx.2021.100784, 2021.
Gan, D., Feng, D., and Xie, J.: Electricity Markets and Power System
Economics, CRC Press, Boca Raton, 220 pp., https://doi.org/10.1201/b15550,
2013.
Geels, F., Berkhout, F. and van Vuuren, D.: Bridging analytical approaches
for low-carbon transitions, Nat. Clim. Change, 6, 576–583,
https://doi.org/10.1038/nclimate2980, 2016.
Giarola, S., Mittal, S., Vielle, M., Perdana, S., Campagnolo, L., Delpiazzo,
E., Bui, H., Kraavi, A. A., Kolpakov, A., Sognnaes, I., Peters, G., Hawkes,
A., Köberle, A. C., Grant, N., Gambhir, A., Nikas, A., Doukas, H.,
Moreno, J., and van de Ven, D.-J.: Challenges in the harmonisation of global
integrated assessment models: A comprehensive methodology to reduce model
response heterogeneity, Sci. Total Environ., 783, 146861,
https://doi.org/10.1016/j.scitotenv.2021.146861, 2021.
Gils, H. C., Gardian, H., Kittel, M., Schill, W.-P., Zerrahn, A., Murmann,
A., Launer, J., Fehler, A., Gaumnitz, F., van Ouwerkerk, J., Bußar, C.,
Mikurda, J., Torralba-Díaz, L., Janßen, T., and Krüger, C.:
Modeling flexibility in energy systems – comparison of power sector models
based on simplified test cases, Renew. Sust. Energ. Rev., 158, 111995,
https://doi.org/10.1016/j.rser.2021.111995, 2022a.
Gils, H. C., Gardian, H., Kittel, M., Schill, W.-P., Murmann, A., Launer,
J., Gaumnitz, F., van Ouwerkerk, J., Mikurda, J., and Torralba-Díaz,
L.: Model-related outcome differences in power system models with sector
coupling – Quantification and drivers, Renew. Sust. Energ. Rev., 159,
112177, https://doi.org/10.1016/j.rser.2022.112177, 2022b.
Gong, C. C.: remind-coupling-dieter[code], REMIND – REgional Model of INvestments and Development, GitHub [code], https://github.com/cchrisgong/remind-coupling-dieter/tree/couple (last access: 1 September 2022), 2022a.
Gong, C. C.: dieter-coupling-remind[code], GAMS, REMIND – REgional Model of INvestments and Development, GitHub [code], https://github.com/cchrisgong/dieter-coupling-remind (last access: 1 September 2022), 2022b.
Gong, C. C.: REMIND-DIETER – code, reportings, scripts,
Zenodo [code], https://doi.org/10.5281/zenodo.7072625, 2022c.
Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M., and Uratani, J. M.:
Industrial decarbonization via hydrogen: A critical and systematic review of
developments, socio-technical systems and policy options, Energy Res. Soc.
Sci., 80, 102208, https://doi.org/10.1016/j.erss.2021.102208, 2021.
Guivarch, C., Kriegler, E., Portugal-Pereira, J., and Bosetti, V.: IPCC,
2022: Annex III: Scenarios and modelling methods, in: IPCC, 2022:
Climate Change 2022: Mitigation of Climate Change. Contribution of Working
Group III to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, https://doi.org/10.1017/9781009157926.022, 2022.
Günther, C., Schill, W.-P., and Zerrahn, A.: Prosumage of solar
electricity: Tariff design, capacity investments, and power sector effects,
Energ. Policy, 152, 112168, https://doi.org/10.1016/j.enpol.2021.112168,
2021.
Guo, F., van Ruijven, B. J., Zakeri, B., Zhang, S., Chen, X., Liu, C., Yang,
F., Krey, V., Riahi, K., Huang, H., and Zhou, Y.: Implications of
intercontinental renewable electricity trade for energy systems and
emissions, Nat. Energy, 7, 1144–1156,
https://doi.org/10.1038/s41560-022-01136-0, 2022.
Haydt, G., Leal, V., Pina, A., and Silva, C. A.: The relevance of the energy
resource dynamics in the mid/long-term energy planning models, Renew.
Energy, 36, 3068–3074, 2011.
Hildmann, M., Ulbig, A., and Andersson, G.: Empirical Analysis of the
Merit-Order Effect and the Missing Money Problem in Power Markets With High
RES Shares, IEEE T. Power Syst., 30, 1560–1570,
https://doi.org/10.1109/TPWRS.2015.2412376, 2015.
Hirth, L.: The market value of variable renewables: The effect of solar wind
power variability on their relative price, Energy Econ., 38, 218–236,
https://doi.org/10.1016/j.eneco.2013.02.004, 2013.
Hirth, L.: What caused the drop in European electricity prices? A factor
decomposition analysis, Energy J., 39, 1,
https://doi.org/10.5547/01956574.39.1.lhir, 2018.
Hirth, L. and Ueckerdt, F.: Redistribution effects of energy and climate
policy: The electricity market, Energ. Policy, 62, 934–947,
https://doi.org/10.1016/j.enpol.2013.07.055, 2013.
Huppmann, D., Gidden, M., Fricko, O., Kolp, P., Orthofer, C., Pimmer, M.,
Kushin, N., Vinca, A., Mastrucci, A., Riahi, K., and Krey, V.: The MESSAGEix
Integrated Assessment Model and the ix modeling platform (ixmp): An open
framework for integrated and cross-cutting analysis of energy, climate, the
environment, and sustainable development, Environ. Modell. Softw., 112,
143–156, https://doi.org/10.1016/j.envsoft.2018.11.012, 2019.
ICCSD Tsinghua University: Power Sector, in: China's Long-Term Low-Carbon
Development Strategies and Pathways: Comprehensive Report, edited by:
Institute of Climate Change and Sustainable Development of Tsinghua
University, Springer, Singapore, 109–130,
https://doi.org/10.1007/978-981-16-2524-4_4, 2022.
IEA: World Energy Outlook 2021,
https://www.iea.org/reports/world-energy-outlook-2021 (last access: 21 January 2022), 2021.
IPCC: Climate change 2014: mitigation of climate change: Working Group III
contribution to the Fifth assessment report of the Intergovernmental Panel
on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y.,
Farahani, E., Kadner, S., Seyboth, K., Alder, A., Baum, I., Brunner, S.,
Eikemeier, P., Kriemann, B., Salolainen, J., Schlömer, S., Stechow, C.
von, Zwickel, T., and Minx, J. C., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415416, 2014.
IPCC: Climate Change 2022: Mitigation of Climate Change, Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J.,
Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and
Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157926, 2022.
IRENA: Renewable power generation costs in 2019, International Renewable
Energy Agency, ISBN 978-92-9260-244-4, 2020.
Kannan, R. and Turton, H.: A Long-Term Electricity Dispatch Model with the
TIMES Framework, Environ. Model. Assess., 18, 325–343,
https://doi.org/10.1007/s10666-012-9346-y, 2013.
Karush, W.: Minima of functions of several variables with inequalities as side conditions (William Karush), Master's thesis, Department of Mathematics, University of Chicago, 1939.
Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling,
J., Fragkos, P., Guivarch, C., Harmsen, M., Lefèvre, J., Le Gallic, T.,
Leimbach, M., McDowall, W., Mercure, J.-F., Schaeffer, R., Trutnevyte, E.,
and Wagner, F.: Exploring the possibility space: taking stock of the diverse
capabilities and gaps in integrated assessment models, Environ. Res. Lett.,
16, 053006, https://doi.org/10.1088/1748-9326/abe5d8, 2021.
Koch, J. and Leimbach, M.: Update of Ssp GDP Projections: Capturing Recent Changes in National Accounting, PPP Conversion and Covid 19 Impacts, Ecol. Econ., 206,
https://doi.org/10.2139/ssrn.4011838, 2023.
Koutstaal, P. R. and va. Hout, M.: Integration costs and market value of
variable renewables: A study for the Dutch power market, ECN, Petten, http://resolver.tudelft.nl/uuid:a36bc05a-6a36-428f-9ff6-e33141fcf167 (last access: 22 January 2022),
2017.
Kuhn, H. W. and Tucker, A. W.: Nonlinear Programming, in: Traces and Emergence of Nonlinear Programming, edited by: Giorgi, G. and Kjeldsen, T.,
Birkhäuser, Basel, https://doi.org/10.1007/978-3-0348-0439-4_11, 1951.
Lazard: Lazard's Levelized Cost of Energy Analysis – Version 15.0, https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf
(last access: 21 January 2022),
2021.
Levesque, A., Pietzcker, R. C., Baumstark, L., De Stercke, S., Grübler,
A., Luderer, G.: How much energy will buildings consume in 2100? A global
perspective within a scenario framework, Energy, 148, 514–527,
https://doi.org/10.1016/j.energy.2018.01.139, 2018.
Leimbach, M., Bauer, N., Baumstark, L., Luken, M., and Edenhofer, O.:
Technological Change and International Trade – Insights from REMIND-R,
Energy J., 31, 109–136,
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5, 2010.
Li, P.-H. and Pye, S.: Assessing the benefits of demand-side flexibility in
residential and transport sectors from an integrated energy systems
perspective, Appl. Energ., 228, 965–979,
https://doi.org/10.1016/j.apenergy.2018.06.153, 2018.
López Prol, J. and Schill, W.-P.: The Economics of Variable Renewable
Energy and Electricity Storage, Annu. Rev. Resour. Econ., 13, 443–467,
https://doi.org/10.1146/annurev-resource-101620-081246, 2021.
Luderer, G., Pietzcker, R. C., Carrara, S., de Boer, H. S., Fujimori, S.,
Johnson, N., Mima, S., and Arent, D.: Assessment of wind and solar power in
global low-carbon energy scenarios: An introduction, Energy Econ., 64,
542–551, https://doi.org/10.1016/j.eneco.2017.03.027, 2017.
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O., Pietzcker, R. C.,
Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O., Fujimori,
S., Havlik, P., Iyer, G., Keramidas, K., Kitous, A., Pehl, M., Krey, V.,
Riahi, K., Saveyn, B., Tavoni, M., Van Vuuren, D. P., and Kriegler, E.:
Residual fossil CO2 emissions in 1.5–2∘C pathways, Nat. Clim.
Change, 8, 626–633, https://doi.org/10.1038/s41558-018-0198-6, 2018.
Luderer, G., Auer, C., Bauer, N., Baumstark, L., Bertram, C., Bi, S., Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A., Malik, A., Merfort, L., Pehl, M., Pietzker, R., Piontek, F., Rauner, S., Rodrigues, R., Rottoli, M., Schreyer, F., Sörgel, B., Strefler, J., and Ueckerdt, F.: REMIND v2.1.3 – Model documentation, Zenodo, https://doi.org/10.5281/zenodo.4268254, 2020.
Luderer, G., Madeddu, S., Merfort, L., Ueckerdt, F., Pehl, M., Pietzcker,
R., Rottoli, M., Schreyer, F., Bauer, N., Baumstark, L., Bertram, C.,
Dirnaichner, A., Humpenöder, F., Levesque, A., Popp, A., Rodrigues, R.,
Strefler, J., and Kriegler, E.: Impact of declining renewable energy costs
on electrification in low-emission scenarios, Nat. Energy, 7, 32–42,
https://doi.org/10.1038/s41560-021-00937-z, 2022a.
Luderer, G., Bauer, N., Baumstark, L., Bertram, C., Leimbach, M., Pietzcker,
R., Strefler, J., Aboumahboub, T., Abrahão, G., Auer, C., Benke, F., Bi,
S., Dietrich, J., Dirnaichner, A., Giannousakis, A., Gong, C. C., Haller,
M., Hasse, R., Hilaire, J., Hoppe, J., Klein, D., Koch, J., Körner, A.,
Kowalczyk, K., Kriegler, E., Levesque, A., Lorenz, A., Ludig, S., Lüken,
M., Malik, A., Manger, S., Merfort, A., Merfort, L., Moreno-Leiva, S.,
Mouratiadou, I., Odenweller, A., Pehl, M., Piontek, F., Popin, L., Rauner,
S., Richters, O., Rodrigues, R., Roming, N., Rottoli, M., Schmidt, E.,
Schötz, C., Schreyer, F., Schultes, A., Sörgel, B., Ueckerdt, F.,
Verpoort, P., and Weigmann, P.: REMIND – REgional Model of INvestments and
Development, Zenodo [code], https://doi.org/10.5281/zenodo.6794920, 2022b.
Luderer, G., Bauer, N., Gong, C. C., Odenweller, A., Baumstark, L., Bertram,
C., Leimbach, M., Pietzcker, R., Strefler, J., Aboumahboub, T., Abrahão,
G., Auer, C., Benke, F., Bi, S., Dietrich, J., Dirnaichner, A.,
Giannousakis, A., Haller, M., Hasse, R., Hilaire, J., Hoppe, J., Klein, D.,
Koch, J., Kowalczyk, K., Kriegler, E., Levesque, A., Ludig, S., Malik, A.,
Merfort, A., Merfort, L., Moreno, S., Mouratiadou, I., Pehl, M., Piontek,
F., Popin, L., Rauner, S., Richters, O., Schötz, C., Rodrigues, R.,
Ueckerdt, F., Zerrahn, A., Schreyer, F., Sörgel, B., Weigmann, P.,
Schill, W.-P., Verpoort, P., and Rottoli, M.: REMIND – DIETER coupling,
Zenodo [code], https://doi.org/10.5281/zenodo.7053246, 2022c.
Ludig, S., Haller, M., Schmid, E., and Bauer, N.: Fluctuating renewables in
a long-term climate change mitigation strategy, Energy, 36, 6674–6685,
https://doi.org/10.1016/j.energy.2011.08.021, 2011.
Martínez-Gordón, R., Morales-España, G., Sijm, J., and Faaij,
A. P. C.: A review of the role of spatial resolution in energy systems
modelling: Lessons learned and applicability to the North Sea region, Renew.
Sust. Energ. Rev., 141, 110857,
https://doi.org/10.1016/j.rser.2021.110857, 2021.
Mills, A. D. and Wiser, R. H.: Strategies to mitigate declines in the
economic value of wind and solar at high penetration in California, Appl.
Energ., 147, 269–278, https://doi.org/10.1016/j.apenergy.2015.03.014, 2015.
Mowers, M., Mignone, B. K. and Steinberg, D. C.: Quantifying value and
representing competitiveness of electricity system technologies in economic
models, Appl. Energ., 329, 120132,
https://doi.org/10.1016/j.apenergy.2022.120132, 2023.
National
long-term strategies:
https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en, last access: 15 January 2022.
NGFS: NGFS Climate Scenarios for central banks and supervisors, Network for
Greening the Financial System, https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors-september-2022 (last access: 23 August 2023), 2022.
openmod – Open Energy Modelling Initiative: https://openmod-initiative.org/,
last access: 21 January 2022.
Padhy, N. P.: Unit commitment-a bibliographical survey, IEEE T. Power
Syst., 19, 1196–1205, https://doi.org/10.1109/TPWRS.2003.821611, 2004.
Pahle, M., Tietjen, O., Osorio, S., Egli, F., Steffen, B., Schmidt, T. S.
and Edenhofer O.: Safeguarding the energy transition against political
backlash to carbon markets, Nat. Energy, 7, 290–296,
https://doi.org/10.1038/s41560-022-00984-0, 2022.
Palzer, A. and Henning, H.-M.: A Future German Energy System with a
Dominating Contribution from Renewable Energies: A Holistic Model Based on
Hourly Simulation, Energy Technol., 2, 13–28,
https://doi.org/10.1002/ente.201300083, 2014.
Parra, D., Valverde, L., Pino, F. J., and Patel, M. K.: A review on the
role, cost and value of hydrogen energy systems for deep decarbonisation,
Renew. Sust. Energ. Rev., 101, 279–294,
https://doi.org/10.1016/j.rser.2018.11.010, 2019.
Pietzcker, R. C., Ueckerdt, F., Carrara, S., de Boer, H. S., Després,
J., Fujimori, S., Johnson, N., Kitous, A., Scholz, Y., Sullivan, P., and
Luderer, G.: System integration of wind and solar power in integrated
assessment models: A cross-model evaluation of new approaches, Energy Econ.,
64, 583–599, https://doi.org/10.1016/j.eneco.2016.11.018, 2017.
Pina, A., Silva, C., and Ferrão, P.: Modeling hourly electricity
dynamics for policy making in long-term scenarios, Energ. Policy, 39,
4692–4702, https://doi.org/10.1016/j.enpol.2011.06.062, 2011.
Prina, M. G., Manzolini, G., Moser, D., Nastasi, B., and Sparber, W.:
Classification and challenges of bottom-up energy system models – A review,
Renew. Sust. Energ. Rev., 129, 109917,
https://doi.org/10.1016/j.rser.2020.109917, 2020.
Prol, J. L. and Schill, W.-P.: The Economics of Variable Renewable Energy and Electricity Storage, Annual Review of Resource Economics, 13, 443–467, https://doi.org/10.1146/annurev-resource-101620-081246, 2021.
Ram, M., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, S., Child, M.,
Caldera, U., Sadovskaia, K., Farfan Orozco, F., Noel, L., Fasihi, M.,
Maybodi, S., and Fell, H.-J.: Global Energy System based on 100 %
Renewable Energy: Energy Transition in Europe Across Power, Heat, Transport
and Desalination Sectors, Technical report, https://doi.org/10.13140/RG.2.2.10143.00160, 2018.
Ramsebner, J., Haas, R., Ajanovic, A., and Wietschel, M.: The sector
coupling concept: A critical review, WIREs Energy Environ., 10, e396,
https://doi.org/10.1002/wene.396, 2021.
Release REMIND v3.0.0 ⋅ remindmodel/remind:
https://github.com/remindmodel/remind/releases/tag/v3.0.0, last access: 11
August 2022.
Rechsteiner, R.: German energy transition (Energiewende) and what
politicians can learn for environmental and climate policy, Clean Technol.
Envir., 23, 305–342, https://doi.org/10.1007/s10098-020-01939-3,
2021.
Ringkjøb, H.-K., Haugan, P. M., and Solbrekke, I. M.: A review of
modelling tools for energy and electricity systems with large shares of
variable renewables, Renew. Sust. Energ. Rev., 96, 440-459,
https://doi.org/10.1016/j.rser.2018.08.002, 2018.
Rodrigues, R., Pietzcker, R., Fragkos, P., Price, J., McDowall, W., Siskos,
P., Fotiou, T., Luderer, G., and Capros, P.: Narrative-driven alternative
roads to achieve mid-century CO2 net neutrality in Europe, Energy, 239,
121908, https://doi.org/10.1016/j.energy.2021.121908, 2022.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L.,
Séférian, R., and Vilariño, M. V.: Mitigation pathways
compatible with 1.5 ∘C in the context of sustainable development,
in: Special Report on the impacts of global warming of 1.5 ∘C,
Intergovernmental Panel on Climate Change, Geneva, https://pure.iiasa.ac.at/id/eprint/15515/ (last access: 22 January 2022), 2018.
Rotmans, J. and van Asselt, M. B. A.: Uncertainty in Integrated Assessment
Modelling: A Labyrinthic Path, Integr. Assess., 2, 43–55,
https://doi.org/10.1023/A:1011588816469, 2001.
Ruhnau, O.: How flexible electricity demand stabilizes wind and solar market
values: The case of hydrogen electrolyzers, Appl. Energ., 307, 118194,
https://doi.org/10.1016/j.apenergy.2021.118194, 2022.
Say, K., Schill, W.-P., and John, M.: Degrees of displacement: The impact of
household PV battery prosumage on utility generation and storage, Appl.
Energ., 276, 115466, https://doi.org/10.1016/j.apenergy.2020.115466, 2020.
Schill, W.-P. and Zerrahn, A.: Long-run power storage requirements for high
shares of renewables: Results and sensitivities, Renew. Sust. Energ.
Rev., 83, 156–171, https://doi.org/10.1016/j.rser.2017.05.205, 2018.
Schill, W.-P. and Zerrahn, A.: Flexible electricity use for heating in
markets with renewable energy, Appl. Energ., 266, 114571,
https://doi.org/10.1016/j.apenergy.2020.114571, 2020.
Schill, W.-P., Pahle, M., and Gambardella, C.: Start-up costs of thermal
power plants in markets with increasing shares of variable renewable
generation, Nat. Energy, 2, 1–6, https://doi.org/10.1038/nenergy.2017.50,
2017.
Schill, W.-P., Roth, A., and Guéret, A.: Ampel-Monitor Energiewende Shows
the Pace of the Energy Transition Must Be Accelerated Significantly, DIW Weekly Report 26/27/28/2022, 171–179,
https://doi.org/10.18723/diw_dwr:2022-26-1, 2022.
Seljom, P., Rosenberg, E., Schäffer, L. E., and Fodstad, M.:
Bidirectional linkage between a long-term energy system and a short-term
power market model, Energy, 198, 117311,
https://doi.org/10.1016/j.energy.2020.117311, 2020.
Sensfuß, F.: Assessment of the impact of renewable electricity
generation on the German electricity sector: An agent-based simulation
approach, Universität Karlsruhe (TH), https://doi.org/10.5445/IR/1000007777, 2007.
Sensfuß, F., Ragwitz, M., and Genoese, M.: The merit-order effect: A
detailed analysis of the price effect of renewable electricity generation on
spot market prices in Germany, Energ. Policy, 36, 3076–3084, 2008.
Sepulveda, N. A., Jenkins, J. D., de Sisternes, F. J., and Lester, R. K.:
The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of
Power Generation, Joule, 2, 2403–2420,
https://doi.org/10.1016/j.joule.2018.08.006, 2018.
Sitarz, J., Pahle, M., Osorio, S., Luderer, G., and Pietzcker, R.: EU carbon
prices signal high policy credibility and farsighted actors, Research Square [preprint],
https://doi.org/10.21203/rs.3.rs-2761645/v1, 2023.
Staub-Kaminski, I., Zimmer, A., Jakob, M. and Marschinski, R.: Climate
policy in practice: a typology of obstacles and implications for integrated
assessment modeling, Clim. Change Econ., 05, 1440004,
https://doi.org/10.1142/S2010007814400041, 2014.
Stehfest, E., van Vuuren, D., Bouwman, L., and Kram, T.: Integrated
assessment of global environmental change with IMAGE 3.0: Model description
and policy applications, Netherlands Environmental Assessment Agency (PBL), ISBN 978-94-91506-71-0,
2014.
Stöckl, F., Schill, W.-P., and Zerrahn, A.: Optimal supply chains and
power sector benefits of green hydrogen, Sci. Rep., 11, 14191,
https://doi.org/10.1038/s41598-021-92511-6, 2021.
Sullivan, P., Krey, V., and Riahi, K.: Impacts of considering electric
sector variability and reliability in the MESSAGE model, Energy Strateg.
Rev., 1, 157–163, https://doi.org/10.1016/j.esr.2013.01.001, 2013.
The White House: The Long-Term Strategy of the United States: Pathways to
Net-Zero Greenhouse Gas Emissions by 2050, United States Department of State
and the United States Executive Office of the President, Washington DC, https://unfccc.int/documents/308100 (last access: 22 January 2022),
2021.
Ueckerdt, F., Brecha, R., Luderer, G., Sullivan, P., Schmid, E., Bauer, N.,
Böttger, D., and Pietzcker, R.: Representing power sector variability
and the integration of variable renewables in long-term energy-economy
models using residual load duration curves, Energy, 90, Part 2, 1799–1814,
https://doi.org/10.1016/j.energy.2015.07.006, 2015.
Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Giannousakis, A., and
Luderer, G.: Decarbonizing global power supply under region-specific
consideration of challenges and options of integrating variable renewables
in the REMIND model, Energy Econ., 64, 665–684,
https://doi.org/10.1016/j.eneco.2016.05.012, 2017.
UNEP: The Emissions Gap Report 2019, UNEP, Nairobi, Kenya, ISBN
978-92-807-3766-0,
2019.
van Ouwerkerk, J., Gils, H. C., Gardian, H., Kittel, M., Schill, W.-P.,
Zerrahn, A., Murmann, A., Launer, J., Torralba-Díaz, L., and Bußar,
C.: Impacts of power sector model features on optimal capacity expansion: A
comparative study, Renew. Sust. Energ. Rev., 157, 112004,
https://doi.org/10.1016/j.rser.2021.112004, 2022.
Welsch, M., Mentis, D., and Howells, M.: Chapter 17 – Long-Term Energy
Systems Planning: Accounting for Short-Term Variability and Flexibility, in:
Renewable Energy Integration, edited by: Jones, L. E., Academic Press,
Boston, 215–225, https://doi.org/10.1016/B978-0-12-407910-6.00017-X, 2014.
Weyant, J.: Some Contributions of Integrated Assessment Models of Global
Climate Change, Rev. Env. Econ. Policy, 11, 115–137,
https://doi.org/10.1093/reep/rew018, 2017.
Wilson, C., Guivarch, C., Kriegler, E., van Ruijven, B., van Vuuren, D. P.,
Krey, V., Schwanitz, V. J., and Thompson, E. L.: Evaluating process-based
integrated assessment models of climate change mitigation, Climatic Change,
166, 3, https://doi.org/10.1007/s10584-021-03099-9, 2021.
Younis, A., Benders, R., Ramírez, J., de Wolf, M., and Faaij, A.:
Scrutinizing the Intermittency of Renewable Energy in a Long-Term Planning
Model via Combining Direct Integration and Soft-Linking Methods for
Colombia's Power System, Energies, 15, 7604,
https://doi.org/10.3390/en15207604, 2022.
Zerrahn, A. and Schill, W.-P.: Long-run power storage requirements for high
shares of renewables: review and a new model, Renew. Sust. Energ. Rev.,
79, 1518–1534, https://doi.org/10.1016/j.rser.2016.11.098, 2017.
Zerrahn, A., Schill, W.-P., and Kemfert, C.: On the economics of electrical
storage for variable renewable energy sources, Eur. Econ. Rev., 108,
259–279, https://doi.org/10.1016/j.euroecorev.2018.07.004, 2018.
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
To mitigate climate change, the global economy must drastically reduce its greenhouse gas...