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Abstract. Integrated assessment models (IAMs) are a cen-
tral tool for the quantitative analysis of climate change miti-
gation strategies. However, due to their global, cross-sectoral
and centennial scope, IAMs cannot explicitly represent the
temporal and spatial details required to properly analyze
the key role of variable renewable energy (VRE) in de-
carbonizing the power sector and enabling emission reduc-
tions through end-use electrification. In contrast, power sec-
tor models (PSMs) can incorporate high spatiotemporal res-
olutions but tend to have narrower sectoral and geographic
scopes and shorter time horizons. To overcome these limita-
tions, here we present a novel methodology: an iterative and
fully automated soft-coupling framework that combines the
strengths of a long-term IAM and a detailed PSM. The key
innovation is that the framework uses the market values of
power generations and the capture prices of demand flexi-
bilities in the PSM as price signals that change the capac-
ity and power mix of the IAM. Hence, both models make
endogenous investment decisions, leading to a joint solu-
tion. We apply the method to Germany in a proof-of-concept
study using the IAM REgional Model of INvestments and
Development (REMIND) v3.0.0 and the PSM Dispatch and
Investment Evaluation Tool with Endogenous Renewables
(DIETER) v1.0.2 and confirm the theoretical prediction of
almost-full convergence in terms of both decision variables
and (shadow) prices. At the end of the iterative process, the

absolute model difference between the generation shares of
any generator type for any year is < 5 % for a simple con-
figuration (no storage, no flexible demand) under a “proof-
of-concept” baseline scenario and 6 %–7 % for a more re-
alistic and detailed configuration (with storage and flexible
demand). For the simple configuration, we mathematically
show that this coupling scheme corresponds uniquely to an
iterative mapping of the Lagrangians of two power sector op-
timization problems of different time resolutions, which can
lead to a comprehensive model convergence of both decision
variables and (shadow) prices. The remaining differences in
the two models can be explained by a slight mismatch be-
tween the standing capacities in the real world and optimal
modeling solutions based purely on cost competition. Since
our approach is based on fundamental economic principles,
it is also applicable to other IAM–PSM pairs.

1 Introduction

Thanks to decade-long policy support in many regions of
the world and technological learning, the costs of both wind
power and solar photovoltaics have plummeted (IEA, 2021;
Lazard, 2021). These types of variable electricity genera-
tion are now highly cost-competitive against other alterna-
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tives, such that their deployment is increasingly driven by
market forces instead of climate policies. Among the newly
added renewable generations in 2020, nearly two-thirds were
cheaper than the cheapest new fossil fuel (IRENA, 2020).
Due to both cost declines and pressing concerns over cli-
mate change, investing in these clean and abundant resources
has become a crucial part of national and regional strate-
gies to decarbonize the power sector (The White House,
2021; Cherp et al., 2021; National long-term strategies, 2022;
Rechsteiner, 2021; ICCSD Tsinghua University, 2022).

Given this dramatic development in the power sector over
the past 2 decades, a universal consensus has emerged among
energy transition scholars and policy makers: emissions in
the power sector are relatively “easy-to-abate” (Luderer et
al., 2018; Azevedo et al., 2021; Clarke et al., 2022). Com-
pared with other primarily non-electrified end-use sectors
such as buildings, transport and industry, the technologies
required to transform the power sector are low-cost, mature
and readily available. This trend has in recent years led to
a second emerging consensus: the power sector will be the
fundamental basis for a future low-cost, efficient and climate-
neutral energy system (Brown et al., 2018b; Ram et al., 2018;
Ramsebner et al., 2021; Luderer et al., 2022a). In addition to
direct electrification, which requires end-use transformations
of currently non-electrified demand, emerging technological
developments in hydrogen and e-fuels produced from renew-
able electricity have also contributed to the broadening of
potential technology portfolios for the “hard-to-abate” sec-
tors, such as high-temperature heat and chemical productions
(Parra et al., 2019; Bhaskar et al., 2020; Griffiths et al., 2021).
Together, direct and indirect electrification supports a broad
concept of “sector coupling”, which facilitates decarboniza-
tion by powering end-use demand with variable renewable
energy sources (Ramsebner et al., 2021).

Due to the pivotal role of electrification and sector cou-
pling in mitigation scenarios, there is an increasing demand
on the scope and level of detail of energy–economy mod-
els used to guide energy transition and climate policies. The
models would ideally encompass a global, multi-decadal and
multi-sectoral scope such that the scenarios are relevant for
international and regional climate policies while simultane-
ously incorporating a high level of spatiotemporal detail. The
latter is important to account for the specifics of variable re-
newable electricity generation as well as its physical and eco-
nomic interplay with the electrification of energy demand (Li
and Pye, 2018; Brunner et al., 2020; Prol and Schill, 2021;
Böttger and Härtel, 2022; Ruhnau, 2022). This need for im-
proved modeling methods or frameworks, which has to over-
come the trade-off between scope and detail, is a substantial
methodological challenge. It entails realizing two main ob-
jectives.

Objective (1). Accurately model the power sector trans-
formation over long time horizons in terms of invest-
ment and dispatch, especially at high shares of variable

renewable energy (VRE) sources. Long-term pathways
for the following power sector quantities and prices
should accurately incorporate short-term hourly details:

a. capacity and generation mix of the power sector;

b. market values (annual average revenues per power
generation unit) for variable and dispatchable
plants;

c. capacity factors of the dispatchable plants and the
curtailment rates of variable renewables; and

d. storage capacity and dispatch.

Objective (2). Accurately model direct electrification of
end-use sectors as well as indirect electrification tech-
nologies such as green hydrogen production, where ex-
isting and emerging sources of power demand can in
part be flexibilized.

1.1 Current modeling approaches and limitations

Current energy system models broadly fall into two dis-
tinct categories carried out by two research communities
with little institutional overlap: integrated assessment mod-
els (IAMs) and power sector models (PSMs), each with their
own strengths and weaknesses. IAMs are comprehensive
models of a global scale and span multiple decades, link-
ing macroeconomics, energy systems, land use and environ-
mental impacts (Stehfest et al., 2014; Calvin et al., 2017;
Huppmann et al., 2019; Baumstark et al., 2021; Keppo et
al., 2021; Guivarch et al., 2022), thereby providing an “in-
tegrated assessment” of multiple factors (Rotmans and van
Asselt, 2001). IAMs substantially shape the IPCC assess-
ments of long-term climate mitigation scenarios and play an
important role in policy making (Rogelj et al., 2018; UNEP,
2019; NGFS, 2022; IPCC, 2022). In comparison to IAMs,
PSMs typically have narrower spatial and sectoral scopes
and shorter time horizons but provide higher resolutions and
increased technological detail (Palzer and Henning, 2014;
Zerrahn and Schill, 2017; Brown et al., 2018a; Ram et al.,
2018; Sepulveda et al., 2018; Blanford and Weissbart, 2019;
Böttger and Härtel, 2022; Ringkjøb et al., 2018; Prina et al.
2020). (See also Sect. S5 in the Supplement for a compari-
son of model specifications of a few selected PSMs.) This al-
lows PSMs to more accurately model the power sector under
high-VRE shares (Bistline, 2021; Chang et al., 2021). Note
that we use the term “power sector model” here to represent
all general smaller-scope models than IAMs (usually by ge-
ographical or time horizon measures), even though many of
them have sector-coupling aspects and do not only contain
the traditional power sector.

IAMs and PSMs are therefore limited by a lack of spa-
tiotemporal detail and a lack of scope, respectively. IAMs
usually have a temporal resolution no shorter than a year
(Keppo et al., 2021) and therefore include simplified rep-
resentations of hourly power sector variability that mimic
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the real-world dynamics to varying degrees of success (Piet-
zcker et al., 2017). In general, a lack of high temporal res-
olutions can lead to difficulties when estimating the optimal
level of variable renewable generation, often either overesti-
mating or underestimating the market value of solar or wind
generation, the challenges of variable renewable integration,
the peak hourly residual demand, and the need for energy
storage and base load (Pina et al., 2011; Haydt et al., 2011;
Ludig et al., 2011; Kannan and Turton, 2013; Welsch et al.,
2014; Luderer et al., 2017; Pietzcker et al., 2017; Bistline,
2021). While approximate methods such as parameterization
via residual load duration curves (RLDCs) are able to cap-
ture the supply-side dynamics of VREs, they remain method-
ologically limited for representing the flexible demand-side
dynamics (Ueckerdt et al., 2015, 2017; Creutzig et al., 2017).
Besides limited temporal resolutions, IAMs also usually have
coarse spatial resolutions, which can lead to underestima-
tion or overestimation of transmission grid bottlenecks, ge-
ographical variability of wind and solar resources, and the
flexibility requirements for balancing supply and demand
(Aryanpur et al., 2021; Frysztacki et al., 2021; Martínez-
Gordón et al., 2021). PSMs, on the other hand, usually lack
the global and sectoral scopes required for addressing global
climate mitigation, in part because of limited availability of
detailed data and due to computational challenges. Further-
more, PSMs with a short-term horizon may lack the vintage
tracking of standing capacities, capacity evolution over time
and long-term perfect foresight, which can help policy mak-
ers and companies to look ahead beyond the short-term busi-
ness cycles, to invest early and to actively drive technical
progress. In contrast, in IAMs such as REMIND, proactive
early investment is a built-in feature, because the optimiza-
tion is done from a long-term social planner’s perspective.
In IAMs, investing early in the technological learning phase
results in lower costs of energy expenditure later, avoiding
the severity of punishment to economic growth later in time
in the form of lower consumption, which raises the welfare
which the model optimizes.

1.2 Iterative coupling for full model convergence

IAMs and PSMs differ in scope and resolution across the
three main modeling dimensions: temporal, spatial and tech-
nological. A soft-coupling approach can tap into these com-
plementarities and combine their strengths at potentially only
a moderate increase in computational cost. The main chal-
lenge of the soft-coupling approach is to show that the two
models can converge under coupling, which leads to a joint
equilibrium that maximizes regional interannual intertempo-
ral welfare in the IAM and minimizes total power system
costs in the PSM. Ideally, the converged model offers the
“best of both worlds”: it has both the broad scope required to
assess global long-term energy transitions and the technical
resolution required to capture the interplay between VREs,

storage and newly electrified demand on a much shorter
timescale.

Approaches aiming to bridge the “temporal resolution
gap” between long-term energy system models and hourly
PSMs have been proposed in the past (Deane et al., 2012;
Sullivan et al., 2013; Alimou et al., 2020; Brinkerink et al.,
2020; Seljom et al., 2020; Guo et al., 2022; Younis et al.,
2022; Brinkerink et al., 2022; Mowers et al., 2023). While
these achieved some aspects of Objective (1) with adequate
results, none attempted to incorporate and achieve Objec-
tive (2). In addition, there is a methodological gap in the pre-
vious attempts at a full harmonization of the multiscale mod-
els. By a full harmonization, we mean a comprehensive cou-
pling of the power sector dynamics and an eventual model
convergence in capacities, generation and prices. In only a
few previous studies, price information has been fed back
into the long-term models from the short-term models: in
one study only partial price information has been exchanged
(Seljom et al., 2020) and in another study some subset of
price information is exchanged, but they are not fully endo-
genized (instead, they are parameterized) and the exchange
is also unidirectional (Mowers et al., 2023). Without a feed-
back mechanism through prices, the investment in the cou-
pled model will very likely be suboptimal due to two ef-
fects. (1) Because of the misalignment in prices in the two
models, there is a mismatch in investment incentives, result-
ing in a mismatch for optimal capacities if both models are
completely endogenous. (2) In all previous studies, the ca-
pacities are fixed in the PSM, and only the long-term model
is allowed to invest in new capacities. This implementation
can further propagate and sustain the price mismatch due to
(1) nontrivial shadow prices from these capacity bounds, in
turn creating price distortions in the PSM that can be passed
on to the IAM. Therefore, the methodological gap in pre-
vious work prevented a comprehensive convergence of the
coupled models of both quantities and prices. As we show
later in this study, without a comprehensive coupling of price
information, no system-wide convergence can be achieved.
However, with price coupling as our method proposes, we
could achieve all aspects of Objective (1) and Objective (2)
for one type of flexible demand with adequate numerical re-
sults, thereby representing a first step in bridging the previous
methodological gap.

Compared to previous studies, our approach features three
main innovations. (1) The coupling is achieved by linking
market values and not hard-fixing quantities, allowing both
models to invest “as endogenously as possible”. (2) The mar-
ket values of all power sector technologies are coupled, not
just the electricity price of the system or the market value
of a particular technology, allowing models to achieve close
to full convergence. (3) Under idealized coupling assump-
tions and for a simplified “proof-of-concept” model without
storage, we can mathematically derive the necessary condi-
tions under which comprehensive model convergence can be
reached, which puts multiscale coupling on a firm theoretical
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footing. Our coupling approach is bidirectional, iterative and
fully automated.

One should note that our methodology bears certain math-
ematical similarities to Benders decomposition from the dis-
cipline of operation research (Conejo et al., 2006), which is
used in the long-term energy system model PRIMES (Price-
Induced Market Equilibrium System) to obtain hourly detail
(E3Mlab, 2018). There are however crucial differences. For
example, the optimization in our work is carried out itera-
tively outside solver time, whereas the Benders decomposi-
tion is carried out iteratively during solver time. In addition,
our approach can function even when the objective function
is convex, whereas the Benders decomposition cannot, allow-
ing our approach to be applied in more general cases. Math-
ematically, the subproblems in Benders decomposition have
fixed capacities obtained from master problems and there-
fore are not endogenous, but the shadow prices of these con-
straints are iteratively passed on to the master problems, en-
suring mathematical convergence. The exact ways in which
our methodology is connected to Benders decomposition or
other similar methods are yet to be fully explored.

To showcase such a framework and its ability to achieve
iterative convergence, we couple the PSM Dispatch and In-
vestment Evaluation Tool with Endogenous Renewables (DI-
ETER), which has an hourly resolution (8760 h in a year),
with the IAM REMIND for a single region (Germany). Ger-
many is a well-suited case study for exploring high VRE
shares in the power sector. The country is expected to meet
stringent climate targets despite its high level of residential
and industrial power demand, relatively small geographical
size, and lack of solar endowment during winter seasons.
Nevertheless, the German government has set very ambitious
targets for the expansion and use of variable renewable en-
ergy sources (Schill et al., 2022). A viable zero-carbon power
mix in Germany must include an adequate amount of storage
and transmission for renewable generation as well as “clean
firm generation” such as geothermal, biomass or gas with
carbon capture and storage (CCS) (Sepulveda et al., 2018).

2 Models

The models used in this study are well-documented open-
source models (REMIND is an open-source model but re-
quires proprietary input data to run). A side-by-side compar-
ison of the scope, resolution and other specifications of the
two models can be found in Appendix A. The coupling scope
can be found in Appendix B. Details on model input data can
be found in Sect. S1.

2.1 IAM: REMIND

REMIND is a process-based IAM that describes complex
global energy–economy–climate interactions (Baumstark et
al., 2021). REMIND has frequently been used in long-term

planning of decarbonization scenarios, most notably in the
IPCC (IPCC, 2014; Rogelj et al., 2018; IPCC, 2022). The
REMIND model links different modules that describe the
global economy, energy, land and climate systems to a rel-
atively detailed representation of the energy sector com-
pared to non-process-based IAMs. The model is formulated
as an interannual intertemporal optimization problem. Due
to the computational complexity of nonlinear optimization,
the model simulates a time span from 2005 to 2100 with
a temporal resolution of either 5 years (between 2005 and
2060) or 10 years (between 2070 and 2100). The years in
REMIND are representative years of the surrounding 5- or
10-year period; e.g., year “2030” represents the 5-year period
2028 to 2032. Spatially, the model represents the world com-
posed of aggregated global regions (Fig. B1). For each re-
gion, using a nested constant elasticity of substitution (CES)
production function, the model maximizes interannual in-
tertemporal welfare as a function of labor, capital and en-
ergy use (Baumstark et al., 2021). The macroeconomic pro-
jections of REMIND come from various established global
socioeconomic scenarios jointly used by social scientists and
economists – the so-called shared socioeconomic pathways
(SSPs) (Bauer et al., 2017).

By default, REMIND runs in a regionally decentralized
iterative “Nash mode” where all regions are run in parallel
and the interannual intertemporal welfare is maximized for
each region for each internal “Nash” iteration. Trade flows
between the regions are determined between the Nash iter-
ations. During the Nash algorithm, REMIND regions share
partial information with each other, i.e., trade variables in
primary energy products and goods. The Nash algorithm is
said to converge when all markets are cleared and no region
has an incentive to change its behavior regarding its trade
decisions; i.e., no resources can be reallocated to make one
region better off without making at least one region worse
off. A successfully converged run of standalone REMIND in
Nash mode usually consists of 30 to 70 iterations of single-
region models in parallel. Each parallel single-region model
usually takes 3–6 min to solve. A typical REMIND run in
Nash mode lasts 2.5–6 h, depending on the level of sectoral
details included. The latest version of REMIND (v3.0.0) is
published as an open-source version on GitHub (release RE-
MIND v3.0.0 · remindmodel/remind, 2022). REMIND is im-
plemented as a nonlinear programming (NLP) mathemati-
cal optimization problem. In REMIND, the nonlinearity con-
sists of the welfare function, the CES production functions,
adjustment costs, technological learning, the extraction cost
functions, the bioenergy supply function and nonlinear con-
straints, among others.

2.2 PSM: DIETER

DIETER is an open-source power sector model developed
for Germany and Europe. In a long-running equilibrium set-
ting (i.e., a competitive benchmark), the model minimizes the
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overall system costs of the power sector for 1 year. DIETER
determines the least-cost investment and hourly dispatch of
various power-generation, storage and demand-side flexibil-
ity technologies. In the previous literature, different versions
of the model have been used to explore scenarios with high-
VRE shares, where storage (Zerrahn et al., 2018; Zerrahn and
Schill, 2017; Schill and Zerrahn, 2018), hydrogen (Stöckl et
al., 2021), power to heat (Schill and Zerrahn, 2020) or solar
prosumage (Say et al., 2020; Günther et al., 2021) are eval-
uated with a high degree of technological detail. DIETER
recently also contributed to model comparison exercises that
focused on power sector flexibility for VRE integration and
sector coupling (Gils et al., 2022b, a; van Ouwerkerk et al.,
2022).

As a first step in building a model-coupling infrastructure,
we implemented an earlier and simpler version of DIETER
(v1.0.2) that is purely based on the General Algebraic Model-
ing System (GAMS). It has limited features in ramping con-
straints, flexible demand and storage. The model minimizes
the total investment and dispatch cost of a power system for
a single region considering all consecutive hours of 1 full
year. The technology portfolio contains conventional gener-
ators such as coal and gas power plants, nuclear power as
well as renewable sources such as hydroelectric power, solar
photovoltaics (PV) and wind turbines. Endogenous storage
investment and dispatch as well as demand flexibilizations
are offered as additional features that can be turned on or off.
DIETER, like many PSMs, is a linear program (LP). A typ-
ical standalone run (with essential features) lasts from sev-
eral seconds to several minutes for a single region. See Zer-
rahn and Schill (2017) for detailed documentation of the ini-
tial model, which was implemented purely in GAMS. Later,
DIETER’s GAMS core was embedded in a Python wrapper
for enhanced scenario analysis and postprocessing, but the
model can still be run in GAMS-only mode (Gaete-Morales
et al., 2021).

3 A novel coupling approach

It is central to our approach that the price-based variables,
such as the market values of electricity generation, are ex-
changed between the models. This approach ensures full con-
vergence – including both quantity convergence and price
convergence in the market equilibrium. Here, we first intro-
duce the intuition behind this approach and then conduct a
deep dive into the economic theory behind energy system
modeling.

Economic concepts such as market values or capture
prices (Böttger and Härtel, 2022), as key variables in our cou-
pling, translate the physical characteristics of variable power
generation or flexible consumption into economic ones. For
example, generation technologies differ with respect to phys-
ical features and constraints – solar and wind generation de-
pends on current weather conditions as well as diurnal and

seasonal patterns, whereas this is less the case for dispatch-
able power plants such as coal, gas, biomass, nuclear or stor-
age (López Prol and Schill, 2021). One consequence of this is
that, for example, prices in hours where PV does not produce
will essentially be set by other and usually more expensive
forms of generation. In cost-minimizing PSMs, the shadow
prices of the energy balance are interpreted as wholesale mar-
ket prices (Brown and Reichenberg, 2021; López Prol and
Schill, 2021). Therefore, in general, hourly resolution PSMs
are well equipped to translate such physical constraints of
generation into (wholesale) power market price time series.
By providing such prices generated by PSMs (among other
variables of the power sector dynamics) to IAMs, the lat-
ter can be indirectly informed about power market dynam-
ics happening on much shorter timescales, even if they lack
hourly resolutions. Over iterations, the prices from PSMs act
as “price signals” to induce investment decision changes in
IAMs, which can in turn provide feedback to the PSMs until
the two models converge.

One innovation of our method is that the prices used for the
model coupling can be symmetrically applied on the power
supply side and on the demand side. On the supply side,
the coupling method mainly utilizes the concept of a market
value (i.e., the annual average revenue per energy unit of a
generator) in a competitive market at equilibrium. Generally
speaking, market values of generation usually convey the de-
gree of variability intrinsic to a given source of power supply
and reflect the generator’s ability to meet an inflexible hourly
demand, especially given the lower cost of variable gener-
ation compared to dispatchable technologies. Mirroring the
concept of the market value, on the demand side, there is the
concept of the “capture price” of electricity demand, which
conveys the degree of demand-side flexibility. Note that there
may be multiple terminologies for demand-side electricity
prices; we use “capture price” to be consistent with one ex-
ample of the literature on this topic. The capture price is the
average electricity price that a flexible demand technology
pays over a year. For example, flexible demand technologies
such as heat pumps, electrolyzers or electric vehicles (EVs)
can take advantage of electricity at hours when the generation
is cheap in order to obtain a lower capture price, whereas in-
flexible demand has to pay a higher price on average. Price
information given from a PSM to an IAM from both the sup-
ply and demand sides can change the IAM’s inherent invest-
ment and dispatch decisions of power generation as well as
inflexible and flexible demand-side technologies.

For an intuitive understanding of our innovative coupling
scheme, we take the supply side as an example and use a
toy model to visualize the approach of coupling via mar-
ket values. The market values of electricity-generating tech-
nologies have been studied in depth (Sensfuß, 2007; Sensfuß
et al., 2008; Hirth, 2013; Mills and Wiser, 2015; Hildmann
et al., 2015; Koutstaal and va. Hout, 2017; Figueiredo and
Silva, 2018; Hirth, 2018; Brown and Reichenberg, 2021).
The general idea of the coupling is illustrated in Fig. 1 for
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a simplified case of only two types of generators – dispatch-
able gas turbines and solar photovoltaics with variable out-
put. Note that we assume the system to be at a solar share of
> 50 % and with no storage, such that the solar market value
is below the average electricity price and that of gas gen-
eration is above it. Before the coupling, for a general IAM
with coarse temporal resolution and without any VRE inte-
gration cost parameterizations, there is no differentiation be-
tween the market values of gas and solar generators – they
are both equal to the electricity price. Thus, there is no dif-
ferentiated revenue for 1 MWh generated by variable sources
and dispatchable sources. The lack of market value differen-
tiation is a direct consequence of the limited temporal res-
olution in IAMs, which cannot represent hourly dynamics.
However, through a market-value-based coupling, the IAM
can be informed by the PSM via a price “markup”. The an-
nual price markup is defined as the difference between the
market value of a specific technology and the annual average
revenue that all generators together earn for one unit of gen-
eration (i.e., the annual average electricity price that a user
pays). Under our soft-coupling approach, the markups from
the PSM act as price signals that change the composition of
the energy mix in the next iteration of the IAM. In this simple
example with a lot of PV and no storage, since the gas gen-
erator can generate electricity in times of scarcity (night), it
is “more valuable” to the system and thus will receive a posi-
tive markup. When this positive price incentive is transferred
from the PSM to the IAM, it increases the optimal level of
investment in gas generation in the next IAM iteration. At
the same time, solar generation receives a negative price in-
centive, reducing the optimal level of investments in the next
iteration. Ultimately, the higher market value of gas turbines
is due to (1) their higher cost compared to solar (when gas is
at < 50 % market share) and (2) their ability to set prices in
hours of low solar output and inflexible electricity demand.
As we later show through the mathematical theory of model
convergence, other information besides markups also needs
to be transferred, such as capacity factors (the annual average
utilization rates of the generators).

There are several advantages to this new coupling ap-
proach centered on linking prices. First, instead of simply
prescribing quantities such as yearly generation and capac-
ities, the approach allows endogenous investment decisions
to be made by both models as they converge towards a joint
solution. This gives maximal freedom to the coupled models
while minimizing unnecessary distortions from one model
to the other when some necessary quantities are being pre-
scribed. Second, our coupling scheme provides an elegant
treatment of both supply- and demand-side technologies us-
ing the concepts of market values on the one hand and cap-
ture prices on the other. Third, from a theoretical point of
view, transferring the market values of all the generation
types in a system alongside mappings of other relevant sys-
tem parameters can lead to a convergence of the solutions
of the two models under idealized coupling circumstances. It

can be rigorously shown that our method contains an exhaus-
tive list of interfacing parameters and variables for full model
convergence of both quantities and prices. To the best of the
authors’ knowledge, the last point has not been explored or
shown in any previous work.

In certain IAMs, VRE integration cost parameterization
has been implemented to mimic the economic consequences
of variability of VREs, especially when the models have a
lower temporal resolution. Such VRE integration costs are
contained in the uncoupled default REMIND power sector
modeling. However, the exact parameterization always de-
pends on a particular set of technological costs and param-
eters which might be subject to changes (Pietzcker et al.,
2017), and the parameterization often needs to be carried out
anew under new assumptions and scenarios. In contrast, the
model-coupling approach is more general, and no such be-
spoke parameterization is needed.

Inspired by the theoretical framework based on the
Karush–Kuhn–Tucker (KKT) conditions for power sector
optimization problems (Brown and Reichenberg, 2021), we
develop the theoretical basis for the coupling method in this
section, which we use for validating convergence in nu-
merical coupling in later sections. In Sect. 3.1, we analyti-
cally formulate the fundamental economic theory of the cou-
pling approach. We first introduce the power sector formu-
lations in the two uncoupled models (Sect. 3.1). Then we
carry out a derivation of the convergence conditions and
criteria, where we map the Lagrangians of the two power
sector problems at different time resolutions and derive the
equilibrium condition for the coupled models (Sect. 3.2).
In Sect. 3.3, we introduce the iterative coupling interface
which contains all the previously derived convergence condi-
tions. For REMIND information being passed on to DIETER
(Sect. 3.3.1) and DIETER information being passed on to
REMIND (Sect. 3.3.2), we list and define the variables and
parameters being exchanged at the interface as well as ad-
ditional constraints and implementations which serve to im-
prove the coupling.

Complete lists of the mathematical symbols and abbrevia-
tions can be found in the Appendices.

In the following sections, we first formulate the two un-
coupled models and then move on to discussing coupled
models. The theoretical tools we develop here are the founda-
tion for the numerical implementation of coupling and serve
to validate and assess the model convergence in the Results
section.

3.1 Descriptions of uncoupled models

REMIND and DIETER are both optimization models. RE-
MIND maximizes interannual global welfare from 2005 to
2150, whereas DIETER minimizes the power sector system
cost for a single year and a single region. For a given RE-
MIND Nash iteration (see Sect. 2.1), the single-region econ-
omy is in long-term equilibrium after the optimization prob-
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Figure 1. Schematic illustration of the coupling approach for a simple power system in an IAM with coarse temporal resolution, consisting
of only gas and solar generators (no storage). (a, c) Before coupling; (b, d) after coupling. (a, b) Endogenous prices (electricity price, market
values of solar and gas generators); (c, d) endogenous quantities (generation mix). The markups (as part of a larger set of interfaced variables)
are the differences between market values and electricity prices and are given by the PSM of high temporal resolution as price signals to the
IAM. Usually, it is called a “markup” when the market value is higher than the annual average electricity price and a “markdown” if it is the
other way around. For simplicity, in the rest of the text we only refer to “markup” and “markdown” collectively as “markup”, regardless of
whether the market value is higher or lower than the average electricity price.

lem is solved. Since, given a fixed national income, lower en-
ergy system costs mean higher consumption, which leads to
increased welfare (see Appendix C for details), maximizing
welfare can be assumed to correspond to minimizing energy
system costs, a part of which is power sector costs. Therefore,
to reduce the complexity of our analysis, we formulate an
uncoupled REMIND model based solely on the power sector
cost minimization and not the total welfare maximization.
For the standalone REMIND, the multi-year power system
cost for a single region equals the sum of all variable and
fixed costs of generation,

Z =
∑

y,s
(cy,sPy,s + oy,sGy,s), (1)

where c represents the fixed cost for capacity, o represents
the variable cost of running power generation, P denotes
endogenous capacity, and G denotes endogenous generation
(defined as including curtailment in REMIND). P and G are
the decision variables of the problem. The sum in the ob-
jective function is over time index y and power-generating
technology type s. The REMIND time index y stands for 1
representative year, which represents 5 or 10 years centered
around it. So, even though the time step is 5 to 10 years,
the time resolution is 1 year. For example, “y = 2020” repre-
sents the years 2018–2022. Capital letters (both Latin and
Greek) denote independent decision variables of the opti-
mization problem. We classify an endogenous decision vari-

able as independent if it is not uniquely determined by one or
more other decision variables and has no binding constraints
applied to itself that are not already accounted for by the con-
straints on the decision variable(s) it depends on. Note that,
for simplicity, we treat all costs in REMIND in this formu-
lation as if they are exogenous. In reality, REMIND has en-
dogenous fixed costs due to technological learning as well
as an endogenous interest rate. Some types of variable costs
such as fuel costs are also endogenous and are determined
based on primary energy balance equations for oil, gas and
biomass. CO2 prices can also be endogenous under emission
constraints.

Under the simplifying assumptions made for the derivation
in this paper, the only independent decision variables are ca-
pacities, generations and curtailments. Small letters denote
either exogenously given parameters or endogenous shadow
prices.

For standalone DIETER, which has a year-long time hori-
zon, the power system cost is

Z =
∑

s
csP s +

∑
h

[
os
(
Gh,s +0h,vre

)]
, (2)

where Gh,s is the endogenous hourly power generation (ex-
cluding curtailment – note that this is different from the gen-
eration variable definition in REMIND), h is the hourly in-
dex in a year from 1 to 8760, and s is the index for the
power-generating technology in DIETER. 0 is hourly cur-
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tailment, only applicable in the case of variable renewables
vre (vre⊂ s). Technology type s can be subdivided into two
subsets: vre and dis (“dispatchables”). For simplicity, we ab-
breviate the index subscript from s|s = vre to vre and from
s|s = dis to dis. Here, in order to differentiate from REMIND
notations, we use overline . to denote DIETER parameters
and variables. Note that, for simplicity, in the derivation we
treat the technology types in both models as identical, al-
though in fact the technologies in the two models are not
one-to-one mapped (Fig. B2). During the coupling all inter-
face parameters and optimal decision variables need to be
upscaled or downscaled when transferred from one model to
the other.

The cost minimization of the total power sector cost Z and
Z under constraints yields the optimal values of the decision
variables, denoted as (P ∗y,s , G

∗
y,s) and (P

∗

s , G
∗

h,s , 0
∗

h,s).
Without coupling, and under a baseline scenario, there are

several constraints for each model. In the following equa-
tions we denote the shadow price (i.e., the Lagrangian mul-
tiplier) of a constraint by the symbol following ⊥. We use
small Greek letters to denote endogenous shadow prices and
small Latin and Greek letters to denote exogenous param-
eters. The major constraints are as follows (“c” stands for
“constraint”).

c1. Constraint on generation for meeting demand, a.k.a.
“supply–demand balance equation” or “balance equa-
tion” for short:

REMIND (annual) : dy =
∑

s
Gy,s

(
1−αy,s

)
⊥ λy,

DIETER (hourly) : dh =
∑

s
Gh,s ⊥ λh,

where dy denotes the annual REMIND power de-
mand and dh denotes the DIETER hourly demand. The
shadow prices (Lagrangian multipliers) λy and λh repre-
sent the annual and hourly electricity prices in REMIND
and DIETER, respectively, and are equal to the marginal
cost of one additional unit of electricity generation. αy,s
is the annual VRE curtailment ratio in REMIND. Note
that, technically speaking, REMIND electricity demand
dy is determined endogenously, partially via competi-
tion with other energy carriers at the final energy con-
sumption level, such as the competition between elec-
tricity and gaseous carriers such as natural gas or hy-
drogen in household heating. However, because here
we have reduced REMIND to only intra-power sector
dynamics for the purpose of mathematical analysis, we
treat demand as exogenous.

c2. Constraint on maximum capacity by the available an-
nual potential ψs in a region:

REMIND : Py,s ≤ ψs ⊥ ωy,s,

DIETER : P s ≤ ψ s ⊥ ωs .

Note that the resource constraint in REMIND is only
relevant for wind, solar and hydro and is assumed to be

constant over the model horizon. Biomass availability is
not modeled via a regional potential constraint. Instead,
the availability of biomass is priced in through the soft-
coupling to the land use model MAgPIE via a supply
curve.

c3. Constraint on generation being non-negative:

REMIND : −Gy,s ≤ 0 ⊥ ξy,s,

DIETER : −Gh,s ≤ 0 ⊥ ξh,s .

Note that there are several other similar constraints on
other positive variables such as capacities and curtail-
ment. In practice, during the derivation they behave sim-
ilarly to this positive generation constraint. Therefore,
for simplicity, we do not include them in the derivation.

c4. Constraint on maximum generation from capacity:

REMIND :Gy,s = φy,sPy,s · 8760 ⊥ µy,s ,

DIETER : (variable renewables) Gh,vre+0h,vre

= φh,vreP vre ⊥ µh,vre

(dispatchables) Gh,dis ≤ P dis ⊥ µh,dis,

where φy,s is the exogenous annual average capacity
factor of the power plant s in REMIND in year y and
φh,vre is the exogenously given hourly theoretical ca-
pacity factor (i.e., before curtailment) of VRE in DI-
ETER. Note that, strictly speaking, curtailments in the
uncoupled REMIND and DIETER are endogenous de-
cision variables but are not independent variables. How-
ever, here we use capital letters to denote hourly curtail-
ment in DIETER as an independent decision variable to
account for curtailment costs and other curtailment con-
straints that can arise from a more general formulation
of the model.

c5. “Historical” constraints on capacities in REMIND. This
makes REMIND a so-called “brown-field model”, i.e., a
model accounting for the standing capacities in the real
world. Past capacities (y < 2020) are “hard-fixed”; i.e.,
the variable capacities are fixed to certain numeric val-
ues. Current capacities (y = 2020) are “soft-fixed”; i.e.,
the variable capacities are fixed to a corridor around cer-
tain standing numeric values: the lower bounds guaran-
tee the already planned capacities, and the upper bounds
reflect the finite physical capabilities of scaling up, de-
fined by 5 % above the 2020 real-world data. For sim-
plicity, we use only one constraint for both past and cur-
rent capacities,

Py,s ≥ py,s ⊥ σy,s for y ≤ 2020,

where py,s represents the standing capacities of tech-
nology s at time y in REMIND in the past and present
years.
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c6. Near-term upscaling constraint on VRE capacity expan-
sion, represented by an upper bound on near-term ca-
pacity addition in model period (y−1y,y), 1Py,s :=
Py,s −Py−1y,s , where 1y is the REMIND model time
step:

1Py,s ≤ qy,s ⊥ γy,s for y = 2025,

where qy,s is equal to twice the added capacity during
the 2010–2020 period (only applied to Germany in the
default REMIND).

Note that constraints (c5) and (c6) introduce interannual in-
tertemporality into the power sector of REMIND. This addi-
tional interannual intertemporality determines that the model
equilibrium can only be strictly satisfied across the sum of all
the model periods and not for a single period. Another source
of intertemporality in REMIND is the adjustment cost, which
we ignore in the main text of this study since it introduces
nonlinearity into the power sector and also plays a relatively
small role in the overall dynamics.

Note that, regarding the simplification of REMIND above,
to the best of the authors’ knowledge, there is no theoretical
or empirical concept that addresses the validity of drawing
equivalence between welfare maximization and energy sys-
tem cost minimization in IAMs. Naively, given that the gross
domestic product (GDP) is unchanged, decreasing energy
system costs raises consumption and therefore welfare. How-
ever, this is only valid under the assumption that energy is a
substitute for (and not a complement to) capital and labor;
i.e., one usually cannot raise economic output (GDP) sim-
ply by spending more on higher energy expenditure (while
satisfying the same level of energy demand). Nevertheless,
this is likely a necessary condition and not a sufficient one
for proving the equivalence. More theoretical research will
be needed to draw a precise and rigorous equivalence. How-
ever, in practice, we see that during our numerical calcula-
tion the model is well behaved according to this reduced the-
ory, which means that the parameters in the models are in a
regime where such an assumption is valid, at least in the case
of IAM REMIND.

3.2 Economic theory of model convergence

In the last section we discussed the standalone uncoupled
power sector formulations in REMIND and DIETER. In
this section we discuss the coupled models and their con-
vergence. Under simplified assumptions, we first derive the
mapping between the models that is necessary for a conver-
gence (Sect. 3.2.1 and 3.2.2), and then we derive theoretical
relations that are later used to validate the numerical results
of the coupled run (Sect. 3.2.3).

3.2.1 Derivation of convergence conditions

Our aim is to develop a method under which comprehen-
sive convergence can be reached for soft-coupled multiscale

models. We achieve this by deriving a mapping of the two
problems such that their decision variables have identical op-
timal solutions and the endogenous shadow prices are also
equal across the models. The convergence conditions of the
coupled REMIND–DIETER model for the power sector are
the result of such a mapping. Below, we first define what is
meant by a “comprehensive model convergence” and then
sketch the workflow of the derivation of a coupling frame-
work which would result in a comprehensive model conver-
gence of both decision variables and shadow prices. The de-
tailed derivation is in Appendix D.

Here, we derive the conditions under which the endoge-
nous decision variables are identical at each model’s op-
timum, i.e., P ∗y,s = P

∗

y,s and G∗y,s

(
1−α∗y,s

)
=
∑
hG
∗

y,h,s

– or, equivalently, pre-curtailment generation G∗y,s and∑
h

(
G
∗

y,h,s +0
∗

y,h,s

)
. A convergence of the solutions of

these two sets of annual decision variables for each tech-
nology s and for each year y, along with the convergence
of shadow prices, gives rise to comprehensive model conver-
gence. We show below that this can only be achieved if there
is a harmonization at the level of the KKT Lagrangians of
the two problems, following the methods first developed by
Karush, Kuhn and Tucker (Karush, 1939; Kuhn and Tucker,
1951).

Our coupling approach fundamentally relies on mapping
the parameterization of the Lagrangians for both optimiza-
tion problems. It is trivial to show that, as long as the KKT
Lagrangians are identical with respect to the decision vari-
ables, the solutions of the problem are identical, e.g., if an op-
timization problem A has Lagrangian L1 = a1 ·x+b1 ·y and
another problem B has Lagrangian L2 = a2 ·x+b2 ·y, where
x and y are decision variables of the optimization problems.
Then, if we let a1 = a2,b1 = b2, the two problems are iden-
tical, and they must have identical optimal solutions for the
decision variables x∗ and y∗. This is the basic logic behind
the Lagrangian-based method. The challenge in the case of
REMIND and DIETER is to show that when a decision vari-
able representing the same physical quantity, for example,
the annual power generation from a technology, is defined
with low resolution in one problem and high resolution in
another, there is nevertheless a viable mapping between the
two Lagrangians. In this case, the parameterization of the La-
grangian is not only limited to exogenous parameters of the
model, but also includes endogenous shadow prices and en-
dogenous decision variables from the other model. Due to
the endogenous nature of the latter two, the parameterization
in the current-iteration model A must come from the solved
results from the last iteration from model B and vice versa.
Figure 2 illustrates the workflow of the analytical derivation
of the convergence conditions.

The analytical derivation workflow, as shown in Fig. 2, is
described in detail as follows. First, we apply simplifying as-
sumptions to reduce the complexity of the uncoupled mod-
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Figure 2. The schematics of the Lagrangian-based derivation procedure for a simplified version of REMIND–DIETER iterative convergence.
After simplifying assumptions, we can construct the Lagrangians of the reduced REMIND model and the full DIETER model for a single
year (Eqs. 3–4). Comparing and mapping terms in the Lagrangians (a key step in bold), we discover that iterative exchange of a broad
range of information is needed for a fully harmonized parameterization of the Lagrangians. Under the harmonization specified in the seven
convergence conditions (color-coded for directions of information flow), the coupled models can give rise to identical optimal solutions of the
models’ respective (annually aggregated) decision variables and hence a full quantity convergence. The necessary shadow price convergence
is shown in the detailed derivation of the harmonization conditions (h1–h7) in Appendix D.

els (before the key step in blue in Fig. 2). Assumptions have
to be made to justify reducing the scope of the REMIND
model, such that for the purpose of the analysis it is on equal
footing to DIETER. We achieve this by reducing the global
REMIND model to a single sector (the power sector), sin-
gle year and single region. To reduce the REMIND model
from a macroeconomic–energy model to a power-sector-only
model, we make similar assumptions to before when formu-
lating the uncoupled REMIND power sector (see Sect. 3.1).
To reduce the REMIND model further to a single year, we
assume that the models only contain constraints in the power
sector that are not intertemporal; i.e., we ignore the brown-
field and near-term constraints for now. Since for each it-
eration of the REMIND model in Nash mode interregional
trading happens between the iterations, the single-iteration
optimization model is already for a single region and there-
fore does not require simplification. After these simplifying
steps, in this part of the derivation, we can treat REMIND’s
power sector as “separate” from the rest of the model and
treat the dynamics of a single year in REMIND as indepen-
dent of the dynamics of other years. Later, the numerical re-
sults of the convergence can confirm to a large degree the va-
lidity of these assumptions, especially in the green-field tem-
poral ranges, i.e., where the intertemporal brown-field con-
straints have little influence on the dynamics. Note that, with

the inclusion of these intertemporal constraints in the deriva-
tion, the mapping becomes more complicated, especially for
the near-term range, i.e., before 2035. So, in practice, this
derivation of the coupling interface is only an approxima-
tion of what is needed for a full convergence of DIETER and
REMIND, since it deliberately ignores such constraints. See
also Sect. 6.1.

After the necessary simplification assumptions, we con-
struct the Lagrangians for the simplified model REMIND and
for DIETER (after the blue block in Fig. 2) (Gan et al., 2013).
For a single-year reduced REMIND power sector model, the
Lagrangian is

Ly =
∑
s

(
cy,sPy,s + oy,sGy,s

)
︸ ︷︷ ︸

REMIND objective function

+ λy

[
dy −

∑
s

Gy,s(1−αy,s)

]
︸ ︷︷ ︸

annual electricity balance equation constraint

+

∑
s

µy,s
(
Gy,s − 8760 ·φy,sPy,s

)
︸ ︷︷ ︸

maximum generation from capacity constraint

. (3)
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We would like to map it to the single-year DIETER La-
grangian L:

L=
∑
s

[
csP s + os

∑
h

(
Gh,s +0h,vre

)]
︸ ︷︷ ︸

DIETER objective function

+

∑
h

λh

(
dh−

∑
s

Gh,s

)
︸ ︷︷ ︸

hourly electricity balance equation constraint

+

∑
h,dis

µh,dis
(
Gh,dis−P dis

)
︸ ︷︷ ︸

maximum dispatchable generation from capacity constraint

+

∑
h,vre

µh,vre
(
Gh,vre+0h,vre−φh,vreP vre

)
︸ ︷︷ ︸

maximum renewable generation from capacity and weather constraints

. (4)

The algebraic derivation of mapping the two Lagrangians
term by term is presented in Appendix D. From this algebraic
mapping, we can derive seven harmonization conditions (h1–
h7) required for a full convergence. Conditions (h1)–(h7) are
the subsequent basis for most of the information exchanged
at the coupling interface. Among them, conditions (h3) and
(h5)–(h7) (purple blocks in Fig. 2) indicate conditions which
contain endogenous information that must come from the
previous iteration of DIETER that is passed on to REMIND,
such as markup and capacity factors. Conditions (h1)–(h2)
and (h4) (yellow blocks) indicate conditions which contain
information that comes from the previous iteration of RE-
MIND and is passed on to DIETER. For schematics of the
coupled iterations, see Appendix E.

This Lagrangian-mapping-based derivation can theoreti-
cally show that our approach (in its simplest form) necessar-
ily leads to model convergence and has the advantage of be-
ing mathematically straightforward and rigorous. The neces-
sary information from the power sector dynamics is all con-
tained in the list of conditions derived from such a mapping.
If the coupling contains less information, a convergence is
not possible; at the same time, for a model convergence, one
does not need to pass on any additional information beyond
what is contained in this list of conditions. The list of infor-
mation derived here is therefore complete and exhaustive for
a coupled convergence.

3.2.2 List of convergence conditions

The convergence conditions (h1–h7), which are derived in
detail in Appendix D following the procedure in Sect. 3.2.1,
are summarized here.

h1. Annual fixed costs are harmonized: cy,s = cy,s .

h2. Annual variable costs are harmonized: oy,s = oy,s .

h3. Annual average market values for each generation type
s are harmonized via markups from DIETER. We let

ηy,s (i− 1) denote the markup for technology s in year
y in the last-iteration DIETER, i.e., the difference be-
tween the market value and the annual average price of
electricity.

ηy,s =

∑
s

λy,hGy,h,s∑
h

Gy,h,s︸ ︷︷ ︸
market values

−

∑
hλy,hdy,h∑
h

dy,h︸ ︷︷ ︸
annual average electricity prices

(5)

This is the heart of our coupling approach, using
markups as the price signals. Intuitively, the markups
represent the market value differences between RE-
MIND and DIETER. The harmonization of market val-
ues is implemented by iteratively adjusting the market
value for each generator type in REMIND to be the
same as that in DIETER. As long as the market values
(or per-unit-generation revenues) and costs are harmo-
nized, the economic structures of the power market are
identical and the models can converge.

Using markup Eq. (5), we modify the original objec-
tive function Z in the coupled version of REMIND
by subtracting the product of markups and generations
summed over all technologies and all years:

Z′ = Z−
∑

y,s
ηy,s (i− 1)Gy,s

(
1−αy,s

)
, (6)

where Z′ is the modified REMIND objective function
in the coupled version, and i is the iteration index of the
iterative soft-coupling.

h4. Annual power demands are harmonized:
∑
hdy,h = dy .

h5. Annual average prices of electricity are harmonized:

λy =

∑
hλy,h (i− 1)dy,h (i− 1)∑

hdy,h (i− 1)
, (7)

where (i− 1) indicates that the endogenous results are
from the last iteration. This is shown in Appendix D to
be a direct consequence of (h3) and (h4).

h6. Annual average capacity factors for each generation
type s are harmonized:

φy,s =
∑

h
φy,h,s (i− 1)/8760, (8)

where φy,h,s (i− 1)= Gy,h,s (i−1)
P y,s (i−1)

is the hourly capacity

factor in DIETER, determined by endogenous hourly
generation and annual capacities in the last iteration.

h7. Annual curtailments are harmonized:

Gy,vreαy,vre =
∑

h
0y,h,vre (i− 1) . (9)
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In mapping the Lagrangians (Eqs. 3–4), except for the ob-
jective function, the rest of the parameterization contains en-
dogenous shadow prices and endogenous quantities. Since
endogenous values can only be known ex post, this imposes
a strict requirement on the coupling that it must be iterative,
with the endogenous part of the parameterization coming
from previous iteration optimization results – usually from
the other model. The mapping of the endogenous informa-
tion requires careful argument in each case (i.e., the deriva-
tion of h3–h7). In the case of the balance equation constraint
Lagrangian term (corresponding to c1), the shadow prices of
the constraint in the current-iteration REMIND model are ex-
ogenously corrected by a set of technology-specific markups
(see the introduction in Sect. 3.1), such that the new “cor-
rected” market value in REMIND is manipulated to match
the market value of the previous iteration of DIETER. This
is the heart of our coupling approach using markups as the
price signals. In the case of the constraint on maximum gen-
eration from capacity (corresponding to c4), the endogenous
shadow prices in the current iteration REMIND can be shown
to be automatically mapped to those in the previous iteration
of DIETER given that the annual average capacity factors in
the constraints are harmonized (h6–h7).

In actual implementation, most of the above mappings are
modified for numerical stability (Sect. 3.3.2, Appendix H).

3.2.3 Theoretical tools for validating convergence

Here we first state the convergence criteria, which are mathe-
matical relations that are being satisfied under model conver-
gence. Then we also discuss equilibrium conditions of the
coupled models that alongside the convergence criteria can
be used to check numeric results to validate and assess the
convergence outcome.

Under a theoretical full convergence of the coupled model,

v1. annual average electricity prices,

v2. capacities and

v3. (post- or pre-curtailment) generations

should all be identical at the end of the coupling in both mod-
els. These are the most important criteria by which we val-
idate full model convergence. Technically, electricity price
convergence (v1) (i.e., convergence condition h5) can be de-
rived from (h3) to (h4). Nevertheless, we check this ex post,
together with quantity convergence (v2–v3). In actual cou-
pled model runs, following only the convergence conditions
(h1–h7), the convergence criteria (v1–v3) might not be ex-
actly fulfilled. Therefore, in practice, in order to validate
the degree of numerical convergence, the alignment between
REMIND and DIETER generation shares is set to be within
a few percentage points before coupled runs terminate.

Besides using convergence criteria (v1–v3), we also use
a type of equilibrium condition – the so-called “zero-profit
rules” (ZPRs) – to validate the numerical model convergence.

ZPRs are mathematical relations which state that, under mar-
ket equilibrium, prices are equal to the costs for electricity.
This is not always the case, especially in situations where
there are extra constraints on the model that distort this equal-
ity. ZPRs contain model parameters and decision variables at
market equilibrium, and they can be derived from the KKT
conditions of the model (Appendix F). ZPRs are therefore
reliable tools in ascertaining the sources of market values or
the price of electricity of the power sector because, according
to the ZPRs, one can always decompose the prices into the
cost components, i.e., so-called levelized costs of electricity
(LCOEs). The decomposition of prices into cost components
is important because the prices of electricity in the power
market are overdetermined by the energy mix, so it is pos-
sible that two different power mixes correspond to the same
electricity price. In numerical results, a slight mismatch of
the energy mix at the end of the coupling is unavoidable, so,
alongside comparing the prices, it is often helpful to compare
the makeup of the LCOEs across the models, such that they
also appear harmonized at the end of the iterative conver-
gence. Overall, ZPRs are a helpful tool for visualizing and
understanding the power market dynamics, both from the
point of view of each generator type and from the point of
view of the entire electricity system. It is worth noting that
the ZPRs, which are mathematical conditions derived from
an idealized modeling of the power sector as fully compet-
itive, are only an approximation of the real-world markets,
where firm profits exist. ZPRs in their technical definition
simply mean that, at model equilibrium, cost equals revenue.
Given that the profits are defined as the difference between
revenue and cost, the profits are zero in this situation. The
name “zero-profit rule” therefore should not be overinter-
preted beyond its technical contents, and one should be aware
of its theoretical origin and the assumptions under which it is
valid.

The ZPRs of the coupled model can be derived based on
(1) the uncoupled models, (2) the modification made to the
model due to the coupling interface (h1–h7) and (3) any addi-
tional modifications made to the model during our numerical
implementation. In the last category, for a complete numer-
ical implementation of the coupling, we add one additional
capacity constraint, i.e., (c7) and (c8) for each model. The
first capacity constraint (c7) is created in REMIND to cir-
cumvent the issue of extremely high markups from peaker
gas plants in the scarcity hour of the year in the DIETER
model, which otherwise causes instability during the iterative
coupling. The second constraint (c8) is a simple brown-field
constraint implemented in DIETER to address the fact that
DIETER is a green-field model that is otherwise ignorant of
standing capacities in the real world. For simplicity, (c7) and
(c8) are not included in the convergence condition deriva-
tions in Sect. 3.2.1. The derivations of the ZPRs outlined by
the above three steps have been carried out in Appendix F
(uncoupled models), Appendix G (coupled REMIND only
including the coupling interface, coupled DIETER including

Geosci. Model Dev., 16, 4977–5033, 2023 https://doi.org/10.5194/gmd-16-4977-2023



C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND 4989

constraint c8) and Appendix H (coupled REMIND, including
constraint c7).

In summary, the ZPRs for both coupled models are as fol-
lows.

a. Coupled REMIND

i. Technology-specific ZPR:∑
y

(
cy,sPy,s + oy,sGy,s

)
∑
y

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEs

+

∑
y

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment LCOEs

=−

∑
y

(
ωy,s − σy,s + γy,s + νy,s

)
Py,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow price′s

+

∑
y

(λy + η
′
y,s)Gy,s(1−αy,s)∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
market value′s

. (10)

ii. System ZPR:∑
y,s

(
cy,sPy,s + oy,sGy,s

)
∑
y,s

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEsystem

+

∑
y,s

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment costsystem

=−

∑
y,s

(
ωy,s − σy,s + γy,s + νy,s

)
Py,s∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow price′system

+

∑
y,s

(λy + η
′
y,s)Gy,s(1−αy,s)∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
electricity price′system

. (11)

b. Coupled DIETER

i. Technology-specific ZPR:

csP s + os
∑
h

(
Gh,s +0h,vre

)
∑
h

Gh,s︸ ︷︷ ︸
LCOEs

=−
(ωs + ζ s)P s∑

h

Gh,s︸ ︷︷ ︸
capacity shadow price′s

+

∑
h

λhGh,s∑
h

Gh,s︸ ︷︷ ︸
market values

. (12)

ii. System ZPR:∑
s

[csP s + os
∑
h(Gh,s +0h,vre)]∑

h,s

Gh,s︸ ︷︷ ︸
LCOEsystem

=−

∑
s

(ωs + ζ s)P s∑
h,s

Gh,s︸ ︷︷ ︸
capacity shadow price′system

+

∑
hλhdh∑
h

dh︸ ︷︷ ︸
annual average electricity pricesystem

. (13)

The prime sign indicates that the term has been modi-
fied from the uncoupled versions due to implementation in
the coupling. ν and ζ are capacity shadow prices introduced
from the additional constraints (c7–c8) (Appendices G–H).
It is worth noting that constraints (c7)–(c8) introduced due
to coupling can impact the Lagrangians of the two models
which we used to derive convergence conditions and criteria.
However, in actual coupled runs, evidently there is only a
moderate distortion due to these extra constraints. Condition
(c8) even helps with convergence because it also puts most
of the brown-field and near-term constraints which REMIND
sees into DIETER (see Sect. 6.1).

Due to the fact that several sources of shadow prices can-
not be incorporated during the derivation for convergence
(Sect. 3.2.1), in numerical experiments of the coupled run
it is appropriate to compare the following two types of prices
across the two models for price convergence:

1. electricity price convergence, not including any capacity
shadow prices;

2. sum of electricity prices and all respective capacity
shadow prices converging.
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Under the simplified analysis of convergence (discounting
brown-field constraints, scarcity prices, etc.), price conver-
gence in (1) is predicted by theory (see also convergence
condition h5). However, this is only under the most ideal-
ized situation. Convergence in (2) on the other hand includes
all the prices, which should match if LCOEs match across
the system. We use the first type to check price convergence
over iteration and use the second type only in the context of
checking the system ZPRs across the models because of the
theoretical relations between full prices and LCOEs.

3.3 Implementation via interface: exchange of
variables

In this section we list parameters and endogenous variables
that are exchanged between REMIND and DIETER. This
already satisfies most convergence conditions, while the re-
maining condition (h5) is checked in Sect. 4 as part of the
convergence criteria (v1–v3). An overview of the model cou-
pling and the flow of information under convergence condi-
tions is shown in Fig. 3.

During the coupling, the following exchanges of parame-
ters and variables take place iteratively in both directions via
the interface.

3.3.1 REMIND to DIETER

The following information flow is from REMIND to DI-
ETER.

1. Technology fixed costs (convergence condition h1)

a. Annualized capital investment cost: this is calcu-
lated from the endogenously determined overnight
investment cost, plant lifetime and the endoge-
nously determined interest rate. The overnight in-
vestment cost is determined from floor cost, learn-
ing rate and the endogenous global accumulated de-
ployment. Note that investment costs decrease ac-
cording to the endogenous learning rate. The inter-
est rate is about 5 % on average but is endogenous
and time-dependent in REMIND.

b. Annualized operation and maintenance (“O&M”)
fixed costs (OMF): they are a fixed share of the cap-
ital costs.

c. Adjustment cost: this is technology-specific and is
proportional to the capital investment cost. See Ap-
pendix I for its implementation.

2. Technology variable costs (convergence condition h2)

a. Primary energy fuel costs: they are endogenously
determined as the shadow prices of the primary fuel
balance equations in REMIND. Import prices, do-
mestic prices of extraction, the amount of regional
reserves and the amount of fuel demand can all in-
fluence the fuel cost. The relevant fuel costs include

coal, gas, biomass and uranium. The fuel costs can
have interannual intertemporal oscillatory compo-
nents which can cause instability during iteration if
coupled directly. We mitigate this by conducting a
linear fit to the time series before passing them on
to DIETER.

b. Conversion efficiency of each generation technol-
ogy

c. O&M variable costs (OMV)

d. CO2 emission cost: an exogenous or endogenous
CO2 price from REMIND multiplied by the car-
bon content of a type of fossil fuel and divided by
the conversion efficiency of a generation technol-
ogy gives the CO2 cost of 1 MWh of generation.
Note that, in REMIND, biomass is considered to
contain zero carbon emission when combusted.

e. Grid cost: in REMIND, the stylized grid capac-
ity equation is proportional to the amount of pre-
curtailment VRE generation. So, the grid cost is ef-
fectively a variable cost. Note that, in future work,
grid costs can be modeled in more detail either in
DIETER or in another PSM. Here, we use the pa-
rameterized grid costs which are implemented in
the default REMIND as an approximation to the
necessary grid cost.

3. Power demand (convergence condition h4). REMIND
informs DIETER of the total power demand dy of a rep-
resentative year y. In the next iteration of DIETER, the
exogenous time series for the hourly demand from a his-
torical year (2019) is scaled up to the demand of the last-
iteration REMIND, dy (i− 1), such that the annual total
power demand in DIETER is equal to that of REMIND
for each coupled year: dh = d2019, h ·

dy (i−1)∑
hd2019,h

.

4. Pre-investment capacities Py−1y/2,s/(1−ER) as an
additional brown-field constraint (see constraint (c8) in
Appendix G). ER is the endogenous early retirement
rate in REMIND.

5. Total regional renewable resources for wind, solar and
hydro (constraint c2), such that DIETER capacities are
constrained by the same total available resources as in
REMIND

6. Annual average theoretical capacity factors of VREs
and hydroelectric ones in REMIND (convergence con-
dition h6). We denote the pre-curtailment utilization
rates of VRE capacity as “theoretical capacity factors”,
as these can be achieved in theory if there is no cur-
tailment. They are usually determined by meteorologi-
cal factors such as wind and solar potential as well as
the efficiency of the turbines or solar photovoltaic mod-
ules. In contrast, the post-curtailment utilization rates
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Figure 3. The schematics of the REMIND–DIETER iterative soft-coupling. The power sector module of IAM REMIND, which is between
the layer of primary-to-secondary energy transformation, is hard-coupled with other modules inside REMIND such as macro-economy,
industry and transport. In PSM DIETER, the power market with generators of various types is modeled with hourly resolution, with options
for storage and flexible demand. The information exchanged between the models (block arrows) is determined via the convergence conditions
(h1–h7) derived before (Sect. 3.2.1). In order to improve performance and facilitate convergence, additional constraints (c7 and c8) are
included in the coupling interface. The coupling interface for REMIND to DIETER is programmed as part of modified DIETER code
and vice versa. Both interfaces are written in GAMS. For a single region, the scheduling of coupled iterations is illustrated in Fig. E1 in
Appendix E. Sixteen DIETER optimization problems are solved for each representative year of REMIND in parallel, scheduled after each
internal REMIND Nash iteration (see Sect. 2.1 for a description of the iterative Nash algorithm).

of VREs are “real capacity factors”, as these are the real
utilization rates after optimal endogenous dispatch. The
time series of theoretical utilization rates of VRE gener-
ations of 1 historical year in DIETER are scaled up such
that the annual average theoretical capacity factors in
DIETER equal the exogenous parameters in REMIND:

φh,vre (y)

=min

(
0.99,φh,vre (y = 2019) ·

φvre∑
hφh,vre (y = 2019)

)
.

In DIETER, to be realistic, the rescaled hourly capacity
factor for solar and wind has an upper bound at 99 %.
The slight mismatch of the capacity factors due to this
additional upper bound is negligible.

3.3.2 DIETER to REMIND

The following information is passed from the last-iteration
DIETER to REMIND.

1. Market values are MV′y,s , and the annual average elec-

tricity price is J
′

y (convergence condition h3), where

MV′y,s is the annual average market value without the

surplus scarcity hour price and J
′

y is the annual average
electricity price without the surplus scarcity hour price.

2. The peak hourly residual power demand dresidual is a
fraction of the total annual demand

∑
hdh (constraint

c7). This produces the peak residual demand in RE-
MIND dresidual,y that is proportional to the last-iteration

DIETER peak to total demand ratio dresidual(y,i−1)∑
hdh(y,i−1)

to-

gether with the in-iteration total annual demand dy (i):

dresidual,y (i)=
dresidual (y, i− 1)∑

hdh (y, i− 1)
· dy (i) ,

where dresidual was defined in Appendix H (Eq. H1).

3. Annual capacity factors of dispatchable plants φdis =∑
hGh,dis

P dis· 8760
(convergence condition h6)

4. Annual solar and wind curtailment ratio: curtailment as
a fraction of total annual post-curtailment generation∑

h0h,vre∑
hGh,vre

(convergence condition h7)

For the information flowing from DIETER to REMIND,
we use an innovative method of multiplicative “prefactors”,
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which can stabilize the coupling and increase the speed to-
wards model convergence. The prefactors are automatic lin-
ear stabilizers of the current-iteration variables in REMIND.
They depend on current-iteration endogenous variables in
REMIND and are usually multiplied usually by the last-
iteration endogenous DIETER results that are exogenously
passed on to REMIND. This allows some degree of en-
dogeneity in these exchanged variables, and their values
can be adjusted according to the updated dynamics in the
current REMIND iteration, such as interregional trading or
price elasticity of demand, under which the exogenous last-
iteration DIETER optimality can be used as an approximate
starting point but does not necessarily hold exactly.

The prefactors usually depend on the differences between
generation shares in the two models: for example, the pref-
actor for markup is a linear function of the difference be-
tween the current-iteration REMIND endogenous generation
share and the last-iteration DIETER generation share. We il-
lustrate the mechanism of prefactors using the markup for
solar as an example: a lower market value for solar is con-
sistent with a higher solar share according to the well-known
self-cannibalization effect of a decreasing VRE market value
as the VRE share increases (Hirth, 2018). Therefore, we can
introduce an automatic stabilization measure through a neg-
ative feedback loop: if the REMIND endogenous share is
larger than in the last DIETER iteration, in which case the in-
iteration market value should be lower than the last-iteration
DIETER market value, the multiplicative prefactor for the
market value should be constructed such that it is smaller
than 1. This lowers the market value for solar and decreases
the in-iteration REMIND markup ηy,s (i), hence preventing
over-incentivization of solar generation using the old mar-
ket value based on the last-iteration energy mix. Overall, this
produces a stabilizing effect on the system by making the
markup as a price signal responsive to endogenous quantity
change. We use prefactors ubiquitously when passing vari-
ables from DIETER to REMIND, such that during the it-
eration REMIND can adjust more smoothly and easily. We
discuss the implementation of these prefactors in detail in
Appendix H2.

4 Numerical convergence under the proof-of-concept
baseline scenario

In this section, we check the convergence behavior for prices
and quantities (capacity and generation) in coupled model
runs using the convergence validation criteria from the last
section. Comparing the numerical results with the theoreti-
cal prediction, we can confirm that REMIND–DIETER soft-
coupling indeed produces almost full convergence.

Throughout this section, we only use one scenario –
a proof-of-concept baseline scenario. Under the proof-of-
concept scenario of the coupled run, we disable storage (i.e.,
batteries and hydrogen) and flexible demand (i.e., electrolyz-

ers) in both models, as this allows us to use the theoretically
derived convergence criteria from Sect. 3, which would be-
come overly complex in a model with storage and flexible
demand. The coupled run is under a baseline scenario; i.e.,
there is no additional climate policy implementation. Since
this is a configuration created only for comparison with the
theoretical prediction, it is not meant to be a policy-relevant
configuration. In more policy-relevant coupled runs, we turn
on storage and flexible demand (see Sect. 5). For schematics
and computational run times of the coupled iterations, see
Appendix E.

For the coupled runs, we define a baseline scenario for the
single region Germany under SSP2 assumptions correspond-
ing to the “middle-of-the-road” scenario (for a definition of
the SSPs, see Koch and Leimbach, 2023). Specifically, this
means that REMIND runs for all global regions in parallel
but that DIETER only runs for Germany. Only information
in the German power sector is exchanged for the two models.
We use a low CO2 price to represent “no additional policy”,
which is USD 30 per tCO2 in 2020 and USD 37 per tCO2
for years beyond 2020. According to the 2011 Nuclear En-
ergy Act of Germany, remaining nuclear capacities are set
for early retirement in REMIND within the time period un-
til 2022. We assume hydroelectric generation in Germany to
come from running rivers. In DIETER, we cap the dispatch-
able generation’s annual capacity factors at 80 % for non-
nuclear power plants and at 85 % for nuclear power plants,
so the dispatch results are in line with real-world power sec-
tors. This constraint only adjusts the capacity factor con-
straint (c4), which would pose no additional distortion of our
mathematical analysis.

Due to the particular implementation of offshore wind in
REMIND, DIETER wind offshore capacities are fixed to
those of REMIND to avoid too much distortion. Since in our
scenarios offshore wind capacity in Germany is relatively
small compared to other generators, this fixing represents
only a minor distortion of the coupling. Hydroelectric gen-
eration in REMIND is assumed to have an average annual
capacity factor of around 25 %. This capacity factor is im-
plemented as a bound in DIETER. For simplicity, instead of
a time series profile for hydroelectric generation, we allow
the hourly capacity factor to be no higher than 90 %, mean-
ing hydro is close to being dispatchable in all our scenarios.
In the German context, hydro usually means run-of-the-river
hydroelectricity, which has a variable output. Nevertheless,
we find the 90 % maximum hourly capacity factor a reason-
able assumption to make, since in our runs we do not yet
consider pumped hydro as a technology in this study, so a
more dispatchable quality of hydro can be assumed. Results
presented in this section belong to the same coupled run un-
der the proof-of-concept scenario.
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Figure 4. Annual average electricity price convergence behavior of
a coupled run for Germany under a “proof-of-concept” baseline sce-
nario. (a) The difference between the annual electricity price time
series of REMIND and the annual average electricity price time se-
ries in DIETER as a function of coupled iteration. (b) The interan-
nual average of the differences in panel (a) as a share of the RE-
MIND price. Due to the interannual, intertemporal nature of RE-
MIND, in panel (a) the price difference can appear to have oscilla-
tory components, obscuring the visual assessment of convergence.
As a result, we show the trend of price convergence over iterations
more clearly in panel (b) by taking the temporal average of the price
differences. The REMIND price in both plots is a running average
of three neighboring time periods to visually smooth out oscilla-
tions.

4.1 Electricity price convergence

According to theoretical convergence criteria (under simpli-
fying assumptions, Sect. 3.2.1–3.2.3), at numerical conver-
gence, the electricity price of REMIND should be equal to
the price of DIETER. However, REMIND is interannual in-
tertemporal, whereas DIETER is only year-long, so we com-
pare the differences over time as well as the interannual av-
erage of the price differences (Fig. 4).

In Fig. 4a, the price difference oscillates from period to
period. As the coupling starts, the REMIND price is much
higher than DIETER, especially in the earlier years. Af-
ter around the 10th iteration, the difference in the early
years starts to reverse: DIETER’s price becomes higher than
REMIND. Around 2040–2060, REMIND has a higher av-
erage price than DIETER due to the VRE market values
being higher than their LCOEs. This is discussed later in
Sect. 4.3.2.

In Fig. 4b, we calculate the difference between two time
series – the time-averaged power prices in the two models.
We observe that the difference between them decreases over
the iterations, showing a clear converging trend, and stabi-
lizes at around 3 % of the REMIND price. There are two
observations regarding the price convergence of the coupled
run. First, the convergence happens rather quickly within 10

iterations. Second, the converged value of the price differ-
ence is not exactly 0 but is slightly above 0, a few percent of
the full price (a few USD per megawatt hour). Under ideal
convergence conditions, according to (v1), the two prices
should be equal at full convergence for every coupled year.
However, in practice, the average prices do not match per-
fectly, as there are several sources of distortions from capac-
ity shadow prices. The capacity shadow prices come from
many sources in both models: extra constraints such as (c7)–
(c8) that are not part of the analysis leading to (v1), con-
straints that are in REMIND but not in DIETER (c5–c6),
and exogenous wind offshore capacity in DIETER. Some of
these capacity shadow prices in both models can be more
or less consistent with each other (such as the standing ca-
pacity constraint in DIETER and brown-field constraints in
REMIND), but others are not and can distort two models
in different ways, causing some degrees of misalignment in
prices. As discussed before, prices can be overdetermined by
the energy mix (Sect. 3.2.3). Therefore, some of the capac-
ity shadow prices – even though not aligned between the two
models – can nevertheless cancel each other out (especially
when averaged over time), potentially causing the price dif-
ferences to be moderate. To examine exactly how well the
prices at the end of the coupling match, we need to check the
cost decomposition of the prices. This is discussed later in
Sect. 4.3.

Also note that Fig. 4b presents a time-averaged price com-
parison, and on average the difference between the prices in
the two models is small at the end of the coupling. However,
when one compares the maximal deviation for any single
year at the end of the coupling, it can be as high as USD 10
per megawatt hour, e.g., around 2050 (Fig. 4a). This is much
larger than the 3 % averaged deviation in Fig. 4b. However,
compared to default REMIND prices (which we cannot show
due to limited space), we are fairly confident that the oscilla-
tion of the coupled REMIND results from internal dynamics
that are also visible in the default uncoupled version. So, a
time-averaged treatment is adequate in displaying the total
price convergence here.

4.2 Quantity convergence

Besides price convergence, the capacity and generation deci-
sion variables must also converge within a certain tolerance
at the end of the coupling. This is reflected in the genera-
tion mix (Fig. 5) and the capacity mix (Fig. 6) at the end of
the coupled run. Due to the existence of several sources of
mismatch between the two models already mentioned in the
last section, which is already manifested in the mismatch in
electricity prices of the two models, a certain degree of mis-
match in quantities is also to be expected. Nevertheless, the
agreement between the two endogenous sets of decision vari-
ables is satisfactory. For this coupled run, the differences of
the generation share of any single technology between the
two models are smaller than 4.4 % for each year until 2100.

https://doi.org/10.5194/gmd-16-4977-2023 Geosci. Model Dev., 16, 4977–5033, 2023



4994 C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND

Figure 5b highlights some subtle model differences in gen-
eration. For example, after 2040, REMIND favors solar and
coal, whereas DIETER tends to have more combined-cycle
gas turbines (CCGTs) and wind onshore. Due to the low ca-
pacity factor of open-cycle gas turbines (OCGTs) and solar
compared to the capacity factors of the other generators, the
capacity mix differences between models are amplified for
these two technologies (Fig. 6). However, overall, the gen-
eration mixes and the capacity portfolios at the end of the
coupled run are generally similar.

For periods that are policy-relevant in the short to medium
term (i.e., before 2070), the convergence for quantities is
generally slightly worse in the near term, i.e., in the 2020s
and 2030s, likely due to the capacity bound mismatch in the
near term (such as the capacity bounds c5–c6 in REMIND
not being completely replicated by the standing capacity con-
straint c8 in DIETER). If DIETER does not contain identical
bounds to REMIND, then its endogenous decision will have
more of a green-field rationale than REMIND does, the lat-
ter of which is more constrained in the near term. In case
an improvement in near-term convergence is desired, these
bounds could be implemented more carefully and be more
technology-specific. Due to the limited scope, we only ap-
ply a generic standing capacity constraint (c8) in DIETER
to represent the basket of various constraints. The conver-
gence of quantities is also not perfect in the green-field pe-
riods, such as after 2040, when both models are less con-
strained by near-term dynamics. The reason for this is likely
the fact that, in DIETER, hydroelectric generation is not eco-
nomically competitive against other, cheaper forms of gen-
eration such as solar and wind. However, in REMIND it is
economically competitive, likely due to the long lifetime of
the plants. Semi-exogenous wind offshore capacities in both
models could also play a role. This is discussed in more detail
in Sect. 6.1.

4.3 Zero-profit rules for the coupled model

As our analytical discussion showed before in Sect. 3.2.3,
model equilibria in the form of ZPRs are useful for validating
convergence in a more detailed way by decomposing prices
into cost components as well as any perturbation from ca-
pacity shadow prices. In this section, we first compare the
system LCOEs, price and capacity shadow prices of the two
models for ZPRs on the system level, and then we show the
technology-specific ZPRs. Using this validating step, we can
visually ascertain that the cost components and prices or mar-
ket values in the two models are remarkably similar on the
system level as well as on the technological level, demon-
strating that the underlying principle behind the coupled con-
vergence holds to a good degree.

4.3.1 System-level zero-profit rule

At the convergence of the soft-coupled model, we expect
ZPRs to be satisfied for the two systems individually (Eq. 11
for REMIND and Eq. 13 for DIETER); i.e., each price time
series also matches the LCOE time series to a good degree,
barring distortions from the capacity shadow prices. This is
to say, under full convergence, that the time series of sys-
tem LCOEs and the sum of the time series of the electricity
prices and time series for capacity shadow prices for both
models should overlap one another within numerical toler-
ance. The costs and prices at the last iteration of the coupled
run are summarized in Fig. 7. The electricity prices derived
from the shadow prices of the balance equations are shown in
dark grey: (a) REMIND electricity price λy and (b) DIETER

annual average electricity price J y =
∑
hλy,hdy,h∑
hdy,h

. Adding all

the sources of capacity shadow prices, we obtain the blue
lines: (a) REMIND capacity constraints (c5–c7) and (b) the
DIETER capacity constraint (c8). All capacity shadow prices
have been converted to per energy unit via capacity fac-
tors. (Note: Fig. 4 shows the difference between the black
lines without considering the capacity shadow prices. See
Sect. 3.2.3.)

From Fig. 7, we can conclude that the ZPR for DIETER
is satisfied to very good accuracy for every year (the blue
line: the sum of the electricity price and the capacity shadow
price has exactly the same value as the sum of the LCOE
bars). For REMIND, the ZPR is satisfied year on year to a
lesser degree but on average to a good degree given the inter-
annual fluctuations. The prices in the coupled REMIND be-
come very erratic for the early years (2020–2025), likely due
to the interaction between the historical or near-term bounds
in REMIND and the exchanged information from DIETER
for those years. The LCOE component structures match well
across the models for most years, which serve as additional
visual support for the price convergence shown in Fig. 4; i.e.,
the cost structures behind the prices are harmonized as well
at the end of the coupling. The origins of the differences be-
tween LCOEs and prices as well as the degree with which
capacity shadow prices account for them can be found when
one examines the LCOE and market values of specific tech-
nologies, which are analyzed next.

4.3.2 Technology-specific zero-profit rules

After validating ZPRs on the system level, we further dive
into each technology and check the ZPRs for each technol-
ogy in both models at the last iteration of the coupled run
(Fig. 8).

In Fig. 8b, DIETER LCOE and market values for the eight
types of generators are shown. As expected from the ZPR,
the LCOE always matches the sum of the market value and
capacity shadow prices for each technology and for each
year (Eq. 12). The differences between the dashed and solid
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Figure 5. Annual electricity generation convergence at the final iteration of a coupled run for Germany under the proof-of-concept baseline
scenario. (a) Side-by-side comparison of the two generation portfolios at the end of the coupled run. (b) The difference between the generation
mix in the two models as a share of the total REMIND generation.

Figure 6. Capacity convergence at the final iteration of a coupled run for Germany under the proof-of-concept baseline scenario. (a) Side-
by-side comparison of the two models’ capacity mix at the end of the coupled run. (b) The capacity difference between the two models as a
share of the total REMIND capacity.

lines are largely the generation capacity shadow prices. It is
worth noting that, at the end of convergence, the sizes of the
shadow prices are in general small for the main generator
types, e.g., solar, wind onshore, CCGTs and OCGTs. This
indicates the fact that, for these technologies for most pe-
riods, the optimal DIETER generation mix is close to that
of a green-field model. That is, DIETER hardly faces any
exogenous constraints (except resource constraints that are

aligned with those of REMIND) and can make fully en-
dogenous investment and dispatch decisions based on cost
information alone. On the whole, DIETER at the coupled
convergence experiences only a small amount of distortion
from the brown-field model REMIND, especially concerning
the “model-suboptimal” real-world standing capacities from
biomass, hydro and coal.
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Figure 7. Cost components of the system LCOEs (bars), electricity prices (grey lines), and the sum of electricity prices and capacity shadow
prices for (a) REMIND and (b) DIETER under the proof-of-concept baseline scenario. Visually, the ZPRs for both models are satisfied within
numerical tolerance. The intertemporal structure of the LCOE breakdown is very similar for most of the coupled periods. For DIETER, a
small remaining difference exists between the price (grey line) and the LCOE (bars), which can be entirely explained by the capacity shadow
price due to the standing capacity constraint. The REMIND price time series is a rolling average of three time periods. The large negative
adjustment costs in 2020 are due to coal and nuclear phase-out.

In Fig. 8a, we show the REMIND LCOE and market val-
ues for the same generation technologies. Due to the in-
tertemporal nature of REMIND, the sum of the market value
and the capacity shadow price for each technology and for
each year generally matches the LCOE slightly less well than
DIETER. This means that for REMIND the ZPR (Eq. 10)
for each generator type is also satisfied to a good degree
for the main generator types, e.g., solar, wind onshore, coal,
CCGTs and OCGTs. The mismatch in biomass and hydro
might come from the shadow price from historical capaci-
ties.

Since the differences between market values and costs are
accounted for by the capacity shadow price to a large degree,
it is worth interpreting physically the sources of these “hid-
den” costs and revenues. For REMIND, the capacity shadow
prices consist of those in (c2), (c5) and (c6) as well as the
“peak residual demand constraint” from DIETER (c7). Con-
straint (c7) is created to circumvent high markups, especially
from peaker gas plants (Appendix H1), because peaker gas
plants generate power mostly only at hours with high prices
(especially the scarcity hour price) and therefore have very
high market values compared to the annual average electric-
ity price. The high market values of OCGT – usually more
than 5 times the average annual electricity prices – act as
a large incentive in the next-iteration REMIND and lead to
over-investment in capacities. Over iterations, this causes os-
cillations in the quantities and prices in the coupled model

and prevents model convergence. To circumvent the issue of
high markup, we implement (c7) as an equivalent peak resid-
ual demand constraint. As can be shown mathematically (Ap-
pendix H), (c7) generates essentially the scarcity hour price,
and it is very easy to validate this for OCGT in Fig. 8a. The
capacity shadow price derived from this peak residual de-
mand constraint, when translated to energy terms and added
to the market value, correctly recovers the LCOE for OCGT,
recovering the original ZPR (Appendix H1.2). This indicates
that, under multiscale model coupling, an extra constraint is
an effective way of circumventing potential issues of numer-
ical divergence due to the large impact from short-term dy-
namics, such as the large market value of peaker gas plants.

For DIETER, the two sources of the capacity shadow
price are the total renewable potential limit (constraint c2
in Sect. 3.1) and the standing capacity constraint from RE-
MIND (constraint c8 in Sect. 3.2.3). For the first type, the
resulting capacity shadow price is a hidden “positive cost”
from the perspective of the power user since endogenously
DIETER would like to invest more but is limited by the natu-
ral resources available. An example of this first type is hydro-
electric power between 2020 and 2035 due to the limited re-
source (run-of-the-river) in Germany. It is worth noting that,
from the generator’s perspective, the capacity shadow price
from the resource constraint can be interpreted as an extra
resource rent. The second type of capacity constraint origi-
nates from the standing capacity, and the latter is received by
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Figure 8. Technology-specific costs and market values for (a) REMIND and (b) DIETER under the proof-of-concept scenario. Cost compo-
nents of the technology LCOE are plotted in stacked bars. Market values are shown in solid black lines. The sums of market values and all
sources of capacity shadow prices are shown in dashed lines: for DIETER (two-dash blue lines), they contain mostly the standing capacity
shadow price and to a small extent the capacity shadow prices of the resource constraint; for REMIND (dashed blue lines), they contain
mostly the peak demand capacity shadow price and small capacity shadow prices due to brown-field and resource constraints. Electricity
prices are shown in purple solid lines as references. Due to large positive shadow prices in 2020 due to fixings to the historical capacities,
only periods beyond 2020 are shown. REMIND market values and capacity shadow prices are a rolling average of three time periods.

DIETER from REMIND as a lower bound. This constraint
usually results in a hidden “negative cost” from the perspec-
tive of a power user; i.e., a part of the cost (LCOE) does
not get passed on to the electricity price, so the users get
part of the capacity “for free”. (This can also be interpreted
as subsidies for generators to sustain these unprofitable ca-
pacities.) This is because, based on green-field cost opti-
mization, DIETER endogenously would invest less in certain

technologies. However, since the standing capacities account
for the existing generation assets in the real world, which can
be model-suboptimal, the overall costs are above a green-
field equilibrium and above the prices the user pays. We
find examples of such a capacity shadow price manifested in
biomass, coal and hydroelectric, all of which are part of the
existing German power capacity mix, but evidently not all of
them for any given period are “green-field optimal” based on
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the pure cost consideration in DIETER. Interestingly, after
2035, the sign of the capacity shadow price for hydroelec-
tric generators reverses. This is likely due to the continuous
decline in the VRE costs after 2035 tipping the power sec-
tor into a regime where hydroelectric becomes less econom-
ically competitive in DIETER, at least compared with RE-
MIND. As a result, the standing constraint from REMIND
starts to be binding on the capacity from below, relieving the
resource constraint binding from above.

For DIETER, the capacity shadow price from the stand-
ing capacities also indicates the degree of disagreement be-
tween DIETER and REMIND. For most future years, RE-
MIND standing capacity constraints are not binding in DI-
ETER for solar, wind onshore, CCGTs and OCGTs, indicat-
ing good agreement between the models. The small amounts
of shadow prices near 2060 for OCGTs and solar in Fig. 8b
are likely due to the time step size change in REMIND which
causes a small jump in the interest rates near these years.

Lastly, in Fig. 4, we observe a slightly higher average elec-
tricity price in REMIND than in DIETER, especially in the
intermediate years. This could be due to fixed offshore wind
capacities, which are never economical for endogenous in-
vestment in the parameterization used here. This generates a
high capacity shadow price until around 2045–2060 that is
visible in both DIETER and REMIND.

5 Scenario results under baseline and policy scenarios

In this section, we present baseline and policy scenario re-
sults for Germany using a more realistic configuration of
the coupled model with electricity storage and flexible elec-
trolyzer demand for green hydrogen production, which is
then used outside the power sector (e.g., in industry or heavy
trucks). We show results for a baseline scenario and a net
zero by the 2045 climate policy scenario. Note that, due to
REMIND’s global scope, under the net-zero scenario we also
assume a larger climate policy background of a 1.5 ◦C goal
for end-of-century temperature rise globally (corresponding
to 500 Gt of the CO2 emission budget until 2100) and a larger
regional goal of EU-wide net-zero emission. Both scenarios
consider nuclear phase-out law in Germany.

In Sect. 5.1, we present long-term power sector develop-
ment. In Sect. 5.2, we present short-term power sector hourly
dispatch and price results. In the following, we broadly de-
scribe how these additional features are implemented.

1. Storage: we use a simple storage implementation where
DIETER makes an endogenous investment in two kinds
of storage technologies:

1. lithium-ion utility-scale batteries;

2. on-site green hydrogen production via flexible elec-
trolyzers, storage and combustion for power pro-
duction.

The principle of the coupling remains mostly un-
changed. REMIND receives the price markups from
generation technologies as in the case before with-
out storage. However, for simplicity, the capacities of
storage are not part of endogenous investment in RE-
MIND. In REMIND, the energy loss due to storage
conversion efficiency is taken as a fraction of the to-
tal demand from DIETER as a parameter and stabi-
lized with a prefactor for each type of renewable gen-
eration (similar to the case of the curtailment rate in
Sect. 3.3.2, point 4). Our battery cost development is
given in Sects. S1–S2 in the Supplement.The reason we
only allow DIETER to endogenously invest in storage
technologies is that the additional intertemporal opti-
mization offered in REMIND is relatively less impor-
tant than that for the investment of generation technolo-
gies. In REMIND, intertemporality mainly accounts for
two aspects in the real world: (1) implementing adjust-
ment cost and (2) tracking standing capacity. The ad-
justment costs simulate system inertia to rapid capac-
ity addition or removal. In the case of battery and other
storage technologies, the ramp-up of deployment faces
relatively less inertia compared to wind and solar. Com-
pared to generation technologies such as wind and solar,
the storage technologies tend to have lower total capac-
ities, meaning their ramp-up rate is usually lower. Also,
their deployment is mostly constrained by their higher
cost. For utility storage technologies, they are mostly
not yet deployed at scale, which means that there is very
little existing capacity and the investment in storage in
REMIND is mostly green-field, rendering it unneces-
sary to give DIETER a standing capacity of them.

2. Flexible demand: as a simple representation of flexible
demand, we choose to implement a common power-to-
gas (PtG) technology, i.e., the so-called “green hydro-
gen” electrolysis. We split the total power demand re-
quired to produce green hydrogen from REMIND from
the total power demand dy(i−1) (Sects. 3.3.1 and 3.3.3)
– both demands are endogenous in REMIND. We im-
plement the electrolysis demand as completely flexible
in DIETER, i.e., no ramping cost or constraint, thereby
flexibilizing part of the endogenous total power demand
dy(i− 1) in REMIND. As a result, the cost minimiza-
tion in DIETER automatically allocates the flexible de-
mand to hours where electricity costs are low due to
the existence of low-cost VRE. The economic value of
flexible demand can be quantified by the capture price.
The annual capture price of demand-side technology
sd is the annual average price of the hours when the
flexible demand consumes electricity, weighted by the
hourly flexible power demand by electrolyzers: CPsd =∑

h,sd
dh,sd λh∑

h,sd
dh,sd

.
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This concept is equivalent to the market value for a vari-
able or dispatchable generator but here for a flexible or inflex-
ible demand source. Similarly to before, we implement a sta-
bilization measure using a prefactor (Appendix H2, point 5).

5.1 Long-term development

This section presents scenario results of the coupled model
with a long-term view of capacity and generation using ei-
ther the proof-of-concept scenario or more realistic configu-
rations.

5.1.1 Baseline scenario

In Fig. 9a, under the baseline scenario, and with available
storage and flexible demand, we observe a more than 35 %
increase in the total power demand from 2020 to 2045 and
more than 65 % by 2080. This is due to an increase in end-
use electrification. The increased electrification comes from
a moderate growth in electricity use in the building sector
and a more significant growth in the electric vehicle (EV)
fleet. In the building sector, the final energy share of elec-
tricity is projected to increase from 28 % in 2020 to 39 % in
2045. The final energy share of electricity in the transport
sector is 22 % by 2045, up from 2 % in 2020. Note that, even
under no additional climate policies, based on only the in-
crease in EVs shares in new-car sales in many world markets
today, we expect higher power usage from EVs in the future.
Within the energy mix, we see a slow decline in coal genera-
tion over time, which is replaced by CCGT generation and a
significant increase in VREs. The VRE share reaches above
50 % by 2045, but slightly less than half of the energy mix
still contains coal and gas power. In terms of capacity ex-
pansion (Fig. 9b), due to both a lower generation cost and
a higher power demand, solar capacity expands by almost 5
times from today until 2045. However, the moderate VRE
shares mean that the requirement for battery capacity is not
high, i.e., only 12 GW of batteries by 2045. Due to the low
CO2 price, long-term electricity storage through hydrogen
does not appear to be economically competitive and is not
invested under the baseline.

By comparing the above baseline scenario (with storage
and flexible demand) (Fig. 9) with the proof-of-concept base-
line scenario (without storage or flexible demand) before
(Figs. 5 and 6), it is clear that, while battery storage and
partial demand flexibility play a role after 2040 in increas-
ing the VRE share in Fig. 9, in the near term, the scenar-
ios with and without available storage and demand flexibility
look very similar under no additional climate policies. How-
ever, due to the technological learning effect, an even absent
additional CO2 price policy, the energy mix here has a rela-
tively high VRE share (> 60 %) after 2050 compared to the
basic case without storage and demand-side flexibilization.
However, due to the low CO2 price there is still a signifi-
cant share of dispatchable technologies such as CCGTs and

OCGTs, which is more economical than the implementation
of long-term power storage via electrolysis and hydrogen tur-
bines.

5.1.2 Net-zero policy scenario

In Fig. 10, under a stringent climate policy (economic-wide
carbon neutrality in 2045), with available storage and par-
tially flexibilized demand (for hydrogen production used in
other sectors), the total power demand more than doubles,
and the power mix is dramatically transformed. Compared
to both the baseline case without storage and demand-side
flexibilization (Figs. 5 and 6) and the baseline scenario with
storage and flexible demand (Fig. 9), a very high VRE share
in the generation mix is reached already by 2040 (> 94 %).
This is mostly due to an earlier investment in VREs to
drive down the cost, combined with the increased deploy-
ment of both short- and long-term storage and flexibiliza-
tion of part of the demand. Capacities for storage increase
significantly: lithium-ion batteries from 18 GW in 2020 to
125 GW in 2045, and 37 GW of hydrogen electrolysis and
hydrogen turbine capacity (with∼ 40 TWh of H2 storage ca-
pacity). Despite high storage capacities, due to a high VRE
share, curtailment and storage loss still increase quite signif-
icantly with time, especially for solar PV. However, note that
in a coupled run where interregional transmission expansion
is possible connecting Germany and the rest of Europe, this
loss can be reduced (see Sect. 6.3). In terms of capacity ex-
pansion (Fig. 10b), gas power plants are mostly replaced, as
hydrogen turbines fill the role of peaking dispatchable plants
that guarantee supply for peak demand hours. The CCGT gas
turbines are equipped with CCS.

Under the stringent climate policy scenario, dramatic
changes in the end-use sectors will be under way in the form
of direct electrification and substitution of fossil gas with hy-
drogen. In the building sector, the final energy share of elec-
tricity is projected to increase from 28 % in 2020 to 66 % in
2045. In transport, the final energy share of electricity will be
56 % by 2045. In the industry sector, the share of electricity
increases from 25 % to 63 %. By 2045 there is also a notable
increase in the use of green hydrogen produced from 45 GW
flexible electrolyzers (at about 42 % of the average annual ca-
pacity factor), amounting to 0.5 EJ (3.5 million tons) per year
in the final energy, which is primarily used in industry. For a
comparison with other published German net-zero scenario
results, see Sect. S4.

5.2 Short-term dispatch

In this section, results of hourly resolution are shown and dis-
cussed for a selected model year. We use established meth-
ods such as RLDCs to visualize the hourly dispatch result
and show the hourly generation and dispatch time series for
some typical days in summer and winter.
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Figure 9. DIETER–REMIND converged results of the long-term (a) generation and (b) capacity expansion for Germany’s power sector in
the baseline scenario, assuming a constant USD 37 / tCO2 CO2 price. Dashed lines represent generation before storage loss and curtailment.
Storage generation is not visualized in panel (a).

Figure 10. DIETER–REMIND results of the long-term generation and capacity expansion for Germany’s power sector in the “net-zero
2045” scenario. The CO2 price is endogenously determined based on the climate goal. It is USD 115 / tCO2 for 2030, USD 292 / tCO2 for
2035, USD 464 / tCO2 for 2040, and USD 636 / tCO2 for 2045. Dashed lines represent pre-curtailment generation. Storage generation is not
visualized in panel (a).

5.2.1 Residual load duration curve model comparison

RLDCs can be used to visualize the dispatch of energy sys-
tem models. Each subsequent curve is calculated by subtract-
ing the generation of a technology from the hourly residual
demand curve and then sorting the remaining demand in de-
scending order. On the left-hand sides of the RLDC graphs,
one can easily check the amount of residual demand not met
by variable wind and solar production. The topmost line in
the RLDC graph is the load duration curve for inflexible de-
mand (excluding the demand from flexible electrolysis for
hydrogen production used in other sectors).

In a baseline configuration without flexibilized demand or
storage, despite lacking the explicit hourly dispatch, via bidi-
rectional soft linkage, REMIND was able to achieve a final
dispatch result that replicates DIETER to a satisfactory de-
gree (Fig. 11). This is a combined effect of a convergence

of capacities (Sect. 4.2) and full-load hours at the end of
the coupled run. In the peak residual demand hour (the left-
most point in the RLDC), the DIETER-coupled REMIND
accounts for the requirement of dispatchable capacities via
the constraint (c7), and the composition of the mix is repli-
cated from DIETER and correctly guarantees that the peak
hourly demand is met.

In a net-zero policy with storage and flexible electrolysis
demands, comparing dispatch results under both scenarios
(Figs. 11 and 12) for the model year 2045, it can be observed
that, under a stringent emission constraint, the system allo-
cates a significant amount of short-term storage to replace
the dispatchable generation such as coal and CCGTs. Long-
term storage such as hydrogen electrolysis combined with
hydrogen turbines further reduces the capacity factor of the
remaining OCGTs and CCGTs. Besides storage, there is also
a significant amount of deployment of flexible electrolysis
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Figure 11. Side-by-side RLDC comparison between (a) REMIND and (b) DIETER for the simple configuration under the baseline scenario
without storage or flexible demand. The DIETER RLDC (b) is constructed by subtracting hourly generation from hourly load and sorting with
dispatchable generation technologies plotted in order of their annual average capacity factors. VREs are arranged such that the generation
with a higher curtailment rate (i.e., solar in this case) is on the inside of the graph. To construct the REMIND RLDC (a), the dispatchable
generations are sorted by their capacity factors and stacked from the bottom. The rectangles depicting dispatchable generation are made up
of the width equal to the full-load hour and the height equal to the capacity. The top-most lines on either side are load duration curves (sorted
hourly demand, which is entirely inflexible under this setup). For the purpose of better visualizations, solar and wind RLDCs are tilted at an
angle for REMIND and plotted in the same order as the DIETER RLDC. For simplicity, in REMIND wind and solar RLDCs share the same
top pivot point in the peak residual demand hour.

demand for producing hydrogen (PtG) that is not used in the
power sector but is in industry or heavy-duty transport. The
use of PtG technologies leverages cheap variable wind and
solar energy to achieve the goal of sector coupling. By way
of storage and PtG, a significant share of the curtailment can
be utilized (more than 70 %), either by shifting the supply
to times of low VRE production via storage or by producing
hydrogen using surpluses which can be used in other sectors.

5.2.2 Hourly dispatch and power consumptions for
typical days in summer and winter

To more directly inspect the results of the hourly dispatch un-
der various scenarios, we visualize the hourly generation and
demand for typical days. Due to the climate in Germany, so-
lar potential is particularly low during winter months. There-
fore, it is important to observe the periods in both summer
and winter.

From the optimal hourly dispatch results of typical days
from the coupled model, we observe that, compared to the
baseline (Fig. 13a–b), in 2045 for a net-zero year (Fig. 13c–
d), there is a significant amount of surplus solar generation
in the summer during the day and some amount of surplus

wind generation in the winter during nights and days. Under
a net-zero scenario, the generation from fossil fuel plants in
the baseline is replaced by a battery dispatch (especially in
summer) and hydrogen turbines (especially in winter), and
the peaker plants, which under the baseline are turned on in
the summer evening, are partially replaced by solar overca-
pacity and batteries. A significant share of renewable surplus
energy is used for the production of green hydrogen – hydro-
gen made from zero-carbon electricity. Due to the complete
flexibility of electrolyzers, the capture price of hydrogen pro-
duction is only around one-third of the average price of elec-
tricity (Sect. S2 and Fig. S1 in the Supplement).

In winter, hydrogen turbines serve as a base load for the
few days when wind generation is insufficient to meet the
demand. To ensure supply during longer winter periods of
“renewable droughts” with little wind and solar output, e.g.,
over a 2–3 d period (hours 540–600 in Fig. 13d), long-term
storages with hydrogen electrolysis and hydrogen turbines
and some dispatchable generation (such as CCGTs with CCS
and an integrated biomass gasification combined cycle) play
a major role.
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Figure 12. Side-by-side comparison between the (a) REMIND and (b) DIETER RLDCs for the “net zero by 2045” scenario with storage
and flexibilized demand for Germany. The storage loading and discharging in the DIETER RLDC (b) are constructed by subtracting hourly
loading or discharging from hourly inflexible load and sorting. The REMIND RLDC (a) is constructed similarly to Fig. 11. The top-most
lines on either side are load duration curves for inflexible demand. For better visual comparison, in REMIND the solar RLDC starts at 80 %
of the peak residual demand.

6 Discussion

In this section, we discuss the reasons for remaining differ-
ences between the coupled models as well as the assumptions
and limitations of the soft-coupling.

6.1 Remaining discrepancies

In all our test runs, at the end of the coupling, it is always
the case that the two models cannot be perfectly harmonized,
and there is a slight residual difference in the convergence
results (Sect. 4). The reason is two-fold.

The first reason is “legacy mismatch”, i.e., a mismatch in
brown-field standing capacity constraints in the two models.
The coupling method we develop here is mostly based on
price information for achieving convergence. Therefore, ca-
pacity constraints that are present in the standalone long-term
model but not in the standalone hourly dispatch model need
to be transferred. These standing capacities are hard to evalu-
ate purely based on economic terms, as they are ultimately a
result of real-world actions and policies that might not align
with the simplified economic incentives in techno-economic
energy models. Therefore, the only way this information can
be transferred from the brown-field model to the green-field
model is by implementing a lower capacity bound in the lat-
ter. However, this bound nevertheless might not capture all
the shadow prices caused by the standing capacities in RE-

MIND. This is ultimately due to the specific generic form
of the constraint we implemented: i.e., we pass on the pre-
investment capacities as a lower bound regardless of the tech-
nology types. In general, hidden “legacy revenues”, which
are manifested as the shadow prices of economically less
competitive generators in DIETER, such as biomass, coal
or hydroelectric (solid line lower bars in Fig. 8), provide
incentives for brown-field models to deploy them over the
long term but do not provide enough economic cases for the
green-field model. This results in an observed phenomenon
in the coupled run that, if these legacy capacities and their
impact on the costs have not been fully transferred to the
green-field model, the prices of the green-field model tend
to be lower than the coupled brown-field models, causing
distortion of the convergence of quantities. The effects of
legacy mismatch and illustrative test run results are discussed
in more detail in Supplement Sect. S3.

The second reason for the discrepancies at the end of the
coupling is the actual mismatches in the Lagrangian harmo-
nization itself, which can originate from multiple sources. It
could be due to intertemporal constraints and dynamics (such
as adjustment costs and brown-field constraints) not linearly
reducible to single-year dynamics, resulting in misalignment
between the multi-period REMIND and the single-year DI-
ETER. It could also be due to slight numerical inaccuracies
of the interest rate estimate that are not explicit in REMIND
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Figure 13. Comparison of hourly generation (positive) and con-
sumption or storage loading (negative) for a few consecutive typ-
ical days in two seasons in Germany in 2045. (a) Summer, under
the proof-of-concept baseline scenario, no storage, or flexible de-
mand. (b) Winter, under the proof-of-concept baseline scenario, no
storage, or flexible demand. (c) Summer net-zero scenario with stor-
age and flexible demand. (d) Winter net-zero scenario with storage
and flexible demand. Due to the fact that modern electrolyzers are
very flexible, no ramping costs are applied to them in the models,
and therefore some switching behavior between PtG electrolyzers
turning on and off can be seen, but this is a minor artifact.

but that are derived from endogenous and intertemporal con-
sumption. Lastly, there could be a mismatch due to a lin-
ear fitting of REMIND endogenous time series of fuel costs
(biomass, oil, coal, uranium) before passing this information

on to DIETER, which might result in a small amount of mis-
match for fuel costs between REMIND and DIETER.

6.2 Limitations of the coupling methodology

There are limitations to our proposed methodology in terms
of both convergence of two multiscale power sector mod-
els and other potential applications of model convergence.
Firstly, in terms of the problem presented here – a multiscale
power sector model coupling –, the method derived here is
only necessary for a full convergence but may not be suffi-
cient; i.e., a full convergence is not guaranteed. A number of
additional factors could prevent a full convergence. One is
the legacy mismatch and misalignment in Lagrangian map-
pings mentioned above in Sect. 6.1. Another factor is the
role prefactors play (Sect. 3.3.2, Appendix H2). The pref-
actors help stabilize the coupling by turning exogenous val-
ues obtained from the last-iteration DIETER into endoge-
nous values in REMIND, such that they can be adjusted
to be in line with the optimal mix of the current iteration.
However, they usually contain some small positive or neg-
ative parameters that are determined heuristically (e.g., by,s
in Eq. H13). These heuristic parameters usually come from
rough estimates based on relations between variables in the
system and generation shares, e.g., how much the market
value of solar generation will decrease when the solar gen-
eration share increases by a certain percentage. In practice,
while the prefactors help stabilize the run and improve the
convergence speed, choosing the wrong prefactor parameters
can lead to divergence or instability. Second, another limi-
tation when it comes to modeling power market multiscale
coupling is the number of products on the market. In the for-
mulation here, both models describe the general equilibrium
of a competitive market with one type of homogenous goods,
i.e., electricity. However, if we introduce heat as a byprod-
uct, such as from a combined heat and power plant, then
there are two types of goods: heat and electricity. The fea-
sibility of coupling models with more than one type of good
or market has not yet been explored. Thirdly, there are mul-
tiple iterative processes that are internal to REMIND, which
happens concurrently with the DIETER–REMIND coupled
convergence. Among these processes, the DIETER and RE-
MIND Nash algorithms (for interregional trading) both run
between the internal REMIND Nash iterations, which means
that they are external to the REMIND single-region opti-
mization problems and therefore are soft-linked. Neverthe-
less, in our runs, we observe the power sector convergence
to be rather swift and smooth and to happen in parallel to
other iterative processes, such as the Nash algorithm and the
CO2 price path algorithm (for climate policy runs). However,
systematic monitoring of the multiple internal convergence
processes in REMIND during the REMIND–DIETER con-
vergence processes under other model setups and configura-
tions is still to be more thoroughly researched.
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More generally, the approach developed here – the La-
grangian mapping method for converging two multiscale op-
timization problems – could be useful for a general model-
ing of market equilibrium of multiple time resolutions. In
this study, the resolution in the coupled problems is specif-
ically only meant for temporal resolution. However, mathe-
matically speaking, coupling models of different spatial res-
olutions (or both temporal and spatial resolutions) should be
very similar. At least in theory, the soft-coupling approach
developed here should be applicable to increasing the reso-
lution in any arbitrary independent/orthogonal dimension of
the problem of finding equilibrium market dynamics. In the-
ory, it is also possible to build a multi-layer coupled problem
architecture, where at each level the low-resolution variables
can be disaggregated into finer resolution along some dimen-
sions. However, further research is needed to explore the fea-
sibility and convergence performance of such schemes.

6.3 Limitation of coupled results

Since the nature of this study is a proof of concept, the sce-
nario results presented should be primarily interpreted as
such. Nevertheless, it may be useful to enumerate a list of
limitations for a more accurate interpretation of the results.

1. The power sector is only coupled for one single global
region; i.e., information exchange only occurs for the
variables of one region, Germany, while all the other re-
gions contain the low-resolution version of the power
sector of the uncoupled REMIND. The former coupled
one-region result is based on a time series of VRE pro-
duction today in a world of low- to medium-VRE shares
and a very limited power grid expansion (in 2019). The
latter results of the uncoupled regions however are pa-
rameterized based on results from a detailed PSM un-
der a more optimistic assumption of transmission build-
out, which allows VRE pooling from an expanded EU-
wide power grid to smooth out regional weather vari-
ations (Pietzcker et al., 2017). Note that, in the stan-
dalone REMIND, while by default there are no annual
electricity import and export imbalances between coun-
tries and regions, transmission during the year is implic-
itly assumed, especially for the EU region. Comparing
the capacity and generation mixes of the coupled and
uncoupled runs (Appendix J), we find that, in the un-
coupled case, there are slightly more solar and wind ca-
pacities and generations and much less gas generation in
the long term. EU-wide transmission expansion would
pool both supply and demand variability, thus reducing
the need for dispatchable capacity for meeting the peak
demand.

2. Due to the scope of this study, we implemented a limited
set of options in storage and sector-coupling technolo-
gies in this study and neglected the additional supply-
side details for the German power market (such as the

reserve market). Many potentially significant techno-
logical options consisting of pumped hydro storage,
compressed-air energy storage, vehicle to grid and flex-
ible heat pumps are not explicitly modeled.

3. Ramping costs for dispatchable generators are not con-
sidered, although the effect should be small (Schill et
al., 2017).

4. In terms of power transmission and trading inside Ger-
many, we assume a very simple “copperplate” spatial
resolution, not explicitly modeling transmission bot-
tlenecks inside the region. Currently, the grid capac-
ity equation is parameterized to be proportional to pre-
curtailment variable renewable generation, and the pa-
rameterization is rather optimistic based on PSM studies
conducted in Pietzcker et al. (2017). As hinted at in a re-
cent work by Frysztacki et al. (2022), the lower level of
spatial detail results in an underestimation of constraints
present in a real electric system, leading to an underes-
timation of system cost.

5. Near-term events: we have not modeled the current gas
and energy crisis in Europe, which is likely to imply
an overestimation of near-term gas availability in the
power sector. Relatedly, we are likely to have overes-
timated the early retirement of coal power plants, which
are capped at a maximum of 9 % yr−1 of the current ca-
pacity early retirement rate in REMIND if this is uneco-
nomical relative to cheaper sources of generation. We
have included the COVID shock in the GDP projection.

6. Only one weather year (2019) is used for the DIETER
input data. From the perspective of sufficient power
supply under all weather conditions with few blackout
events, this could introduce an underestimation of the
need for reserve capacity, storage and demand-side flex-
ibility.

7. Climate impacts under various scenarios on building
sector power demand are not included in the current
version of REMIND or its energy demand model for
the building sector “EDGE-B” (Levesque et al., 2018).
Climate extremes such as heat waves are not included
in either model due to the fact that annual degree days
are used, which are the results of temporal averaging.
Representative weather years which maintain the tem-
perature extremes and can represent long-term trends
are also not used. However, the demand projection does
change in a minor way based on SSP scenarios due to
their different population projections.

8. “Perfect foresight” is assumed under REMIND’s in-
tertemporal optimization over several decades and
therefore is also assumed under the coupled model.
There exist many discussions related to the differences
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between the “ideal world” depicted in IAMs and en-
ergy system modeling on the one hand and “imperfect”
but realistic real-world decision making and political
economy on the other (Ellenbeck and Lilliestam, 2019;
Geels et al., 2016; Keppo et al., 2021; Staub-Kaminski
et al., 2014; Pahle et al., 2022). Considering that per-
fect foresight models such as REMIND dominate IPCC
model results, it is especially important to understand
the differences between the approaches with perfect
foresight and those without it (the so-called “myopic
models”). Such work has been carried out in studies
such as Fuso Nerini et al. (2017) or Sitarz et al. (2023).
If myopia is introduced in the model, the climate policy
exemplified by carbon prices still follows an increasing
expectation for more and more stringent climate poli-
cies, but the trajectory can be less smooth and in the
near term looks more “flat”, hence inducing lock-in ef-
fects which slow the transition in the near term. These
additional lock-in effects are not modeled in our work
here.

9. The resulting power mix is largely due to limited op-
tions within the available energy portfolio due to Ger-
many’s energy policy and natural resources, e.g., the po-
litical decision of nuclear and coal capacity phase-out as
well as limited hydro and offshore wind potential. In fu-
ture research, we would like to apply the same method
to all global regions.

6.4 Potential computational barriers under
soft-coupling

Even though via soft-coupling an IAM can obtain hourly res-
olution with only a moderate computational cost increase, it
nevertheless increases the complexity of the whole problem,
increasing the solver time of the IAM, especially before con-
vergence is reached under the iteration with a PSM. With
additional complexity of endogenous climate policies, com-
putational time can be long for scenarios under climate con-
straints (see Appendix E). This can be potentially overcome
by several measures that can be topics for future research.

1. Optimize for computational costs in individual models.
Individual IAMs and PSMs are usually developed in-
crementally, which results over time in less overall com-
putational efficiency. However, because individually the
models are not too costly to run, there are fewer incen-
tives to manage computational costs when they are run
as standalone models. However, when coupled, a com-
putational cost may become a barrier. One of the eas-
iest ways to reduce coupled run time is to reduce run
times of the individual coupled models. Because the
soft-coupling takes many iterations, a small reduction
in computational time in either model will multiply to
give a large reduction in iterative soft-coupled runs.

2. Other internal iterations of the IAM (if they exist) can
be optimized. For example, in REMIND, most of the it-
erations (usually 30–50 iterations) in the coupled runs
are dedicated to converging interregional trade between
the 21 regions in the model, because the DIETER iter-
ation usually converges quite quickly (5–10 iterations).
By making the algorithm for the convergence of inter-
regional trade faster, we can reduce the total coupled
iterations, thereby reducing the overall computational
cost. Less computational time can also be achieved if
DIETER is no longer run together with REMIND af-
ter DIETER–REMIND iteration convergence is reached
and when trade adjustment (or other internal adjust-
ments in REMIND) is small enough to not have a sub-
stantial impact on the power sector results. This is espe-
cially the case if a PSM becomes more complex and its
computational time exceeds far more than the single-
iteration REMIND time (see also Appendix E for a
comparison of the contributions to run time due to RE-
MIND internal iteration and due to PSMs).

3. Limiting endogenous investments of capacities of cer-
tain technologies only in one model: for example, in the
case of electricity transmission, more than one region
(e.g., Germany with neighboring European countries)
will need to be hard-coupled together in the PSM, which
naturally increases the computational cost of the PSM.
However, when the solutions are passed to the IAM, the
regions can again be parallelized as long as an IAM does
not engage in the endogenous investment of the trans-
mission capacity. Hence the increased cost of compu-
tation due to implementing transmission is only limited
to the PSM. This is also the case if within Germany the
spatial resolution is increased.

4. Only include essential features in the PSM. Some PSMs
are quite detailed and complicated for the purpose of
studying specific technologies and the behavior of many
agents or users. To couple to the IAM, the PSM should
consider coarse-graining or aggregating some details
while retaining the essence of the dynamics being stud-
ied. For example, to implement smart EV charging (e.g.,
vehicle to grid), modelers of PSMs should create a ver-
sion for coupling that aggregates the many time series
of charging and discharging of EVs to only one or two
time series.

Faster solvers and faster supercomputers will also contribute
to improving the computational efficiency of the coupled
model.

7 Conclusion and outlook

In this study, we develop a new method of soft-coupling
an IAM with a coarse temporal resolution and a PSM with
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an hourly temporal resolution. Our coupling method can
be shown both mathematically and in practice to produce
a convergence of the two systems to a sufficient degree.
This method allows the incorporation of the temporal de-
tails of variable renewable generation explicitly into large-
scope IAM modeling frameworks and increases the accuracy
of power sector dynamics in long-term models. Furthermore,
it allows more explicit modeling of the power sector and
sector coupling as well as a vision of the energy transition
where end-use demand sectors such as building, industry and
transport make economic use of the generation from variable
sources by

1. directly using the power at the time of production for
inflexible forms of demand,

2. shifting the time of the power supply via battery and
other power storage technology, and

3. transforming this into another energy carrier or product
ahead of times of consumption and at times of surplus
wind and solar production (e.g., PtG), without conver-
sion back to electricity.

The fully coupled framework allows a more explicit mod-
eling of economic competition of these options under high
shares of variable renewables, finding more accurate opti-
mal paths under long-term climate scenarios towards a net-
zero power sector and the wider economy globally. In fu-
ture research we plan to expand the study in the direction of
demand-side management and flexibilization and later possi-
bly in the direction of heat storage.

Coupling DIETER to the global model REMIND for the
single region Germany, this study serves as a proof of con-
cept. Our main innovation is two-fold: we derive conver-
gence theoretically and show almost full convergence numer-
ically. Theoretically, we derive the coupling methodology by
mapping the KKT Lagrangians of the simplified versions of
the two models. One key aspect of the mapping consists of
iterative adjustment of the market value (i.e., the annual aver-
age revenue of one energy unit of generation) or the capture
price (i.e., the annual average price of one energy unit of con-
sumption) in the low-resolution IAM such that they take on
the values like those in the high-resolution PSM. By finding
the set of mathematical coupling conditions necessary for an
iterative convergence as defined by the convergence of both
quantities and prices, we could then design the coupling in-
terface accordingly such that, at the end of the coupling, a
joint optimal result can be found.

Numerically, we compare the converged results of the two
models by examining the long-term power mix (both capac-
ity and generation quantities) and prices of electricity and
generation dispatch (via RLDCs), and we find good agree-
ment between the two models at the end of coupled con-
vergence despite some slight mismatches. For a proof-of-
concept baseline scenario under a simple configuration with-
out storage or flexible demand, we could achieve an energy

mix with 4.4 % tolerance for any technology’s absolute share
difference in each time step. For a climate policy scenario
under a more realistic configuration with storage and flexi-
ble demand, we could achieve 6 %–7 % tolerance. The cost
breakdown and prices of power generations for both models
are found to be very similar at the end of the iterative pro-
cess, providing additional evidence that the quantity harmo-
nization follows the underlying principle of price and cost
harmonization. The remaining differences can be partially
explained by the lack of full harmonization of the brown-
field and near-term capacity constraints as well as potential
mismatches due to numerical techniques aimed at enhanc-
ing performance and stability. Using the coupling methodol-
ogy, we provide scenarios for power sector transition under
a stringent German climate goal. Under this scenario, we ob-
serve a least-cost pathway consisting of an almost complete
transformation to a wind- and solar-based power system. The
results indicate an increasing role of storage and dispatchable
capacity in a deep decarb scenario, consistent with the find-
ings of previous PSM studies, but this is now transferred to
the long-term models via soft-coupling.

For future works, besides expanding the research program
on sector coupling into a direction containing a broader tech-
nological portfolio, we also aim to apply this framework to
other world regions of interest in the REMIND model. An-
other important aspect would be to represent the variability-
smoothing effect of transmission grids by using the same
coupling framework to couple REMIND to other power sec-
tor models with more explicit modeling of transmission bot-
tlenecks and expansion for two or more regions.

Appendix A: Comparison of model scope and
specification

Because IAMs usually start out with certain assumptions for
the development of macroeconomic metrics such as for GDP
and population, which in turn determine the corresponding
energy service levels to a larger degree prior to optimizing
the energy system mix to meet demand, they are also fre-
quently referred to as “top-down” energy system models.
PSMs usually start out modeling the fine spatiotemporal de-
tail of real-world power systems, expanding the capacity in-
stallation of power-generating plants, grid transmission and
storage at minimum cost. Such models are also known as
“unit commitment models” for electrical power production
(Padhy, 2004). Later in model development PSMs are usu-
ally expanded to include other energy services such as heat-
ing and transportation that are electrified. In this way PSMs
are also often referred to as “bottom-up” models. Reviews
and intercomparisons of IAMs have been carried out recently
where various IAMs are analyzed and harmonized (Weyant,
2017; Butnar et al., 2019; Keppo et al., 2021; Wilson et al.,
2021; Giarola et al., 2021).
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For methodological reasons, we have to set the length of
the model time horizon to be until 2150, which is longer
than the valid model time horizon until 2100. This is because
without the extra years after 2100, the model has much less
time to utilize the capacities installed in the few decades be-
fore 2100, making it more difficult to justify the installation
of new capacity economically. This is manifested in a model
artifact where, in the last few model periods, investment in
capacities decreases in general. By extending the time hori-
zon, this “boundary” effect is pushed further into the future,
so the artifact only appears after 2100. Therefore the mean-
ingful model results for REMIND are only between 2005 and
2100, even though the years until 2150 are also modeled and
coupled.

Reviews and intercomparison of typical scopes and reso-
lutions of PSMs can be found in Supplement Sect. S5. Com-
parison of more PSMs can be found in Ringkjøb et al. (2018)
and Prina et al. (2020).

Both models have open published source code. Partially
thanks to the PSM community’s advocacy of “open mod-
els”, which encompasses all steps from input data to model
source code and numerical solvers (openmod – Open Energy
Modelling Initiative, 2022), many research institutions have
also responded to their calls to openly publish their models.
For example, the IAM used in this study, REMIND, has for
2 years opened its source code on the popular hosting site
GitHub.

Figure A1. Comparison of the (a) resolution and (b) scope for REMIND and a typical IAM as well as two versions of DIETER (v1.0.2 is
used in this study) and a typical PSM.

https://doi.org/10.5194/gmd-16-4977-2023 Geosci. Model Dev., 16, 4977–5033, 2023



5008 C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND

Table A1. Comparison between the coupled models REMIND and DIETER.

Model name and version REMIND v3.0.0 (dev) DIETER v1.0.2

Model type IAM PSM

Scope and
resolution

Spatial scope Entire globe Single region (Germany)

Intertemporal scope of “perfect fore-
sight”

2005–2100 (2005–2150 in the actual
model)

Any year-long period

Temporal resolution 5- or 10-year time step Hourly (all consecutive hours)

Regional resolution Single EU region Single EU region

Sectoral scope All energy sectors (transport, building,
industry), industrial processes, air pol-
lution, land use sector, etc.

Power sector

Available climate policy options CO2 price, early-phase nuclear and coal
phase-out (for Germany), EU-ETS

CO2 price

Power sector
dynamics

Endogenous hourly dispatch No Yes

Differentiated market value for various
technologies

No Yes

Price elasticity of demand Yes No

Capital cost of technology Endogenous via a learning curve (Le-
imbach et al., 2010)

Exogenous

Vintage tracking of existing capital
stock

Yes No

Transmission assumption Copper plate within the region Copper plate within the region

Model code
and data
specification

Programming language GAMS GAMS

Input data openness Partially open data Fully open data (for Germany)

Source code openness Open Open

Solver CONOPT CPLEX
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Appendix B: Model-coupling scope

While REMIND and DIETER can both model a European-
wide system with spatial subdivision (see Fig. B1 for the
REMIND regional division), the soft-coupling is currently
only applied to Germany, in line with the proof-of-concept
nature of this study. The coupling is from 2020 to 2150 for
every defined REMIND period. All common and available
REMIND-generating technologies are enabled for the cou-
pling, as shown in Fig. B2. The information for the species
of technologies in REMIND is upscaled and coupled to DI-
ETER, whereas information from DIETER is then down-
scaled during the feedback loop that completes the coupled
iteration.

Figure B1. REMIND regional resolution used in this study (21 global regions, including detailed differentiations of EU regions). The spatial
resolution of REMIND is flexible and depends on the resolution of the input data. Regional mapping is from the REMIND–EU model
(Rodrigues et al., 2022).

Figure B2. Mapping of coupled technologies between REMIND and DIETER.
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Appendix C: REMIND’s interannual intertemporal
objective function for a single region

Single-region interannual intertemporal welfare is an aggre-
gated utility, which in turn is a logarithm function of con-
sumption. In REMIND, the total welfare of a region is max-
imized and is equal to

Wreg =
∑2150

y=2005

1
(1+ %reg)y−2005 ·1y ·Vy,reg · ln

(
χy,reg

0y,reg

)
,

where regional consumption is χy,reg at model time y and the
weight of the consumption is determined by the pure rate of
time preference %reg and population Vy,reg. The consumption
χy,reg at time y is in turn equal to the difference between re-
gional income (gross domestic product – GDP) minus export
(which is not available for consumption) and savings (i.e., in-
vestments), subtracted by the cost of the energy system (in-
cluding the power sector) and other costs in the economy.
For simplicity we do not discuss several other expenditures,
such as capital investment for energy services, other energy-
related expenditures such as R&D and innovation, taxes, cost
of pollution and land use change.

Appendix D: Deriving the soft-coupling convergence
conditions

In Sect. 3.2.1, we sketch the derivation procedure and offer a
short summary of the analytical results. Here we describe the
derivation procedure of the coupled convergence framework
in detail.

Using the Lagrangian multiplier method, based on the
objective functions (Eqs. 1–2) and constraints (c1–c6) in
Sect. 3.1, we can construct the KKT Lagrangians (Karush,
1939; Kuhn and Tucker, 1951; Gan et al., 2013).

REMIND:

L=
∑
y,s

(
cy,sPy,s + oy,sGy,s

)
︸ ︷︷ ︸

REMIND objective function

+

∑
y

λy

[
dy −

∑
s

Gy,s(1−αy,s)

]
︸ ︷︷ ︸

annual electricity balance equation constraint

+

∑
y,s

ωy,s
(
Py,s −ψs

)
︸ ︷︷ ︸

resource constraint

+

∑
y,s

ξy,s
(
−Gy,s

)
︸ ︷︷ ︸

positive generation constraint

+

∑
y,s

µy,s
(
Gy,s − 8760 ·φy,sPy,s

)
︸ ︷︷ ︸

maximum generation from capacity constraint

+

∑
y≤2020,s

σy,s
(
py,s −Py,s

)
︸ ︷︷ ︸

standing capacity constraint

+

∑
y=2025,s

γy,s
(
Py,s −Py−1y,s − qy,s

)
︸ ︷︷ ︸

near-term ramp-up capacity constraint

. (D1)

DIETER:

L=
∑
s

[
csP s + os

∑
h

(
Gh,s +0h,vre

)]
︸ ︷︷ ︸

DIETER objective function

+

∑
h

λh

(
dh−

∑
s

Gh,s

)
︸ ︷︷ ︸

hourly electricity balance equation constraint

+

∑
s

ωs
(
P s −ψ s

)
︸ ︷︷ ︸

resource constraint

+

∑
h,s

ξh,s
(
−Gh,s

)
︸ ︷︷ ︸

positive generation constraint

+

∑
h,dis

µh,dis
(
Gh,dis−P dis

)
︸ ︷︷ ︸

maximum dispatchable generation from capacity constraint

+

∑
h,vre

µh,vre
(
Gh,vre+0h,vre−φh,vreP vre

)
︸ ︷︷ ︸

maximum renewable generation from capacity and weather constraints

. (D2)

Comparing Lagrangians L and L, there are notable simi-
larities between the terms. However, first, we can reduce the
complexity by noticing that there are terms containing ca-
pacity shadow prices that are either trivial or already harmo-
nized: resource constraint shadow prices ω are already iden-
tical for both models by design (constraint c2 in Sect. 3.1).
Positive generation constraint shadow price ξ is 0 due to
KKT conditions for both models (constraint c3). These con-
straint terms can be safely excluded from the subsequent
mapping. We then note the important fact that the REMIND
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Lagrangian is a sum over multiple years, whereas the DI-
ETER Lagrangian is for each year. To make a direct com-
parison and therefore mapping possible, we assume that the
brown-field and near-term constraints are not binding. After
this simplifying assumption, we realize that REMIND be-
comes linearly independent in terms of the temporal slices
because by now the only yet-to-be-harmonized constraints
left in the standalone models are (c1) and (c4), which are both
constraints for each year and do not result in temporal corre-
lations. Note that this simplifying assumption is assumed to
be valid only for the derivation in this section. Later, in actual
simulations, we see that these bounds generate shadow prices
which are not necessarily small, impacting the degree of con-
vergence, especially in earlier years. These constraints are
also temporally localized in early periods, exerting little im-
pact on later, more “green-field” years. In fact, when includ-
ing the brown-field constraint in DIETER (c8), the model
convergence is improved (Sect. 6.1).

After the aforementioned simplifications, we can construct
a single-year REMIND Lagrangian Ly ,

Ly =
∑
s

(
cy,sPy,s + oy,sGy,s

)
︸ ︷︷ ︸

REMIND objective function

+ λy

[
dy −

∑
s

Gy,s(1−αy,s)

]
︸ ︷︷ ︸

annual electricity balance equation constraint

+

∑
s

µy,s
(
Gy,s − 8760 ·φy,sPy,s

)
︸ ︷︷ ︸

maximum generation from capacity constraint

, (D3)

and map it to the single-year DIETER Lagrangian L:

L=
∑
s

[
csP s + os

∑
h

(
Gh,s +0h,vre

)]
︸ ︷︷ ︸

DIETER objective function

+

∑
h

λh

(
dh−

∑
s

Gh,s

)
︸ ︷︷ ︸

hourly electricity balance equation constraint

+

∑
h,dis

µh,dis
(
Gh,dis−P dis

)
︸ ︷︷ ︸

maximum dispatchable generation from capacity constraint

+

∑
h,vre

µh,vre
(
Gh,vre+0h,vre−φh,vreP vre

)
︸ ︷︷ ︸

maximum renewable generation from capacity and weather constraints

. (D4)

These are the same as Eqs. (3)–(4).
Comparing Ly and L, we can map them by matching the

following four terms in the Lagrangians individually:

A. annual total power sector costs: Zy =∑
s

(
cy,sPy,s + oy,sGy,s

)
and Z =∑

s

[
cy,sP y,s + oy,s

∑
h(Gy,h,s +0y,h,vre)

]
;

B. annual revenue of usable (post-curtailment) gener-
ation for each generator s: λyGy,s

(
1−αy,s

)
and∑

hλy,hGy,h,s ;

C. annual payment made by the consumers: λydy and∑
hλy,hdy,h; and

D. maximum generation from the capacity constraint
term for each generator s: µy,s

(
Gy,s − 8760 ·φy,sPy,s

)
and

∑
hµy,h,s

(
Gy,h,s +0y,h,s −φy,h,sP y,s

)
(here we

write the two terms for VRE and dispatchable into one
term for DIETER for simplicity: i.e., 0y,h,dis = 0 and
φy,h,dis = 1 for dispatchables).

The following conditions (h1–h7) can be derived from the
harmonization of terms (A)–(D). Each term is harmonized
by matching the values in front of decision variables at the
aggregated levels, i.e., capacities and annual generations.

Term (A) can be mapped if

h1. annual fixed costs are harmonized for each generator
species s: cy,s = cy,s ; and

h2. annual variable costs are harmonized for each generator
species s: oy,s = oy,s .

Term (B) can be mapped if,

h3. for each generator species s, the annual average rev-
enue per unit generation, i.e., the market value, is har-
monized by exogenously manipulating the market value
in REMIND to be the same as the last-iteration annual
average market value in DIETER. We achieve this by
adding a correction term, thereby modifying the RE-
MIND original objective function Z to Z′:

Z′ = Z−
∑

y,s
ηy,s (i− 1)Gy,s

(
1−αy,s

)
,

where ηy,s (i− 1) is the markup for technology s in DI-
ETER in the last iteration i−1, and i is the index of the
iteration of the iterative soft-coupling.Z′ is the modified
REMIND objective function in the coupled version.

The detailed derivation is as follows.

Lagrangian term (B) for the models has the physical
meaning of the total annual revenue of usable (post-
curtailment) generation. (Annual revenue is equal to
the product of usable generation and the annual market
value.) We denote total annual revenue from technology
s as2y,s for REMIND and2y,s for DIETER. Then, for
REMIND, the revenue (term B) is

2y,s = λyGy,s
(
1−αy,s

)
, (D5)

and for DIETER it is

2y,s =
∑

h
λy,hGy,h,s . (D6)
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To harmonize terms 2y,s and 2y,s , our goal is to create
a one-to-one mapping of the values in front of the de-
cision variable’s annually aggregated post-curtailment
generation of technology s, which is Gy,s

(
1−αy,s

)
for REMIND and

∑
hGy,h,s for DIETER. The latter is

namely a direct sum of the hourly generations. How-
ever, we notice for DIETER revenue that 2y,s is a
weighted sum of the hourly generation, and the direct
sum cannot be separated in a straightforward way. So,
first we have to rewrite 2y,s (Eq. D6) by first dividing
and then multiplying by the aggregated annual genera-
tion:

2y,s =

∑
hλy,hGy,h,s∑
hGy,h,s

∑
h
Gy,h,s . (D7)

We notice that the multiplicative term in front of the
DIETER annually aggregated generation

∑
hGy,h,s is∑

hλy,hGy,h,s∑
hGy,h,s

, which is nothing other than the market

value of generation technology s (see also Eq. F24).

We now take a look at revenue 2y,s on the REMIND
side, which is equal to λyGy,s

(
1−αy,s

)
(Eq. D5).

To map (D5) to the DIETER revenue term 2y,s
(Eq. D7) in terms of the aggregated decision variables
Gy,s

(
1−αy,s

)
and

∑
hGy,h,s , we essentially would

like the multiplicative term in front of the generation

variable in 2y,s , which is λy , to also be
∑
hλy,hGy,h,s∑
hGy,h,s

like in DIETER. This means that the DIETER-corrected
revenue in REMIND should be

2′y,s =

∑
hλy,hGy,h,s∑
hGy,h,s

Gy,s
(
1−αy,s

)
. (D8)

To harmonize 2y,s and 2y,s , we can simply add a lin-
ear correction term to compensate for the difference be-
tween them. Noticing in Eq. (D5) that the multiplica-
tive term in front of the REMIND generation variable
Gy,s

(
1−αy,s

)
is λy , which can be interpreted as the

REMIND market value, we realize essentially for a lin-
ear correction term that we should add the market value
difference 1MVy,s between the two models,

1MVy,s =MVs −MVs =
∑
hλy,hGy,h,s∑
hGy,h,s

− λy, (D9)

to the multiplicative term λy in 2y,s , so λy is canceled.
Note that, in Eq. (D9), as discussed before, the DI-
ETER market value is dependent on technology index
s, whereas the REMIND one is not.

After adding the linear correction term, the modified
revenue in REMIND 2′y,s after harmonization is

2′y,s =2y,s +1MVy,sGy,s(1−αy,s)

= (1MVy,s + λy)Gy,s(1−αy,s). (D10)

Plugging in Eq. (D9),

2′y,s =

(∑
hλy,hGy,h,s∑
hGy,h,s

− λy + λy

)
Gy,s

(
1−αy,s

)
=

∑
hλy,hGy,h,s∑
hGy,h,s

Gy,s
(
1−αy,s

)
, (D11)

which is as desired in Eq. (D8).

In practice, in the case of the annual shadow price λy in
REMIND, we find that the coupling is more stable nu-
merically if we use the annual average electricity price
of DIETER instead of the last-iteration electricity price
of REMIND λy in Eq. (D9). The equivalence between
the two prices is expressed later in (h5). We can use this
substitution, since we show later that (h5) can be derived
from market value harmonization (h3) and demand har-
monization (h4). With this substitution, the correction
term, which we call ηy,s , is in fact

ηy,s =MVs − J =
∑
hλy,hGy,h,s∑
hGy,h,s

−

∑
hλy,hdy,h∑
hdy,h

, (D12)

where J =
∑
hλy,hdy,h∑
hdy,h

is the annual average electricity

price in DIETER. We calculate Eq. (D12) using the last-
iteration DIETER solutions. Note that, compared to the
earlier Eq. (D9), we have simply replaced the second-
term REMIND annual price with the DIETER annual
price.

It is not hard to recognize ηy,s as the “markup” for tech-
nology s in DIETER, where markup as defined before is
the difference between the market value of a technology
MVs and the load-weighted annual average electricity
price J (see the introduction of Sect. 3.1).

Now we have concluded the derivation for the markup
term ηy,s in (h3).

Although the multiplicative terms in front of the de-
cision variables in the two models can be harmonized
via the correction term (D12), we notice that it con-
tains endogenous values, i.e., hourly generation Gy,h,s
and hourly shadow price λy,h in DIETER. Since any en-
dogenous value can only be known ex post, this means
that the Lagrangian mapping relies on endogenous val-
ues from the last iteration, i.e.,

ηy,s (i− 1)=MVs (i− 1)− J (i− 1)

=

∑
hλy,h (i− 1)Gy,h,s (i− 1)∑

hGy,h,s (i− 1)

−

∑
hλy,h (i− 1)dy,h (i− 1)∑

hdy,h (i− 1)
.
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Now, using the markup term ηy,s , we define the linear
correction term for the revenue in REMIND 2y,s as

12y,s = ηy,s (i− 1)Gy,s
(
1−αy,s

)
.

The physical meaning of 12y,s is the revenue differ-
ence in the two models for technology s, given that the
post-curtailment generations are expressed in terms of
REMIND variables.

The coupled REMIND has a modified objective func-
tion Z′ based on a linear correction. The correction term
12y,s needs to be summed over s and y and subtracted
– due to the negative sign in front of term (B) – from the
REMIND objective function Z, since the objective term
as a part of the Lagrangian can be directly manipulated:

Z′ = Z−M = Z−
∑

y,s
12y,s

= Z−
∑

y,s
ηy,s (i− 1)Gy,s

(
1−αy,s

)
,

where we call the total system revenue differences M;
again, these are revenues where the post-curtailment
generations are expressed in terms of REMIND vari-
ables (and not DIETER variables).

Now we have concluded the derivation for the conver-
gence condition (h3).

Depending on the starting point of the REMIND power
system, and due to the internal iterative changes in RE-
MIND results due to the adjustments in trade between
regions in the Nash algorithm, coupled convergence
usually can only be achieved over multiple iterations.
Therefore the derived markup equation (Eq. D12) in
general can only be expected to reflect the actual mar-
ket value differences approximately in the two models.
This is the reason why, in the iterative algorithm after
the first iteration, we add M(i)−M(i− 1) to the ob-
jective function Z, as the quantities and prices gradu-
ally converge between the two models. As convergence
is approached, the total revenue difference between iter-
ations M(i)−M(i− 1) should go to zero. This is con-
firmed by the numerical experiments (not shown).

Term (C) can be mapped if

h4. annual power demands in the two models are harmo-
nized: dy =

∑
hdy,h ; and

h5. annual average prices of electricity are mapped to each

other: λy =
∑
hλy,hdy,h∑
hdy,h

(dividing term C by h4). Be-

cause electricity price is by definition equal to the to-
tal annual system revenue divided by the total annual
demand, (h5) can be shown to hold true given that
technology-specific revenues are harmonized in (h3)
and demands are harmonized in (h4). (If technology-
specific revenues are harmonized in (h3), then the sys-
tem revenues which are technology-specific revenues

summed over technologies are also harmonized.) Con-
dition (h5) can therefore be seen as a derived condition
from (h3) and (h4).

Term (D) can be mapped if

h6. annual average capacity factors are harmonized, i.e.,
φy,s in REMIND is set equal to the endogenous last-
iteration DIETER result for each generation type s:

φy,s =
∑

h
φy,h,s/8760,

where φy,h,s =
Gy,h,s

P y,s
is the hourly capacity factor in

DIETER. Without explicit manipulation of the shadow
prices µy,s and µy,h,s , we show that the following claim
is true: through the above capacity factor harmoniza-
tion, the terms containing endogenous shadow prices
will be automatically mapped. Showing this requires
careful mathematical argument, which we make in de-
tail in the case of dispatchables, and later we argue that
the case is similar for renewables.

For dispatchable generators the argument is as follows.
(For simplicity, we use the generic index s.)

We first rewrite REMIND term (D) by plugging in the
harmonization condition φy,s =

∑
hφy,h,s/8760:

µy,s
(
Gy,s − 8760 ·φy,sPy,s

)
=

∑
y
µy,s

(
Gy,s −

∑
h
φy,h,sPy,s

)
.

It should be mapped to the term∑
y,hµy,h,s

(
Gy,h,s −P y,s

)
in DIETER.

Splitting the two terms, these four terms need to be har-
monized for all y and s.

µy,sGy,s and
∑

h
µy,h,sGy,h,s (D13)

µy,s
∑

h
φy,h,sPy,s and

∑
h
µy,h,sP y,s (D14)

To show that the mapping Eqs. (D13)–(D14) are auto-
matically satisfied given (h6), we first consider two sim-
plified power sector toy problems, Q1 and Q2, with only
dispatchable technologies. Both problems have identi-
cal objective functions Z̃ =

∑
s

(
c̃s P̃s + õsG̃s

)
, and the

fixed and variable cost parameters c̃s and õs are identi-
cal. Both problems have identical hourly balance equa-
tion constraints but with two different kinds of maxi-
mum generation constraints: Q1 has an inequality con-
straint for each hour, and Q2 has an aggregated annual
equality constraint.

Q1: minimum Z, such that G̃h,s ≤ P̃s ⊥ µ̃h,s , d̃h =∑
sG̃h,s ⊥ λ̃h

Q2: minimum Z, such that
∑
hG̃h,s = 8760 · φ̃s P̃s ⊥

µ̃′s , d̃h =
∑
sG̃h,s ⊥ λ̃′h
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Then the Lagrangians are the following:

L̃1 =
∑
s

(
c̃s P̃s + õs

∑
h

G̃h,s

)
︸ ︷︷ ︸

objective function

+

∑
h

λ̃h

(
d̃h−

∑
s

G̃h,s

)
︸ ︷︷ ︸

hourly electricity balance equation constraint

+

∑
h,s

µ̃h,s

(
G̃h,s − P̃s

)
︸ ︷︷ ︸

maximum generation from capacity constraint

;

L̃2 =
∑
s

(
c̃s P̃s + õs

∑
h

G̃h,s

)
︸ ︷︷ ︸

objective function

+

∑
h

λ̃′h

(
d̃h−

∑
s

G̃h,s

)
︸ ︷︷ ︸

hourly electricity balance equation constraint

+

∑
s

µ̃′s

(∑
h

G̃h,s − 8760φ̃s P̃s

)
︸ ︷︷ ︸

maximum generation from capacity constraint

.

The relevant KKT conditions are as follows.

Stationarity condition for Q1:

∂L̃1

∂P̃s
= c̃s −

∑
h
µ̃h,s = 0. (D15)

Stationarity condition for Q2:

∂L̃2

∂P̃s
= c̃s − 8760φ̃sµ̃′s = 0. (D16)

Since the fixed cost c̃s is equal for the two models, from
Eqs. (D15) to (D16) we can derive the relation between
the two shadow prices:

8760 · φ̃sµ̃′s =
∑

h
µ̃h,s . (D17)

Note that, for the toy models, the identical balance equa-
tion constraints do not contain capacity P , which is why
the balance equation constraints do not influence the sta-
tionary conditions for P (Eqs. D15–D16).

We now show that Eq. (D14) is automatically mapped
given capacity factor harmonization (h6). We first write
the equality condition for the REMIND–DIETER case,
analogous to the toy model result (Eq. D17):

8760 ·φy,sµy,s =
∑

h
µy,h,s . (D18)

Note that we can apply the toy model case to the
REMIND–DIETER coupling case in a rather straight-
forward way because, in the case of REMIND–
DIETER, the objective function terms have already
been harmonized by (h1)–(h2) and the balance equation
constraint terms do not contain P , so they have no bear-
ing on the generation-capacity constraint term, just like
in the case of the toy models.

Plugging (h6) φy,s =
∑
hφy,h,s (i− 1)/8760 into

Eq. (D18), we have derived the equality for the
parameter mapping required in Eq. (D14), i.e.,

µy,s
∑

h
φy,h,s (i− 1)=

∑
h
µy,h,s .

To show Eq. (D13), we first use the hourly capacity fac-
tor from DIETER,

Gy,h,s = φy,h,sP y,s, (D19)

as well as the primal feasibility condition from RE-
MIND Gy,s = 8760 ·φy,sPy,s (Eq. F9), to rewrite both
sides of the mapping in Eq. (D13) in capacity terms. For
REMIND, plugging in Eq. (F9),

µy,sGy,s = µy,s · 8760 ·φy,sPy,s, (D20)

and for DIETER, plugging in Eq. (D19),∑
h
µy,h,sGy,h,s =

∑
h
µy,h,sφy,h,sP y,s . (D21)

Take the complementary slackness condition of DI-
ETER µh,s(Gh,s −P s)= 0 (Eq. F16) and insert
Eq. (D19) into the left-hand side. We obtain

µh,s(Gh,s −P s)= µh,s(φy,h,sP y,s −P s)= 0.

Rearranging, we get

µy,h,sφy,h,sP s = µy,h,sP s (D22)

for each hour h.

Plug Eq. (D22) and then Eq. (D18) into the right-hand
side of Eq. (D21) to obtain∑

h
µy,h,sGy,h,s =

∑
h
µy,h,sP y,s

= 8760 ·φy,sµy,sP y,s . (D23)

Compare Eq. (D20) with Eq. (D23). They now have
identical parameters in front of the capacity variables
Py,s and P y,s , as desired. We concluded the proof by
exogenously setting the annual capacity factor of RE-
MIND to that of the last-iteration DIETER. We auto-
matically harmonize the generation capacity constraint
term of the Lagrangian in the case of dispatchable gen-
erators.
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h7. For VREs, annual curtailment rates are harmo-
nized, Gy,vreαy,vre =

∑
h0y,h,vre , i.e., by exogenously

setting the curtailment rate in REMIND αy,vre =∑
h0y,h,vre (i− 1) /Gy,vre and taking the endogenously

determined curtailed power 0y,h,vre from the last-
iteration DIETER. This in general also harmonizes
terms other than term (D), as it harmonizes the defini-
tion for the generation variable in DIETER that is post-
curtailment and the REMIND definition for a generation
variable that is pre-curtailment.

For VREs the derivation is conceptually similar to the
above case for dispatchables in (h6), since we can define
a real capacity factor (post-curtailment) similar to the
capacity factor for the dispatchable generators above:

φy,h,vre =Gh,vre/P vre.

Due to the limitations of this paper, we will not present
the derivation here. A detailed derivation is available
upon request.
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Appendix E: Coupling iteration schematics

Coupled region: Germany
Coupled REMIND time horizon: 2020–2150 (years 2010–

2015 are not coupled since they are historical years and
mostly have hard-fixed quantities).

Figure E1. A graphic description of the model iterative coupling. (a) Graphic illustration of the bidirectional coupling in the temporal
dimension. The temporal slices of REMIND which are mapped to multiple parallel year-long DIETER problems are illustrated here. The
convergence conditions are iteratively mapped at the interface. (b) Graphic illustration of the bidirectional coupling in the iteration dimension.
Every ith iteration of REMIND takes the (i−1)th iteration of REMIND as a starting point for optimization and the endogenous output of the
(i−1)th DIETER as exogenous input parameters. When the convergence conditions are met, i.e., REMIND satisfies its internal convergence
condition, and the coupled models differ in their generation share of each technology by at most a certain percentage (e.g., 5 % for the
baseline run without storage), the coupled run halts.

Under a simple configuration (no storage, no flexible de-
mand), every REMIND run takes around 3 min and a DI-
ETER run takes a few seconds to solve. Under more detailed
configurations (with storage and flexible demand) and cli-
mate policies, every REMIND run takes around 4 min and
a DIETER run takes a few minutes to solve. The entire
REMIND–DIETER coupled run for a single region, Ger-
many, under a simple configuration is around 3–4 h. It is
around 6–10 h for the more detailed configurations under cli-
mate policies.
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Appendix F: Derivation of the equilibrium conditions
for the uncoupled REMIND and DIETER

In this Appendix, we discuss the equilibrium conditions of
the uncoupled models, resulting in a rigorous formulation of
the so-called “zero-profit rules” (ZPRs). We first construct
the Lagrangians and compute KKT conditions and then de-
rive the ZPRs for the standalone versions of the REMIND-
reduced power sector model and the DIETER model.

Using the objective functions and constraints in Sect. 3.1,
we can construct Lagrangians for the two standalone models.
Using the KKT conditions derived from the Lagrangians, we
can show that, if the historical and resource constraints are
non-binding, i.e., shadow prices ω, σ and γ are zero, then
each generator would have recovered its fixed cost, variable
cost and curtailment cost through its total market revenue;
i.e., each producer of electricity gets zero profit given that
the profits are defined as the difference between revenue and
cost. When the capacity constraints exist and are binding, we
arrive at a modified version of the original ZPR, which de-
scribes the relation between cost, revenue and the capacity
shadow prices.

Here we first construct the Lagrangians and derive the
KKT conditions from them (Sect. F1) for both models. Then,
both models’ ZPRs are derived, two for each model, i.e., the
technology-specific ZPR and the system ZPR (Sect. F2).

F1 Lagrangians and KKT conditions

The Lagrangians of the uncoupled model have been con-
structed in Appendix D (Eqs. D1–D2). From the KKT condi-
tions for minimization, we can ascertain the following first-
order conditions at stationarity for each model.

REMIND

1. Stationary conditions:

∂L
∂Py,s

= 0⇒ cy,s +ωy,s − 8760 ·µy,sφy,s

− σy,s + γy,s = 0, (F1)
∂L
∂Gy,s

= 0⇒ oy,s − λy
(
1−αy,s

)
− ξy,s +µy,s = 0. (F2)

2. Complementary slackness:

ωy,s
(
Py,s −ψs

)
= 0, (F3)

ξy,sGy,s = 0, (F4)
µy,s(Gy,s − 8760 ·φy,sPy,s)= 0, (F5)
σy,s

(
py,s −Py,s

)
= 0, (y ≤ 2020) , (F6)

γy,s
(
Py,s −Py−1y,s − qy,s

)
= 0, (y = 2025) . (F7)

3. Primal feasibility:

dy −
∑

s
Gy,s

(
1−αy,s

)
= 0, (F8)

Gy,s − 8760 ·φy,sPy,s = 0. (F9)

4. Dual feasibility:

ξy,s ≥ 0,ωy,s ≥ 0,σy,s ≥ 0,γy,s ≥ 0. (F10)

DIETER

1. Stationary conditions:

∂L
∂P s
= 0⇒ cs +ωs −

∑
h
φh,sµh,s = 0,

φh,s = 1 for dispatchables,
0< φh,s < 1 for renewables, (F11)

∂L
∂Gh,s

= 0 ⇒ os − λh− ξh,s +µh,s = 0, (F12)

∂L
∂0h,vre

= 0⇒ ovre+µh,vre = 0. (F13)

2. Complementary slackness:

ωs
(
P s −ψ s

)
= 0, (F14)

ξh,sGh,s = 0, (F15)

µh,dis(Gh,dis−P dis)= 0. (F16)

3. Primal feasibility:

dh =
∑

s
Gh,s, (F17)

Gh,vre+0h,vre = φh,vreP vre. (F18)

4. Dual feasibility:

ωs ≥ 0,ξh,s ≥ 0,µh,dis ≥ 0. (F19)

F2 Derivation of the zero-profit rules

F2.1 REMIND

The derivation of ZPRs is very similar to the one in Brown
and Reichenberg (2021). Starting with the total costs for
technology s for all years and applying various KKT con-
ditions (after “|”),∑

y
(cy,sPy,s + oy,sGy,s)

=

∑
y

{(
−ωy,s + 8760 ·µy,sφy,s + σy,s − γy,s

)
Py,s

+
[
λy
(
1−αy,s

)
+ ξy,s −µy,s

]
Gy,s

}
| (F1), (F2)

=

∑
y

{(
−ωy,s + 8760 ·µy,sφy,s + σy,s − γy,s

)
Py,s

+
[
λy
(
1−αy,s

)
−µy,s

]
Gy,s

}
| (F4)

=

∑
y

{(
−ωy,s + σy,s − γy,s

)
Py,s + λyGy,s

(
1−αy,s

)}
. | (F5)
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Rearranging, we arrive at the ZPR of the multi-year uncou-
pled REMIND for the technology cost–revenue balance.

∑
y

(
cy,sPy,s + oy,sGy,s

)
︸ ︷︷ ︸

generation costs

=−

∑
y

(
ωy,s − σy,s + γy,s

)
Py,s︸ ︷︷ ︸

capacity shadow revenues

+

∑
y

λyGy,s(1−αy,s)︸ ︷︷ ︸
generation revenues

(F20)

Normally when there are no capacity shadow prices or
when the capacity constraints are not binding, the cost ex-
actly equals revenue. However, when capacity shadow prices
are non-zero, i.e., the constraints (c2) and (c5–c6) are bind-
ing, the capacity shadow prices act as a distortion of the
equality relation between costs and revenues. As an exam-
ple, the shadow price ωy,s from limited generation resources
(e.g., hydroelectric power in Germany) would be positive,
ωy,s > 0, when the constraint is binding and would appear
as a “positive cost” or a “negative revenue” in the modeled
power market. We can therefore put it either on the left-hand
(cost) or right-hand (revenue) side of the equation. Here we
group it together with revenues.

One observes that, from the right-hand side of Eq. (F20),
there is no differentiation between the annual market values
of variable and dispatchable generations such as gas and solar
– they are both equal to the annual electricity price λy .

From Eq. (F20), we can derive a ZPR between the lev-
elized cost of electricity (LCOE), capacity shadow price
and market value (MV) for each generator type. Taking
Eq. (F20), we separate the pre-curtailment LCOE from the
LCOE due to curtailment and then divide it by the total post-
curtailment generation

∑
yGy,s

(
1−αy,s

)
for the generator

type s to obtain the technology-specific ZPR:

∑
y

(
cy,sPy,s + oy,sGy,s

)
∑
y

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEs

+

∑
y

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment LCOEs

=−

∑
y

(
ωy,s − σy,s + γy,s

)
Py,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow prices

+

∑
y

λyGy,s(1−αy,s)∑
y

Gy,s(1−αy,s)︸ ︷︷ ︸
market values

. (F21)

The pre-curtailment LCOE is the cost of one unit of gener-
ated electricity, regardless of whether it is curtailed or being
used to meet demand, whereas the curtailment LCOE is the
cost of one unit of curtailed electricity. Together they add up
to the post-curtailment LCOE, i.e., the cost of one unit of
usable electricity.

To obtain the ZPR for the whole power system in RE-
MIND, we first sum Eq. (F20) over all generator types s and
obtain the ZPR for system cost and revenue. Then, dividing
by the total post-curtailment system generation and splitting
the LCOE into pre-curtailment and curtailment components,
we get
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∑
y,s

(
cy,sPy,s + oy,sGy,s

)
∑
y,s

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEsystem

+

∑
y,s

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment LCOEsystem

=−

∑
y,s

(
ωy,s − σy,s + γy,s

)
Py,s∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow pricesystem

+

∑
y,s

λyGy,s(1−αy,s)∑
y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
electricity pricesystem

. (F22)

In other words, the LCOE of the system for usable (pre-
curtailment) power, which is equal to the sum of the system
LCOE for the total power generated and the curtailment cost,
can be recovered by the average electricity price of the sys-
tem minus the system-wide capacity constraint shadow price
per energy unit.

The ZPRs of REMIND hold for the aggregate over multi-
ple years.

From Eqs. (F21) and (F22), we learn that when a market
equilibrium can be found, i.e., when the optimization prob-
lem can be successfully solved, there is an equality relation
between the generation cost and market value for each gen-
erator type and similarly between the generation cost and
price of electricity for the entire system. Capacity shadow
prices due to various extra capacity constraints imposed on
the models distort the equality relation between costs and
prices by a linear term, making the prices either higher or
lower than the costs at the market equilibrium.

F2.2 DIETER

Similarly to the uncoupled REMIND, from KKT conditions,
at stationarity, we can obtain the cost–revenue ZPR for a sin-
gle technology s for the standalone DIETER. We take the to-
tal costs for technology s for all years and, applying various
KKT conditions (after “|”),

csP s +
∑

h

[
os
(
Gh,s +0h,vre

)]
=

(
−ωs +

∑
h
φh,sµh,s

)
P s

+

∑
h

(
λh−µh,s + ξh,s

)(
Gh,s +0h,vre

)
| (F11), (F12)

=−ωs P s +
∑

h
φh,vreµh,vreP vre

+

∑
h

(
λh−µh,vre+ ξh,vre

)(
Gh,vre+0h,vre

)
+

∑
h
µh,disP dis+

∑
h

(
λh−µh,dis

)
Gh,dis,

| split
∑

h
φh,sµh,s into vre and dis and apply Eq. (F15)

for dispatchables, i.e., ξh,disGh,dis = 0

=−ωs P s +
∑

h
φh,vreµh,vreP vre

+

∑
h

(
λh−µh,vre+ ξh,vre

)(
Gh,vre+0h,vre

)
+

∑
h
λhGh,dis | (F16)

=−ωs P s +
∑

h
λhGh,vre+

∑
h

(
λh+ ξh,vre

)
0h,vre

+

∑
h
λhGh,dis

| (F18), and apply (F15) for VRE, i.e., ξh,vreGh,vre = 0

=−ωs P s +
∑

h
λhGh,vre+

∑
h
λhGh,dis.

| (F12) and (F13)⇒ λh+ ξh,vre = 0

Rearranging, we arrive at the ZPR of the single-year un-
coupled DIETER for a technology-specific cost–revenue bal-
ance:

csP s + os
∑
h

(Gh,s +0h,vre)︸ ︷︷ ︸
annual generation costs

=− ωsP s︸ ︷︷ ︸
annual capacity shadow revenues

+

∑
h

λhGh,s︸ ︷︷ ︸
annual generation revenues

. (F23)

Dividing Eq. (F23) by the annually aggregated generation of
technology s, we obtain the technology-specific ZPR for DI-
ETER:
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csP s + os
∑
h

(Gh,s +0h,vre)∑
h

Gh,s︸ ︷︷ ︸
LCOEs

=−
ωsP s∑
h

Gh,s︸ ︷︷ ︸
annual capacity shadow prices

+

∑
h

λhGh,s∑
h

Gh,s︸ ︷︷ ︸
market values

. (F24)

One observes that, from the term of market values , compared
to the REMIND case (right-hand side of Eq. F21), DIETER
has differentiated annual market values of gas and solar gen-
erators.

Summing Eq. (F24) over s, dividing both sides by the to-
tal annual generation

∑
h,sGh,s and using the identity dh =∑

sGh,s for simplification, we obtain the ZPR for the whole
power system in DIETER:∑
s

[csP s + os
∑
h(Gh,s +0h,vre)]∑

h,s

Gh,s︸ ︷︷ ︸
LCOEsystem

=−

∑
s

ωsPs∑
h,s

Gh,s︸ ︷︷ ︸
annual capacity shadow pricesystem

+

∑
hλhdh∑
h

dh︸ ︷︷ ︸
annual average electricity pricesystem

. (F25)

Similarly to the case of REMIND, Eqs. (F24)–(F25) show
us the equality relations between the cost and value (or price)
for each generator type and for the system hold (also for DI-
ETER at its market equilibrium). Compared to REMIND,
there are no brown-field or near-term capacity shadow price
contributions in DIETER in the standalone versions. The DI-
ETER ZPRs hold for 1 year instead of the aggregate of mul-
tiple years like in REMIND. For simplicity, even though it
is possible to write the LCOE in pre-curtailment and curtail-
ment terms, for DIETER it is relatively cumbersome to do,
and we do not do it here.

In summary, at the REMIND and DIETER power market
equilibriums, each generator exactly recovers its cost of one

unit of generation through the market value and obtains zero
profit in a completely competitive market over its modeling
time. In the aggregate, the entire power sector obtains its cost
of one unit of generation through the price of electricity that
the consumer pays. Both types of relations can be distorted
by the existence of capacity shadow prices.

Appendix G: Derivation of the equilibrium conditions
for the coupled models

Here, in this Appendix, we gradually build up the derivation
for the ZPRs of the coupled REMIND and DIETER, which
will be used later to validate numerical results. The derivation
consists of three steps.

1. ZPRs for the uncoupled models REMIND and DIETER

2. ZPRs for the coupled models REMIND and DIETER
(simplified version only considering convergence con-
ditions h1–h7)

3. ZPRs for the coupled models REMIND and DIETER
(full version also considering c7 and c8)

Step (1) is entirely derived in Appendix F.
For step (2), based on the uncoupled ZPRs, we recognize

that, from convergence conditions (h1)–(h7), the only condi-
tion which impacts the form of the ZPR is (h3) because the
markup terms modify the objective function of the (simpli-
fied) coupled version of REMIND (Eq. 6). Following a sim-
ilar procedure to Appendix F, we can derive the technology-
specific ZPR for the coupled REMIND (simplified version)
as follows:∑
y

(
cy,sPy,s + oy,sGy,s

)
∑
y

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEs

+

∑
y

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment costs

=−

∑
y

(
ωy,s − σy,s + γy,s

)
Py,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow prices

+

∑
y

(λy + ηy,s)Gy,s(1−αy,s)∑
y

Gy,s(1−αy,s)︸ ︷︷ ︸
market values

. (G1)

Compared with the ZPR of the uncoupled version Eq. (F24),
the only difference is that we replace the market value in the
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uncoupled REMIND λy with the DIETER markup-corrected
market value λy + ηy,s . DIETER’s ZPR is unchanged at this
step.

Step (3) involves two extra capacity constraints, one in
each model, the first of which, (c7), is discussed in detail
in Appendix H. The implementation of (c7) further modifies
Eq. (G1) and results in the ZPRs of the coupled REMIND.
The other constraint, (c8), will be the focus of discussion
here. It only modifies the ZPRs for the coupled DIETER and
not for the coupled REMIND.

Constraint (c8) is a brown-field capacity constraint im-
plemented in DIETER to address the fact that DIETER is
a green-field model that is otherwise ignorant of standing ca-
pacities in the real world. There are many ways in which
we can implement this standing capacity constraint in DI-
ETER. The most straightforward way is to implement the
standing capacity at the beginning of each REMIND period,
which REMIND sees before it invests additional capacities,
as a lower bound on endogenous capacities in DIETER. This
helps put DIETER and REMIND on an equal footing be-
fore the 5- or 10-year investment period starts, allowing us to
compare their investment intentions.

c8. Standing capacity constraint in DIETER: i.e., DIETER
capacities at time y need to be larger than or equal to
the REMIND standing capacities at the beginning of the
time period.

P s ≥ Py−1y/2,s/(1−ER) ⊥ ζ s,

where the time step 1y is divided by 2 because the rep-
resentative year in REMIND is in the middle of the time
step. ER is the endogenous early retirement rate in RE-
MIND.

The reason we implement the standing capacity in this way
is in part because, as a proof of concept, we want to give DI-
ETER endogenous freedom to invest in all model years, so
we use only the pre-investment capacities as “soft” corridors
to bound the DIETER capacities from below. If we were to
transfer precisely the brown-field and near-term constraints
from REMIND to DIETER, this would require a complete
list of constraints for each technology and an identical im-
plementation of all of them in DIETER. This may raise the
precision of convergence in some years for some technolo-
gies, but in practice it can be more complicated to implement
than a generic lower bound for all technologies.

To obtain the ZPRs of the coupled DIETER, we simply
modify the capacity shadow price term of the uncoupled
DIETER ZPRs (Eqs. F24–F25) by the additional capacity
shadow price ζ s from (c8):

capacity shadow price′s =

(
ωs + ζ s

)
P s∑

hGh,s
, (G2)

capacity shadow price′system =

∑
s

(
ωs + ζ s

)
P s∑

h,sGh,s
. (G3)

Appendix H: Additional methods for numerical stability
in coupled runs

Here, we introduce the two methods we employed to im-
prove the numerical stability of the coupled runs: (1) the dis-
patchable capacity constraint by peak demand to avoid high
markups being exchanged (Sect. H1) and (2) endogenous
prefactors for all quantities from the last-iteration DIETER
to the current-iteration REMIND (Sect. H2).

H1 Dispatchable capacity constraints by peak demand

H1.1 Description of the capacity constraint and price
manipulation in DIETER postprocessing

The scarcity hour price can occur in a PSM run, which is the
highest hourly price in a year, and it is usually equal to the
annuitized fixed cost of OCGTs (capital investment cost and
fixed O&M costs) (Hirth and Ueckerdt, 2013). In our simula-
tions, the scarcity prices are usually above USD 50 per kilo-
watt hour. If we include the scarcity price in the markups,
OCGTs will receive an annual markup usually more than 5
times higher than the annual average electricity price. The
high markup results in OCGT plants receiving too high an
incentive in the next-iteration REMIND, and the model over-
shoots (overinvests) in capacities. Over iterations, this causes
oscillations in the quantity and prices in the coupled model.
For better numerical stability, instead of passing on the full
markups from DIETER, we only pass on the portion of the
annual markups unrelated to scarcity hour prices and replace
the exchange of the part of the markup due to scarcity hours
from DIETER to REMIND by implementing an additional
capacity constraint in REMIND for coupled runs. The two
actions can later be shown to be mathematically equivalent.
Generators other than OCGTs which produce at the scarcity
hours also get paid in the hour at this high price. However,
because they also produce at other hours with lower prices,
their average market values are only moderately impacted by
the scarcity hour price and do not in general lead to instabil-
ity issues.

Below, we first introduce the aforementioned capacity
constraint implemented on the side of REMIND and then dis-
cuss the corresponding manipulation of the markups in DI-
ETER. Lastly, we show their mathematical equivalence and
state the modified ZPR of the coupled REMIND due to these
actions.

The extra capacity constraint states that the sum of all dis-
patchable capacities needs to be at least as large as the peak
residual demand:

c7. ∑
dis
Py,dis > dy,residual ⊥ υy,dis,

where dy,residual is the peak residual demand in RE-
MIND and is semi-endogenous. dy,residual is a function
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of the peak hourly residual demand in the last iteration
of DIETER dresidual (y, i− 1). The peak hourly residual
demand in DIETER is in turn defined as the maximum
hourly amount of inflexible demand not met by wind,
solar or hydro generations and hence must be met by
dispatchable generations (under no storage conditions):

dresidual =max
h

(
dh−Gh,Solar−Gh,Wind−Gh,Hydro

)
. (H1)

υy,dis is the shadow price of the capacity constraint for
dispatchable technology dis.

For the exact implementation of (c7) in the coupled run,
see Sects. 3.3.2, point 2. Under storage implementa-
tion, in addition to the variable renewable contribution,
the hourly storage discharge is also subtracted from the
residual demand.

At the same time as implementing this capacity constraint,
we remove the surplus scarcity prices in postprocessing of
DIETER before passing it on to REMIND. In DIETER, we
define the scarcity price as the maximum hourly price in a
year,

λy,hscar =max
h
(λy,h), (H2)

and the surplus scarcity hour price is the difference between
the scarcity price and the second-highest price:

λy,surplus = λy,hscar −max(λy,h|h6=hscar)

=max
h
(λy,h)−max(λy,h|h6=hscar), (H3)

where hscar is the scarcity hour when the scarcity price oc-
curs, corresponding to the peak residual demand hour.

Using this, we manipulate the market value and the annual
average electricity price in DIETER ex post, excluding the
surplus scarcity hour price:

MV′s =∑
h|h6=hscar

Gh,sλh+
∑
h|hscar

Gh,s ·max
(
λh|h6=hscar

)∑8760
h=1Gh,s

, (H4)

J
′
=

∑
h|h 6=hscar

dhλh+
∑
h|hscar

dh ·max
(
λh|h6=hscar

)∑8760
h=1 dh

, (H5)

where MV′s is the annual average market value without the
surplus scarcity hour price and J

′
is the annual average elec-

tricity price without the surplus scarcity hour price. Thus,
the corresponding modified markup term without the surplus
scarcity hour price is

η′s =MV′s − J
′
. (H6)

Note that, since the above manipulation is done in a postpro-
cessing step, the LCOE in DIETER is still fully covered by

MV, as the KKT conditions and ZPRs still hold by default in
an optimized DIETER model.

With the implementation of (c7), the coupled ZPR
(Eq. G1) is then further modified to include the new shadow
price υy,s and the modified markup η′y,s (without the surplus
scarcity price). (From now on we write υy,dis simply as υy,s .)
Then, the technology-specific ZPR of the coupled REMIND
is∑
y

(
cy,sPy,s + oy,sGy,s

)
∑
y

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEs

+

∑
y

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment LCOEs

=−

∑
y

(
ωy,s − σy,s + γy,s + νy,s

)
Py,s∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow price′s

+

∑
y

(λy + η
′
y,s)Gy,s(1−αy,s)∑

y

Gy,s(1−αy,s)︸ ︷︷ ︸
market value′s

. (H7)

The system ZPR of the coupled REMIND is∑
y,s

(
cy,sPy,s + oy,sGy,s

)
∑
y,s

Gy,s︸ ︷︷ ︸
pre-curtailment LCOEsystem

+

∑
y,s

(
cy,sPy,s + oy,sGy,s

)
αy,s∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
curtailment costsystem

=−

∑
y,s

(
ωy,s − σy,s + γy,s + νy,s

)
Py,s∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
capacity shadow price′system

+

∑
y,s

(λy + η
′
y,s)Gy,s(1−αy,s)∑

y,s

Gy,s(1−αy,s)︸ ︷︷ ︸
electricity price′system

. (H8)

These are the ZPRs of the coupled REMIND for the full
version.
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H1.2 Equivalence between the surplus scarcity price in
DIETER and the capacity shadow price due to
the peak residual demand in REMIND

Because of the intuitive relation between the scarcity price
and the peak residual demand, i.e., that the scarcity price oc-
curs in the hour with peak hourly residual demand due to the
pricing power of the peaker gas turbines in the hour where
VREs are most scarce, we can make a quantitative equiva-
lence between the scarcity price contribution to the markup
and the capacity constraint shadow price υy . This means that
the revenue the plant receives in the scarcity hour in capac-
ity terms (i.e., capacity credit) can be transformed directly to
a revenue in energy terms (i.e., a part of the annual market
value). At convergence, for any given year y, the negative
shadow price, −υy,dis, when translated into annual genera-
tion terms via a capacity factor φy,s of dispatchable technol-
ogy s, should be equal to the scarcity hour surplus revenue
divided by annual generation by s in DIETER:

−υy,dis

φy,dis · 8760
=
λy,surplusGhscar,dis∑

hGy,h,dis
. (H9)

In practice, this equivalence is confirmed by numerical re-
sults (e.g., the Fig. 8 subplot for OCGTs).

Using this equivalence, we can show as follows that, at
convergence, λy should be equal to the DIETER power price
without the surplus scarcity price J

′
(Eq. H5), and λy+η′y,s

should be equal to the DIETER market value without the
scarcity price MV′ (Eq. H4).

At convergence, the annual generations have identical so-
lutions in the two models, i.e.,

∑
hGy,h,s =Gy,s

(
1−αy,s

)
.

We plug this and the REMIND capacity factor φy,s =
Gy,s(1−αy,s)
Py,s · 8760 into Eq. (H9) to obtain

υyPy,s = λy,surplusGy,hscar,s . (H10)

Take Eq. (H7) and only consider REMIND annual rev-
enue by multiplying generation

∑
yGy,s

(
1−αy,s

)
. Then, on

the right-hand side, take both the revenue and the capac-
ity shadow revenue contribution from υy,s for a single year,
which is equal to the total single-year REMIND revenue:

2y,s =− νy,sPy,s︸ ︷︷ ︸
capacity shadow revenue from c(7)s

+ (λy + η
′
y,s)Gy,s(1−αy,s)︸ ︷︷ ︸

generation revenue′s

.

Plug in Eqs. (H10) and (H6):

2y,s = λy,surplusGy,hscar,s︸ ︷︷ ︸
surplus scarcity revenue in scarcity hours

+ (MV′y,s − J
′

y + λy)Gy,s(1−αy,s)︸ ︷︷ ︸
generation revenue′s

.

Plugging in Eq. (H4),

2y,s = λy,surplusGy,hscar,s +

∑
h6=hscar

Gy,h,sλy,h

+Gy,hscar,s · max
(
λy,h|h 6=hscar

)
− J
′

yGy,s
(
1−αy,s

)
+ λyGy,s

(
1−αy,s

)
.

Lastly, plug in the definition for λy,surplus (Eq. H3):

2y,s =
∑
h

λy,hGy,h,s − J
′

yGy,s(1−αy,s)

+ λyGy,s(1−αy,s). (H11)

Since the single-year revenue 2y,s in REMIND should be
aligned with DIETER due to harmonization condition (h3)
and the DIETER revenue is 2y,s =

∑
hλy,hGy,h,s , the last

two terms in Eq. (H11) should sum to 0. Therefore, the RE-
MIND electricity price λy should be equal to J

′

y .

H2 Stabilization techniques using prefactors

In this Appendix, we describe the detailed implementations
of prefactors for information exchanged from DIETER to
REMIND.

1. Markup prefactor

In order to facilitate convergence in REMIND, we im-
plement an endogenous prefactor f ηy,s for MV in the
REMIND markup equation Eq. (5):

ηy,s (i)= f
η
y,s (i) ·MV′y,s (i− 1)− J

′

y (i− 1) . (H12)

The endogenous prefactor f ηy,s is dependent on the dif-
ference between the in-iteration endogenous generation
share and the last-iteration DIETER generation share:

f ηy,s (i)= 1− by,s (i− 1)1Sy,s, (H13)

where by,s is a positive parameter equal to the ratio be-
tween market values and the average price, depending
on their relationship in the last-iteration DIETER,

by,s =
MV′y,s
J
′

y

if MV′y,s > J
′

y,

by,s =
J
′

y

MV′y,s
if MV′y,s < J

′

y,

and where the generation share difference across the
models and consecutive iteration 1Sy,s is

1Sy,s =
Gy,s (i)

(
1−αy,s (i)

)∑
s[Gy,s(i)(1−αy,s(i))]

−

∑
hGy,s (i− 1)∑
h,sGy,s (i− 1)

.
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The values of by,s are heuristically determined (see
Sect. 6.2).

When the in-iteration REMIND solar generation share
increases due to the price signal from the last-iteration
DIETER market value, such that the REMIND share is
larger than in the last DIETER iteration, the formula Eq.
(H13) results in a prefactor smaller than 1, decreasing
the in-iteration markup ηy,s (i).

2. Peak demand prefactor

The peak demand in REMIND dresidual,y depends on
the last-iteration DIETER peak hourly residual demand
dresidual (y, i− 1). Implementing it in constraint (c7),∑

dis
Py,dis < dresidual,y · f

dresidual
y (i) ,

for iteration i, we use f dresidual
y (i) as a prefactor for sta-

bilization:

f dresidual
y (i)= 1− by,peak ·1Sy,wind.

by,peak is a heuristic constant dependent on y, and
1Sy,wind is the wind generation share. We use the wind
generation share in the current iteration of REMIND for
stabilization because, in the peak residual demand hour,
there usually is some wind production for the histori-
cal year we chose (but no solar). In general, by,peak is
0.5 for earlier years and increases to 1 for later years
under a baseline scenario. For climate scenarios, by,peak
is around 1.5 for less stringent scenarios, and for more
stringent scenarios, it is 0.5 for earlier years and in-
creases to 3 for later years.

3. Capacity factor prefactor

We set the REMIND capacity factor φy,dis to be equal
to the DIETER annual average capacity factor from the
last iteration multiplied by a prefactor:

φy,dis (i)= φdis (y, i− 1) · f φdis
y,s (i) ,

where the DIETER annual average capacity factor is

φdis =
∑
hGh,dis

P dis· 8760
for each year y. In order to facilitate

convergence, a similar prefactor f φdis
y,s to Eq. (H13) is

implemented.

f
φdis
y,s (i)= 1− 0.51Sy,s if φdis (y, i− 1) < 0.5 (i.e., the

plant is a “peaker” or “mid-load” type in the last itera-
tion).

f
φdis
y,s (i)= 1+ 0.51Sy,s if φdis (y, i− 1)≥ 0.5 (i.e., the

plant is a “base-load” type in the last iteration), where
0.5 is a heuristic factor.

The sign in the prefactor formula is determined based
on the observation that, under a system with variable
renewable generations, for generator plants that have
relatively high running costs and low investment costs,

i.e., most economically operated as “peaker” plants or
as “mid-load” plants of a lower capacity factor, when
their generation share incrementally increases, their ca-
pacity factor decreases. Conversely, for generators with
relatively low running costs and high investment costs,
i.e., most economically operated as “base-load” plants,
when their generation share incrementally increases,
their capacity factor increases.

4. Curtailment prefactor

The curtailment ratio in REMIND αy,vre is equal to the
last-iteration DIETER curtailment ratio multiplied by
the prefactor f αy,vre:

αy,vre (i)=

∑
hγ h,vre (y, i− 1)∑
h,sGh,vre (y, i− 1)

· f αy,vre (i) ,

where the prefactor is f αy,vre (i)= 1+1Sy,vre.

5. Capture price prefactor

Similar to the case of markup from the demand side,
the markup for any demand-side technology given to
REMIND is

ηy,sd (i)= f
η
y,sd

(i) ·CPy,sd (i− 1)− J y (i− 1) ,

where J y is the annual average electricity price of all
demand types sd for period y,

J =

∑
h

(∑
sd
dh,sd

)
· λh∑

h,sd
dh,sd

,

and f ηy,sd (i) is an endogenous stabilization prefactor for
the flexible-demand markup based on shares of demand
by sd in the total demand for each year.

Appendix I: Derivation for the equilibrium condition
for REMIND in the case of an additional adjustment cost

Adjustment cost, an additional linear term in the objective
function, acts as an inertia against fast or slow capacity ad-
ditions or retirement. The implementation of positive adjust-
ment costs mimics the challenges of scaling up the supply
chains and training new workers to do installation and con-
struction. Adjustment costs are applied to all model time pe-
riods, so it is by nature intertemporal. The objective function
for the power sector including the adjustment cost 4y,s is

Z =
∑

y,s
(cy,sPy,s + oy,sGy,s +4y,s) ,

where 4y,s is a quadratic function of the difference between
capacity additions of subsequent time periods y−1y and y:

4y,s = cy,sks

(
1Py,s −1Py−1y,s

1y2

)2

/

(
1Py−1y,s

1y
+βy,s

)
,
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where 1Py,s is as before the capacity addition during time
period y of technology s, βy,s is an offset parameter to offset
additions in initial time periods, ks is a regional technological
coefficient, and cy,s is the capital expenditure cost per capac-
ity unit as before. Because the adjustment cost is a quadratic
function of the endogenous variable Py,s , it turns the power
sector cost minimization in REMIND into a nonlinear prob-
lem.

Similar to the case without adjustment costs in Sect. 3.2.3,
the first stationary condition becomes

∂L
∂Py,s

= 0,⇒ cy,s +ωy,s −µy,sφy,s − σy,s + γy,s

+ 2cy,sks
1Py,s −1Py−1y,s(
1Py−1y,s +βy,s

)
1y2
= 0,

simplifying

cy,s =−ωy,s +µy,sφy,s + σy,s − γy,s − ay,s cy,s,

where ay,s = 2ks
1Py,s−1Py−1y,s

(1Py−1y,s+βy,s)1y2 is the endogenous ad-
justment factor of investment and is a function of capacity.

The new ZPR including the adjustment cost in terms of
cost and revenue for technology s can be derived as∑

y

[(
cy,s + ay,scy,s

)
Py,s + oy,sGy,s

+λyαy,sGy,s +
(
ωy,s − σy,s + γy,s

)
Py,s

]
=

∑
y

(
λyGy,s

)
.

The adjustment cost ay,s cy,s can act as a disincentive or
an incentive for capacity additions. If the capacity addi-
tion in the current period is higher than in the last period
1Py,s >1Py−1y,s , i.e., a ramp-up case of capacity addition,
the adjustment cost is positive and acts as a disincentive, and
so the ramp-up speed is slower. When added capacities de-
crease with time, i.e., a ramp-down case of capacity addition,
the adjustment cost is negative and acts as an incentive; as a
result, the ramp-down speed is slower.

In the coupled run we see only a moderate adjustment cost
which drops down quickly as a function of time (see, e.g.,
Fig. 6).

https://doi.org/10.5194/gmd-16-4977-2023 Geosci. Model Dev., 16, 4977–5033, 2023



5026 C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND

Appendix J: Comparing the coupled and uncoupled
runs

Figure J1. Under the 2 ◦C global scenario (no German net-zero goal), we compare (a) the capacity mix and (b) the generation mix of
Germany for the DIETER-coupled version of REMIND with endogenous storage (dashed bar) and for the uncoupled version of REMIND
with parameterized storage (solid bar). In panel (a), triangle dots indicate the peak residual demand of the year as determined in DIETER.
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Appendix K: Complete list of mathematical symbols

The units used in the two models are usually different.
Here we uniformly use megawatt hour for energy units and
megawatt for capacity units. In the main text, overline . is
used to denote DIETER parameters and variables. An apos-
trophe is used to indicate a modified version of the variable.
An asterisk is used to indicate the values of variables at the
optimum of objective functions.

Table K1. Complete list of mathematical symbols. For simplicity, in general, we only list the symbols, not their indices or in which model
they are used.

Symbol Description Unit Symbol Description Unit

y,1y REMIND time period, REMIND time
step

– h Hour –

s Supply-side technology type – dis, vre Dispatchable generators, variable re-
newable

–

sd Demand-side technology type – i Iteration –

reg Region – L Lagrangian USD

Z Objective function USD G Generation MWh

c Fixed cost USD per MW ψ Total annual renewable potential MWh

o Variable cost USD per MWh φ Capacity factor 1

α Ratio between annual curtailment and
pre-curtailment generation in REMIND
model

1 d Exogenous demand MWh

P Capacity MW p Standing capacity in REMIND MW

0 Curtailment MWh η Markup USD per MWh

λ Shadow price of power supply–demand
balance equation or power price

USD per MWh MV Market value USD per MWh

q Near-term ramp-up constraint for ca-
pacities in REMIND

MW 2 Revenue USD

M Difference in total revenues in the two
models

USD ξ Shadow price due to positive generation USD per MWh

ω Shadow price due to limited renewable
potential

USD per MW γ Shadow price due to near-term ramp-up
constraint

USD per MW

µ Shadow price due to limit on generation
from capacity

USD per MWh ζ DIETER shadow price due to standing
capacity constraint from REMIND

USD per MW

σ Shadow price due to standing capacities
in REMIND

USD per MW CP Capture price of demand-side technolo-
gies

USD per MWh

υ Shadow price due to peak residual de-
mand constraint

USD per MWh 1S Difference in generation shares be-
tween models

1

f Prefactor for numeric stabilization 1 W Economic welfare –

b,bpeak Multiplicative prefactor parameter 1 % Pure rate of time preference 1

4 Adjustment cost USD β Offset parameters in adjustment cost USD

χ Consumption USD a Adjustment factor of investment 1

V Population 1 k Regional technological coefficient for
adjustment cost

1

ER Early retirement rate in REMIND 1 J Annual average DIETER electricity
price

USD per MWh
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Appendix L: Complete list of abbreviations

Table L1. Complete list of abbreviations.

Abbreviation Description Abbreviation Description

IAM Integrated assessment model LCOE Levelized cost of electricity
PSM Power sector model MV Market value
VRE Variable renewable energy O&M Operation and maintenance
GHG Greenhouse gas OMF Operation and maintenance fixed cost
NLP Nonlinear programming OMV Operation and maintenance variable cost
LP Linear programming OCGT Open-cycle gas turbine
CES Constant elasticity of substitution CCGT Combined-cycle gas turbine
IPCC Intergovernmental Panel on Climate Change CP Capture price
RLDC Residual load duration curve PtG Power-to-gas
ZPR Zero-profit rule PDC Price duration curves
KKT Karush–Kuhn–Tucker CCS Carbon capture and storage
EVs Electric vehicles GAMS General Algebraic Modeling System

Code and data availability. The coupled and uncoupled REMIND
codes are implemented in GAMS, and the code and data manage-
ment is done using R. The coupled and uncoupled DIETER mod-
els are entirely implemented in GAMS. The default uncoupled RE-
MIND v3.0.0 code is available from the GitHub website at https:
//github.com/remindmodel/remind (Gong, 2022a) and is archived
at Zenodo under the GNU Affero General Public License, version 3
(AGPLv3) (https://doi.org/10.5281/zenodo.6794920, Luderer et al.,
2022b). The technical model documentation is available at https:
//rse.pik-potsdam.de/doc/remind/3.0.0/ (last access: 1 September
2022, Luderer et al., 2020). The coupled version of REMIND is
available at https://github.com/cchrisgong/remind-coupling-dieter/
tree/couple (last access: 2 September 2022); the coupled DIETER is
available at https://github.com/cchrisgong/dieter-coupling-remind
(Gong, 2022b). The two sets of coupling codes are archived
at Zenodo under the Creative Commons Attribution 4.0 Inter-
national License (https://doi.org/10.5281/zenodo.705324, Luderer
et al., 2022c). The GAMS code, results and scripts to pro-
duce the figures shown in this paper are archived at Zenodo
(https://doi.org/10.5281/zenodo.7072625, Gong, 2022c).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-4977-2023-supplement.

Author contributions. Methodology development was done by CG,
FU and RP. CG designed and carried out the numerical implemen-
tation and performed the theoretical analysis of the methodology.
The methodology was first conceptualized by GL. Supervision and
funding acquisition were carried out by FU and GL. OA partici-
pated in the development of model postprocessing and the overall
structuring of the manuscript. MK and WPS performed theoreti-
cal and conceptual validation of the manuscript. CG prepared the
manuscript with contributions from all the co-authors.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Geoscientific Model Development. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors thank Tom Brown at the Techni-
cal University of Berlin as well as Marian Leimbach, Renato Ro-
drigues, Nico Bauer, and Christof Schoetz at the Potsdam Institute
for Climate Impact Research for discussion.

Financial support. This research has been supported by the Bun-
desministerium für Bildung und Forschung (grant nos. 03SFK5N0,
03SFK5A and 01LP1928A) and the Deutsche Bundesstiftung
Umwelt (PhD scholarship).

The article processing charges for this open-access publica-
tion were covered by the Potsdam Institute for Climate Impact
Research (PIK).

Review statement. This paper was edited by Sam Rabin and re-
viewed by two anonymous referees.

Geosci. Model Dev., 16, 4977–5033, 2023 https://doi.org/10.5194/gmd-16-4977-2023

https://github.com/remindmodel/remind
https://github.com/remindmodel/remind
https://doi.org/10.5281/zenodo.6794920
https://rse.pik-potsdam.de/doc/remind/3.0.0/
https://rse.pik-potsdam.de/doc/remind/3.0.0/
https://github.com/cchrisgong/remind-coupling-dieter/tree/couple
https://github.com/cchrisgong/remind-coupling-dieter/tree/couple
https://github.com/cchrisgong/dieter-coupling-remind
https://doi.org/10.5281/zenodo.705324
https://doi.org/10.5281/zenodo.7072625
https://doi.org/10.5194/gmd-16-4977-2023-supplement


C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND 5029

References

Alimou, Y., Maïzi, N., Bourmaud, J.-Y., and Li, M.: Assessing
the security of electricity supply through multi-scale modeling:
The TIMES-ANTARES linking approach, Appl. Energ., 279,
115717, https://doi.org/10.1016/j.apenergy.2020.115717, 2020.

Aryanpur, V., O’Gallachoir, B., Dai, H., Chen, W., and Glynn, J.: A
review of spatial resolution and regionalisation in national-scale
energy systems optimisation models, Energy Strateg. Rev., 37,
100702, https://doi.org/10.1016/j.esr.2021.100702, 2021.

Azevedo, I., Bataille, C., Bistline, J., Clarke, L., and Davis,
S.: Net-zero emissions energy systems: What we know
and do not know, Energy Clim. Change, 2, 100049,
https://doi.org/10.1016/j.egycc.2021.100049, 2021.

Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S.,
Hilaire, J., Eom, J., Krey, V., Kriegler, E., Mouratiadou, I.,
Sytze de Boer, H., van den Berg, M., Carrara, S., Daioglou,
V., Drouet, L., Edmonds, J. E., Gernaat, D., Havlik, P., John-
son, N., Klein, D., Kyle, P., Marangoni, G., Masui, T., Pietzcker,
R. C., Strubegger, M., Wise, M., Riahi, K., and van Vuuren,
D. P.: Shared Socio-Economic Pathways of the Energy Sector
– Quantifying the Narratives, Global Environ. Chang., 42, 316–
330, https://doi.org/10.1016/j.gloenvcha.2016.07.006, 2017.

Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Gong,
C. C., Dietrich, J. P., Dirnaichner, A., Giannousakis, A., Hi-
laire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A.,
Madeddu, S., Malik, A., Merfort, A., Merfort, L., Oden-
weller, A., Pehl, M., Pietzcker, R. C., Piontek, F., Rauner,
S., Rodrigues, R., Rottoli, M., Schreyer, F., Schultes, A., So-
ergel, B., Soergel, D., Strefler, J., Ueckerdt, F., Kriegler, E.,
and Luderer, G.: REMIND2.1: transformation and innova-
tion dynamics of the energy-economic system within climate
and sustainability limits, Geosci. Model Dev., 14, 6571–6603,
https://doi.org/10.5194/gmd-14-6571-2021, 2021.

Bhaskar, A., Assadi, M., and Nikpey Somehsaraei, H.: Decar-
bonization of the Iron and Steel Industry with Direct Reduc-
tion of Iron Ore with Green Hydrogen, Energies, 13, 758,
https://doi.org/10.3390/en13030758, 2020.

Bistline, J. E. T.: The importance of temporal resolution in
modeling deep decarbonization of the electric power sector,
Environ. Res. Lett., 16, 084005, https://doi.org/10.1088/1748-
9326/ac10df, 2021.

Blanford, G. J. and Weissbart, C.: A Framework for Model-
ing the Dynamics of Power Markets – The EU-REGEN
Model, ifo Working Paper Series, ifo Institute – Leibniz
Institute for Economic Research at the University of Mu-
nich, https://www.ifo.de/en/publications/2019/working-paper/
framework-modeling-dynamics-power-markets-eu-regen-model
(last access: 22 January 2022), 2019.

Böttger, D. and Härtel, P.: On wholesale electricity prices and mar-
ket values in a carbon-neutral energy system, Energy Econ., 106,
105709, https://doi.org/10.1016/j.eneco.2021.105709, 2022.

Brinkerink, M.: Assessing 1.5–2 ◦C scenarios of integrated assess-
ment models from a power system perspective – Linkage with
a detailed hourly global electricity model, Monograph, IIASA,
Laxenburg, Austria, https://pure.iiasa.ac.at/id/eprint/16957/ (last
access: 22 January 2022), 2020.

Brinkerink, M., Zakeri, B., Huppmann, D., Glynn, J., Ó Gallachóir,
B., and Deane, P.: Assessing global climate change mitiga-
tion scenarios from a power system perspective using a novel

multi-model framework, Environ. Modell. Softw., 150, 105336,
https://doi.org/10.1016/j.envsoft.2022.105336, 2022.

Brown, T. and Reichenberg, L.: Decreasing market value of variable
renewables can be avoided by policy action, Energy Econ., 100,
105354, https://doi.org/10.1016/j.eneco.2021.105354, 2021.

Brown, T., Hörsch, J., and Schlachtberger, D.: PyPSA: Python
for Power System Analysis, J. Open Res. Softw., 6, 4,
https://doi.org/10.5334/jors.188, 2018a.

Brown, T., Schlachtberger, D., Kies, A., Schramm, S., and
Greiner, M.: Synergies of sector coupling and transmis-
sion reinforcement in a cost-optimised, highly renew-
able European energy system, Energy, 160, 720–739,
https://doi.org/10.1016/j.energy.2018.06.222, 2018b.

Brunner, C., Deac, G., Braun, S., and Zöphel, C.: The fu-
ture need for flexibility and the impact of fluctuating re-
newable power generation, Renew. Energy, 149, 1314–1324,
https://doi.org/10.1016/j.renene.2019.10.128, 2020.

Butnar, I., Li, P.-H., Strachan, N., Portugal Pereira, J., Gambhir,
A., and Smith, P.: A deep dive into the modelling assump-
tions for biomass with carbon capture and storage (BECCS):
A transparency exercise, Environ. Res. Lett., 15, 084008,
https://doi.org/10.1088/1748-9326/ab5c3e, 2019.

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J.,
Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H.,
Patel, P., Smith, S., Waldhoff, S., and Wise, M.: The SSP4: A
world of deepening inequality, Global Environ. Chang., 42, 284–
296, https://doi.org/10.1016/j.gloenvcha.2016.06.010, 2017.

Chang, M., Thellufsen, J. Z., Zakeri, B., Pickering, B., Pfenninger,
S., Lund, H., and Østergaard, P. A.: Trends in tools and ap-
proaches for modelling the energy transition, Appl. Energ., 290,
116731, https://doi.org/10.1016/j.apenergy.2021.116731, 2021.

Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A., and Jewell, J.:
National growth dynamics of wind and solar power compared to
the growth required for global climate targets, Nat. Energy, 6,
742–754, https://doi.org/10.1038/s41560-021-00863-0, 2021.

Clarke, L., Wei, Y.-M., De La Vega Navarro, A., Garg, A., Hah-
mann, A. N., Khennas, S., Azevedo, I. M. L., Löschel, A., Singh,
A. K., Steg, L., Strbac, G., and Wada, K.: Energy Systems,
in: IPCC, 2022: Climate Change 2022: Mitigation of Climate
Change, Contribution of Working Group III to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
219, https://doi.org/10.1017/9781009157926.008, 2022.

Conejo, A. J., Castillo, E., Mínguez R., and García-Bertrand,
R.: Decomposition techniques in mathematical programming,
Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/3-
540-27686-6, 2006.

Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet,
G., and Pietzcker, R. C.: The underestimated potential of so-
lar energy to mitigate climate change, Nat. Energy, 2, 17140,
https://doi.org/10.1038/nenergy.2017.140, 2017.

Deane, J. P., Chiodi, A., Gargiulo, M., and Ó Gal-
lachóir, B. P.: Soft-linking of a power systems model
to an energy systems model, Energy, 42, 303–312,
https://doi.org/10.1016/j.energy.2012.03.052, 2012,

E3MLab, PRIMES Model Version 2018 – detailed model descrip-
tion, http://www.e3mlab.ntua.gr/e3mlab/PRIMES (last access: 4
May 2023), 2018.

Ellenbeck, S. and Lilliestam, J.: How modelers construct en-
ergy costs: Discursive elements in Energy System and Inte-

https://doi.org/10.5194/gmd-16-4977-2023 Geosci. Model Dev., 16, 4977–5033, 2023

https://doi.org/10.1016/j.apenergy.2020.115717
https://doi.org/10.1016/j.esr.2021.100702
https://doi.org/10.1016/j.egycc.2021.100049
https://doi.org/10.1016/j.gloenvcha.2016.07.006
https://doi.org/10.5194/gmd-14-6571-2021
https://doi.org/10.3390/en13030758
https://doi.org/10.1088/1748-9326/ac10df
https://doi.org/10.1088/1748-9326/ac10df
https://www.ifo.de/en/publications/2019/working-paper/framework-modeling-dynamics-power-markets-eu-regen-model
https://www.ifo.de/en/publications/2019/working-paper/framework-modeling-dynamics-power-markets-eu-regen-model
https://doi.org/10.1016/j.eneco.2021.105709
https://pure.iiasa.ac.at/id/eprint/16957/
https://doi.org/10.1016/j.envsoft.2022.105336
https://doi.org/10.1016/j.eneco.2021.105354
https://doi.org/10.5334/jors.188
https://doi.org/10.1016/j.energy.2018.06.222
https://doi.org/10.1016/j.renene.2019.10.128
https://doi.org/10.1088/1748-9326/ab5c3e
https://doi.org/10.1016/j.gloenvcha.2016.06.010
https://doi.org/10.1016/j.apenergy.2021.116731
https://doi.org/10.1038/s41560-021-00863-0
https://doi.org/10.1017/9781009157926.008
https://doi.org/10.1007/3-540-27686-6
https://doi.org/10.1007/3-540-27686-6
https://doi.org/10.1038/nenergy.2017.140
https://doi.org/10.1016/j.energy.2012.03.052
http://www.e3mlab.ntua.gr/e3mlab/PRIMES


5030 C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND

grated Assessment Models, Energy Res. Soc. Sci., 47, 69–770,
https://doi.org/10.1016/j.erss.2018.08.021, 2019.

Figueiredo, N. C. and da Silva, P. P.: The price of wind power gen-
eration in Iberia and the merit-order effect, International Jour-
nal of Sustainable Energy Planning and Management, 15, 21–30,
https://doi.org/10.5278/ijsepm.2018.15.4, 2018.

Frysztacki, M. M., Hörsch, J., Hagenmeyer, V., and Brown, T.: The
strong effect of network resolution on electricity system models
with high shares of wind and solar, Appl. Energ., 291, 116726,
https://doi.org/10.1016/j.apenergy.2021.116726, 2021.

Frysztacki, M. M., Recht, G., and Brown, T., A comparison of
clustering methods for the spatial reduction of renewable elec-
tricity optimisation models of Europe, Energy Inform., 5, 4,
https://doi.org/10.1186/s42162-022-00187-7, 2022.

Fuso Nerini, F., Keppo, I., and Strachan, N.: Myopic de-
cision making in energy system decarbonisation path-
ways. A UK case study, Energy Strateg. Rev., 17, 19–26,
https://doi.org/10.1016/j.esr.2017.06.001, 2017.

Gaete-Morales, C., Kittel, M., Roth, A., and Schill, W.-P.: DI-
ETERpy: A Python framework for the Dispatch and Investment
Evaluation Tool with Endogenous Renewables, SoftwareX, 15,
100784, https://doi.org/10.1016/j.softx.2021.100784, 2021.

Gan, D., Feng, D., and Xie, J.: Electricity Markets and
Power System Economics, CRC Press, Boca Raton, 220 pp.,
https://doi.org/10.1201/b15550, 2013.

Geels, F., Berkhout, F. and van Vuuren, D.: Bridging analytical ap-
proaches for low-carbon transitions, Nat. Clim. Change, 6, 576–
583, https://doi.org/10.1038/nclimate2980, 2016.

Giarola, S., Mittal, S., Vielle, M., Perdana, S., Campagnolo, L.,
Delpiazzo, E., Bui, H., Kraavi, A. A., Kolpakov, A., Sogn-
naes, I., Peters, G., Hawkes, A., Köberle, A. C., Grant, N.,
Gambhir, A., Nikas, A., Doukas, H., Moreno, J., and van de
Ven, D.-J.: Challenges in the harmonisation of global integrated
assessment models: A comprehensive methodology to reduce
model response heterogeneity, Sci. Total Environ., 783, 146861,
https://doi.org/10.1016/j.scitotenv.2021.146861, 2021.

Gils, H. C., Gardian, H., Kittel, M., Schill, W.-P., Zerrahn,
A., Murmann, A., Launer, J., Fehler, A., Gaumnitz, F., van
Ouwerkerk, J., Bußar, C., Mikurda, J., Torralba-Díaz, L.,
Janßen, T., and Krüger, C.: Modeling flexibility in energy sys-
tems – comparison of power sector models based on sim-
plified test cases, Renew. Sust. Energ. Rev., 158, 111995,
https://doi.org/10.1016/j.rser.2021.111995, 2022a.

Gils, H. C., Gardian, H., Kittel, M., Schill, W.-P., Murmann,
A., Launer, J., Gaumnitz, F., van Ouwerkerk, J., Mikurda,
J., and Torralba-Díaz, L.: Model-related outcome differences
in power system models with sector coupling – Quantifi-
cation and drivers, Renew. Sust. Energ. Rev., 159, 112177,
https://doi.org/10.1016/j.rser.2022.112177, 2022b.

Gong, C. C.: remind-coupling-dieter[code], REMIND – REgional
Model of INvestments and Development, GitHub [code], https://
github.com/cchrisgong/remind-coupling-dieter/tree/couple (last
access: 1 September 2022), 2022a.

Gong, C. C.: dieter-coupling-remind[code], GAMS, REMIND
– REgional Model of INvestments and Development, GitHub
[code], https://github.com/cchrisgong/dieter-coupling-remind
(last access: 1 September 2022), 2022b.

Gong, C. C.: REMIND-DIETER – code, reportings, scripts, Zenodo
[code], https://doi.org/10.5281/zenodo.7072625, 2022c.

Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M., and Uratani,
J. M.: Industrial decarbonization via hydrogen: A critical
and systematic review of developments, socio-technical sys-
tems and policy options, Energy Res. Soc. Sci., 80, 102208,
https://doi.org/10.1016/j.erss.2021.102208, 2021.

Guivarch, C., Kriegler, E., Portugal-Pereira, J., and Bosetti,
V.: IPCC, 2022: Annex III: Scenarios and modelling meth-
ods, in: IPCC, 2022: Climate Change 2022: Mitigation
of Climate Change. Contribution of Working Group III
to the Sixth Assessment Report of the Intergovernmen-
tal Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157926.022, 2022.

Günther, C., Schill, W.-P., and Zerrahn, A.: Prosumage
of solar electricity: Tariff design, capacity investments,
and power sector effects, Energ. Policy, 152, 112168,
https://doi.org/10.1016/j.enpol.2021.112168, 2021.

Guo, F., van Ruijven, B. J., Zakeri, B., Zhang, S., Chen, X.,
Liu, C., Yang, F., Krey, V., Riahi, K., Huang, H., and Zhou,
Y.: Implications of intercontinental renewable electricity trade
for energy systems and emissions, Nat. Energy, 7, 1144–1156,
https://doi.org/10.1038/s41560-022-01136-0, 2022.

Haydt, G., Leal, V., Pina, A., and Silva, C. A.: The relevance of the
energy resource dynamics in the mid/long-term energy planning
models, Renew. Energy, 36, 3068–3074, 2011.

Hildmann, M., Ulbig, A., and Andersson, G.: Empirical Analysis of
the Merit-Order Effect and the Missing Money Problem in Power
Markets With High RES Shares, IEEE T. Power Syst., 30, 1560–
1570, https://doi.org/10.1109/TPWRS.2015.2412376, 2015.

Hirth, L.: The market value of variable renewables: The effect of
solar wind power variability on their relative price, Energy Econ.,
38, 218–236, https://doi.org/10.1016/j.eneco.2013.02.004, 2013.

Hirth, L.: What caused the drop in European electricity
prices? A factor decomposition analysis, Energy J., 39, 1,
https://doi.org/10.5547/01956574.39.1.lhir, 2018.

Hirth, L. and Ueckerdt, F.: Redistribution effects of energy and cli-
mate policy: The electricity market, Energ. Policy, 62, 934–947,
https://doi.org/10.1016/j.enpol.2013.07.055, 2013.

Huppmann, D., Gidden, M., Fricko, O., Kolp, P., Orthofer,
C., Pimmer, M., Kushin, N., Vinca, A., Mastrucci, A., Ri-
ahi, K., and Krey, V.: The MESSAGEix Integrated As-
sessment Model and the ix modeling platform (ixmp):
An open framework for integrated and cross-cutting anal-
ysis of energy, climate, the environment, and sustain-
able development, Environ. Modell. Softw., 112, 143–156,
https://doi.org/10.1016/j.envsoft.2018.11.012, 2019.

ICCSD Tsinghua University: Power Sector, in: China’s Long-Term
Low-Carbon Development Strategies and Pathways: Compre-
hensive Report, edited by: Institute of Climate Change and Sus-
tainable Development of Tsinghua University, Springer, Sin-
gapore, 109–130, https://doi.org/10.1007/978-981-16-2524-4_4,
2022.

IEA: World Energy Outlook 2021, https://www.iea.org/reports/
world-energy-outlook-2021 (last access: 21 January 2022),
2021.

IPCC: Climate change 2014: mitigation of climate change: Work-
ing Group III contribution to the Fifth assessment report of the
Intergovernmental Panel on Climate Change, edited by: Eden-
hofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kad-

Geosci. Model Dev., 16, 4977–5033, 2023 https://doi.org/10.5194/gmd-16-4977-2023

https://doi.org/10.1016/j.erss.2018.08.021
https://doi.org/10.5278/ijsepm.2018.15.4
https://doi.org/10.1016/j.apenergy.2021.116726
https://doi.org/10.1186/s42162-022-00187-7
https://doi.org/10.1016/j.esr.2017.06.001
https://doi.org/10.1016/j.softx.2021.100784
https://doi.org/10.1201/b15550
https://doi.org/10.1038/nclimate2980
https://doi.org/10.1016/j.scitotenv.2021.146861
https://doi.org/10.1016/j.rser.2021.111995
https://doi.org/10.1016/j.rser.2022.112177
https://github.com/cchrisgong/remind-coupling-dieter/tree/couple
https://github.com/cchrisgong/remind-coupling-dieter/tree/couple
https://github.com/cchrisgong/dieter-coupling-remind
https://doi.org/10.5281/zenodo.7072625
https://doi.org/10.1016/j.erss.2021.102208
https://doi.org/10.1017/9781009157926.022
https://doi.org/10.1016/j.enpol.2021.112168
https://doi.org/10.1038/s41560-022-01136-0
https://doi.org/10.1109/TPWRS.2015.2412376
https://doi.org/10.1016/j.eneco.2013.02.004
https://doi.org/10.5547/01956574.39.1.lhir
https://doi.org/10.1016/j.enpol.2013.07.055
https://doi.org/10.1016/j.envsoft.2018.11.012
https://doi.org/10.1007/978-981-16-2524-4_4
https://www.iea.org/reports/world-energy-outlook-2021
https://www.iea.org/reports/world-energy-outlook-2021


C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND 5031

ner, S., Seyboth, K., Alder, A., Baum, I., Brunner, S., Eike-
meier, P., Kriemann, B., Salolainen, J., Schlömer, S., Stechow,
C. von, Zwickel, T., and Minx, J. C., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415416, 2014.

IPCC: Climate Change 2022: Mitigation of Climate Change, Con-
tribution of Working Group III to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen,
R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R.,
Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J.,
Cambridge University Press, Cambridge, UK and New York, NY,
USA, https://doi.org/10.1017/9781009157926, 2022.

IRENA: Renewable power generation costs in 2019, International
Renewable Energy Agency, ISBN 978-92-9260-244-4, 2020.

Kannan, R. and Turton, H.: A Long-Term Electricity Dispatch
Model with the TIMES Framework, Environ. Model. Assess., 18,
325–343, https://doi.org/10.1007/s10666-012-9346-y, 2013.

Karush, W.: Minima of functions of several variables with inequali-
ties as side conditions (William Karush), Master’s thesis, Depart-
ment of Mathematics, University of Chicago, 1939.

Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Em-
merling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefèvre,
J., Le Gallic, T., Leimbach, M., McDowall, W., Mercure, J.-F.,
Schaeffer, R., Trutnevyte, E., and Wagner, F.: Exploring the pos-
sibility space: taking stock of the diverse capabilities and gaps in
integrated assessment models, Environ. Res. Lett., 16, 053006,
https://doi.org/10.1088/1748-9326/abe5d8, 2021.

Koch, J. and Leimbach, M.: Update of Ssp GDP Projec-
tions: Capturing Recent Changes in National Accounting,
PPP Conversion and Covid 19 Impacts, Ecol. Econ., 206,
https://doi.org/10.2139/ssrn.4011838, 2023.

Koutstaal, P. R. and va. Hout, M.: Integration costs and mar-
ket value of variable renewables: A study for the Dutch
power market, ECN, Petten, http://resolver.tudelft.nl/uuid:
a36bc05a-6a36-428f-9ff6-e33141fcf167 (last access: 22 Jan-
uary 2022), 2017.

Kuhn, H. W. and Tucker, A. W.: Nonlinear Programming, in: Traces
and Emergence of Nonlinear Programming, edited by: Giorgi, G.
and Kjeldsen, T., Birkhäuser, Basel, https://doi.org/10.1007/978-
3-0348-0439-4_11, 1951.

Lazard: Lazard’s Levelized Cost of Energy Analysis –
Version 15.0, https://www.lazard.com/media/sptlfats/
lazards-levelized-cost-of-energy-version-150-vf.pdf (last
access: 21 January 2022), 2021.

Levesque, A., Pietzcker, R. C., Baumstark, L., De Ster-
cke, S., Grübler, A., Luderer, G.: How much energy
will buildings consume in 2100? A global perspective
within a scenario framework, Energy, 148, 514–527,
https://doi.org/10.1016/j.energy.2018.01.139, 2018.

Leimbach, M., Bauer, N., Baumstark, L., Luken, M., and
Edenhofer, O.: Technological Change and International
Trade – Insights from REMIND-R, Energy J., 31, 109–136,
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5,
2010.

Li, P.-H. and Pye, S.: Assessing the benefits of demand-side
flexibility in residential and transport sectors from an inte-
grated energy systems perspective, Appl. Energ., 228, 965–979,
https://doi.org/10.1016/j.apenergy.2018.06.153, 2018.

López Prol, J. and Schill, W.-P.: The Economics of Variable Renew-
able Energy and Electricity Storage, Annu. Rev. Resour. Econ.,
13, 443–467, https://doi.org/10.1146/annurev-resource-101620-
081246, 2021.

Luderer, G., Pietzcker, R. C., Carrara, S., de Boer, H. S., Fu-
jimori, S., Johnson, N., Mima, S., and Arent, D.: Assess-
ment of wind and solar power in global low-carbon en-
ergy scenarios: An introduction, Energy Econ., 64, 542–551,
https://doi.org/10.1016/j.eneco.2017.03.027, 2017.

Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O., Pietzcker,
R. C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J.,
Fricko, O., Fujimori, S., Havlik, P., Iyer, G., Keramidas, K.,
Kitous, A., Pehl, M., Krey, V., Riahi, K., Saveyn, B., Tavoni,
M., Van Vuuren, D. P., and Kriegler, E.: Residual fossil CO2
emissions in 1.5–2◦C pathways, Nat. Clim. Change, 8, 626–633,
https://doi.org/10.1038/s41558-018-0198-6, 2018.

Luderer, G., Auer, C., Bauer, N., Baumstark, L., Bertram, C.,
Bi, S., Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein,
D., Koch, J., Leimbach, M., Levesque, A., Malik, A., Mer-
fort, L., Pehl, M., Pietzker, R., Piontek, F., Rauner, S., Ro-
drigues, R., Rottoli, M., Schreyer, F., Sörgel, B., Strefler, J., and
Ueckerdt, F.: REMIND v2.1.3 – Model documentation, Zenodo,
https://doi.org/10.5281/zenodo.4268254, 2020.

Luderer, G., Madeddu, S., Merfort, L., Ueckerdt, F., Pehl, M.,
Pietzcker, R., Rottoli, M., Schreyer, F., Bauer, N., Baum-
stark, L., Bertram, C., Dirnaichner, A., Humpenöder, F.,
Levesque, A., Popp, A., Rodrigues, R., Strefler, J., and Kriegler,
E.: Impact of declining renewable energy costs on electri-
fication in low-emission scenarios, Nat. Energy, 7, 32–42,
https://doi.org/10.1038/s41560-021-00937-z, 2022a.

Luderer, G., Bauer, N., Baumstark, L., Bertram, C., Leimbach,
M., Pietzcker, R., Strefler, J., Aboumahboub, T., Abrahão, G.,
Auer, C., Benke, F., Bi, S., Dietrich, J., Dirnaichner, A., Gi-
annousakis, A., Gong, C. C., Haller, M., Hasse, R., Hilaire,
J., Hoppe, J., Klein, D., Koch, J., Körner, A., Kowalczyk, K.,
Kriegler, E., Levesque, A., Lorenz, A., Ludig, S., Lüken, M., Ma-
lik, A., Manger, S., Merfort, A., Merfort, L., Moreno-Leiva, S.,
Mouratiadou, I., Odenweller, A., Pehl, M., Piontek, F., Popin, L.,
Rauner, S., Richters, O., Rodrigues, R., Roming, N., Rottoli, M.,
Schmidt, E., Schötz, C., Schreyer, F., Schultes, A., Sörgel, B.,
Ueckerdt, F., Verpoort, P., and Weigmann, P.: REMIND – RE-
gional Model of INvestments and Development, Zenodo [code],
https://doi.org/10.5281/zenodo.6794920, 2022b.

Luderer, G., Bauer, N., Gong, C. C., Odenweller, A., Baumstark, L.,
Bertram, C., Leimbach, M., Pietzcker, R., Strefler, J., Aboumah-
boub, T., Abrahão, G., Auer, C., Benke, F., Bi, S., Dietrich, J.,
Dirnaichner, A., Giannousakis, A., Haller, M., Hasse, R., Hi-
laire, J., Hoppe, J., Klein, D., Koch, J., Kowalczyk, K., Kriegler,
E., Levesque, A., Ludig, S., Malik, A., Merfort, A., Merfort, L.,
Moreno, S., Mouratiadou, I., Pehl, M., Piontek, F., Popin, L.,
Rauner, S., Richters, O., Schötz, C., Rodrigues, R., Ueckerdt, F.,
Zerrahn, A., Schreyer, F., Sörgel, B., Weigmann, P., Schill, W.-
P., Verpoort, P., and Rottoli, M.: REMIND – DIETER coupling,
Zenodo [code], https://doi.org/10.5281/zenodo.7053246, 2022c.

Ludig, S., Haller, M., Schmid, E., and Bauer, N.: Fluctuating renew-
ables in a long-term climate change mitigation strategy, Energy,
36, 6674–6685, https://doi.org/10.1016/j.energy.2011.08.021,
2011.

https://doi.org/10.5194/gmd-16-4977-2023 Geosci. Model Dev., 16, 4977–5033, 2023

https://doi.org/10.1017/CBO9781107415416
https://doi.org/10.1017/9781009157926
https://doi.org/10.1007/s10666-012-9346-y
https://doi.org/10.1088/1748-9326/abe5d8
https://doi.org/10.2139/ssrn.4011838
http://resolver.tudelft.nl/uuid:a36bc05a-6a36-428f-9ff6-e33141fcf167
http://resolver.tudelft.nl/uuid:a36bc05a-6a36-428f-9ff6-e33141fcf167
https://doi.org/10.1007/978-3-0348-0439-4_11
https://doi.org/10.1007/978-3-0348-0439-4_11
https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf
https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf
https://doi.org/10.1016/j.energy.2018.01.139
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5
https://doi.org/10.1016/j.apenergy.2018.06.153
https://doi.org/10.1146/annurev-resource-101620-081246
https://doi.org/10.1146/annurev-resource-101620-081246
https://doi.org/10.1016/j.eneco.2017.03.027
https://doi.org/10.1038/s41558-018-0198-6
https://doi.org/10.5281/zenodo.4268254
https://doi.org/10.1038/s41560-021-00937-z
https://doi.org/10.5281/zenodo.6794920
https://doi.org/10.5281/zenodo.7053246
https://doi.org/10.1016/j.energy.2011.08.021


5032 C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND

Martínez-Gordón, R., Morales-España, G., Sijm, J., and Faaij,
A. P. C.: A review of the role of spatial resolution in en-
ergy systems modelling: Lessons learned and applicability to
the North Sea region, Renew. Sust. Energ. Rev., 141, 110857,
https://doi.org/10.1016/j.rser.2021.110857, 2021.

Mills, A. D. and Wiser, R. H.: Strategies to mitigate de-
clines in the economic value of wind and solar at high
penetration in California, Appl. Energ., 147, 269–278,
https://doi.org/10.1016/j.apenergy.2015.03.014, 2015.

Mowers, M., Mignone, B. K. and Steinberg, D. C.: Quantify-
ing value and representing competitiveness of electricity system
technologies in economic models, Appl. Energ., 329, 120132,
https://doi.org/10.1016/j.apenergy.2022.120132, 2023.

National long-term strategies: https://ec.europa.eu/info/energy-
climate-change-environment/implementation-eu-
countries/energy-and-climate-governance-and-
reporting/national-long-term-strategies_en, last access: 15
January 2022.

NGFS: NGFS Climate Scenarios for central banks and su-
pervisors, Network for Greening the Financial System,
https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-
and-supervisors-september-2022 (last access: 23 August 2023),
2022.

openmod – Open Energy Modelling Initiative: https:
//openmod-initiative.org/, last access: 21 January 2022.

Padhy, N. P.: Unit commitment-a bibliographical
survey, IEEE T. Power Syst., 19, 1196–1205,
https://doi.org/10.1109/TPWRS.2003.821611, 2004.

Pahle, M., Tietjen, O., Osorio, S., Egli, F., Steffen, B., Schmidt, T.
S. and Edenhofer O.: Safeguarding the energy transition against
political backlash to carbon markets, Nat. Energy, 7, 290–296,
https://doi.org/10.1038/s41560-022-00984-0, 2022.

Palzer, A. and Henning, H.-M.: A Future German Energy System
with a Dominating Contribution from Renewable Energies: A
Holistic Model Based on Hourly Simulation, Energy Technol.,
2, 13–28, https://doi.org/10.1002/ente.201300083, 2014.

Parra, D., Valverde, L., Pino, F. J., and Patel, M. K.: A review
on the role, cost and value of hydrogen energy systems for
deep decarbonisation, Renew. Sust. Energ. Rev., 101, 279–294,
https://doi.org/10.1016/j.rser.2018.11.010, 2019.

Pietzcker, R. C., Ueckerdt, F., Carrara, S., de Boer, H. S., De-
sprés, J., Fujimori, S., Johnson, N., Kitous, A., Scholz, Y.,
Sullivan, P., and Luderer, G.: System integration of wind and
solar power in integrated assessment models: A cross-model
evaluation of new approaches, Energy Econ., 64, 583–599,
https://doi.org/10.1016/j.eneco.2016.11.018, 2017.

Pina, A., Silva, C., and Ferrão, P.: Modeling hourly electricity dy-
namics for policy making in long-term scenarios, Energ. Pol-
icy, 39, 4692–4702, https://doi.org/10.1016/j.enpol.2011.06.062,
2011.

Prina, M. G., Manzolini, G., Moser, D., Nastasi, B., and Spar-
ber, W.: Classification and challenges of bottom-up energy sys-
tem models – A review, Renew. Sust. Energ. Rev., 129, 109917,
https://doi.org/10.1016/j.rser.2020.109917, 2020.

Prol, J. L. and Schill, W.-P.: The Economics of Variable Renewable
Energy and Electricity Storage, Annual Review of Resource Eco-
nomics, 13, 443–467, https://doi.org/10.1146/annurev-resource-
101620-081246, 2021.

Ram, M., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, S.,
Child, M., Caldera, U., Sadovskaia, K., Farfan Orozco, F., Noel,
L., Fasihi, M., Maybodi, S., and Fell, H.-J.: Global Energy Sys-
tem based on 100 % Renewable Energy: Energy Transition in
Europe Across Power, Heat, Transport and Desalination Sectors,
Technical report, https://doi.org/10.13140/RG.2.2.10143.00160,
2018.

Ramsebner, J., Haas, R., Ajanovic, A., and Wietschel, M.: The sec-
tor coupling concept: A critical review, WIREs Energy Environ.,
10, e396, https://doi.org/10.1002/wene.396, 2021.

Release REMIND v3.0.0 · remindmodel/remind: https://github.
com/remindmodel/remind/releases/tag/v3.0.0, last access: 11
August 2022.

Rechsteiner, R.: German energy transition (Energiewende)
and what politicians can learn for environmental and
climate policy, Clean Technol. Envir., 23, 305–342,
https://doi.org/10.1007/s10098-020-01939-3, 2021.

Ringkjøb, H.-K., Haugan, P. M., and Solbrekke, I. M.: A review
of modelling tools for energy and electricity systems with large
shares of variable renewables, Renew. Sust. Energ. Rev., 96, 440-
459, https://doi.org/10.1016/j.rser.2018.08.002, 2018.

Rodrigues, R., Pietzcker, R., Fragkos, P., Price, J., McDowall,
W., Siskos, P., Fotiou, T., Luderer, G., and Capros, P.:
Narrative-driven alternative roads to achieve mid-century
CO2 net neutrality in Europe, Energy, 239, 121908,
https://doi.org/10.1016/j.energy.2021.121908, 2022.

Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca,
L., Séférian, R., and Vilariño, M. V.: Mitigation pathways com-
patible with 1.5 ◦C in the context of sustainable development,
in: Special Report on the impacts of global warming of 1.5
◦C, Intergovernmental Panel on Climate Change, Geneva, https:
//pure.iiasa.ac.at/id/eprint/15515/ (last access: 22 January 2022),
2018.

Rotmans, J. and van Asselt, M. B. A.: Uncertainty in Integrated
Assessment Modelling: A Labyrinthic Path, Integr. Assess., 2,
43–55, https://doi.org/10.1023/A:1011588816469, 2001.

Ruhnau, O.: How flexible electricity demand stabi-
lizes wind and solar market values: The case of hy-
drogen electrolyzers, Appl. Energ., 307, 118194,
https://doi.org/10.1016/j.apenergy.2021.118194, 2022.

Say, K., Schill, W.-P., and John, M.: Degrees of displace-
ment: The impact of household PV battery prosumage on
utility generation and storage, Appl. Energ., 276, 115466,
https://doi.org/10.1016/j.apenergy.2020.115466, 2020.

Schill, W.-P. and Zerrahn, A.: Long-run power storage re-
quirements for high shares of renewables: Results and
sensitivities, Renew. Sust. Energ. Rev., 83, 156–171,
https://doi.org/10.1016/j.rser.2017.05.205, 2018.

Schill, W.-P. and Zerrahn, A.: Flexible electricity use for heating
in markets with renewable energy, Appl. Energ., 266, 114571,
https://doi.org/10.1016/j.apenergy.2020.114571, 2020.

Schill, W.-P., Pahle, M., and Gambardella, C.: Start-up costs
of thermal power plants in markets with increasing shares
of variable renewable generation, Nat. Energy, 2, 1–6,
https://doi.org/10.1038/nenergy.2017.50, 2017.

Schill, W.-P., Roth, A., and Guéret, A.: Ampel-Monitor En-
ergiewende Shows the Pace of the Energy Transition Must Be

Geosci. Model Dev., 16, 4977–5033, 2023 https://doi.org/10.5194/gmd-16-4977-2023

https://doi.org/10.1016/j.rser.2021.110857
https://doi.org/10.1016/j.apenergy.2015.03.014
https://doi.org/10.1016/j.apenergy.2022.120132
https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en
https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en
https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en
https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en
https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en
https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors-september-2022
https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors-september-2022
https://openmod-initiative.org/
https://openmod-initiative.org/
https://doi.org/10.1109/TPWRS.2003.821611
https://doi.org/10.1038/s41560-022-00984-0
https://doi.org/10.1002/ente.201300083
https://doi.org/10.1016/j.rser.2018.11.010
https://doi.org/10.1016/j.eneco.2016.11.018
https://doi.org/10.1016/j.enpol.2011.06.062
https://doi.org/10.1016/j.rser.2020.109917
https://doi.org/10.1146/annurev-resource-101620-081246
https://doi.org/10.1146/annurev-resource-101620-081246
https://doi.org/10.13140/RG.2.2.10143.00160
https://doi.org/10.1002/wene.396
https://github.com/remindmodel/remind/releases/tag/v3.0.0
https://github.com/remindmodel/remind/releases/tag/v3.0.0
https://doi.org/10.1007/s10098-020-01939-3
https://doi.org/10.1016/j.rser.2018.08.002
https://doi.org/10.1016/j.energy.2021.121908
https://pure.iiasa.ac.at/id/eprint/15515/
https://pure.iiasa.ac.at/id/eprint/15515/
https://doi.org/10.1023/A:1011588816469
https://doi.org/10.1016/j.apenergy.2021.118194
https://doi.org/10.1016/j.apenergy.2020.115466
https://doi.org/10.1016/j.rser.2017.05.205
https://doi.org/10.1016/j.apenergy.2020.114571
https://doi.org/10.1038/nenergy.2017.50


C. C. Gong et al.: Bidirectional coupling of the long-term integrated assessment model REMIND 5033

Accelerated Significantly, DIW Weekly Report 26/27/28/2022,
171–179, https://doi.org/10.18723/diw_dwr:2022-26-1, 2022.

Seljom, P., Rosenberg, E., Schäffer, L. E., and Fodstad, M.:
Bidirectional linkage between a long-term energy system and
a short-term power market model, Energy, 198, 117311,
https://doi.org/10.1016/j.energy.2020.117311, 2020.

Sensfuß, F.: Assessment of the impact of renewable elec-
tricity generation on the German electricity sector: An
agent-based simulation approach, Universität Karlsruhe (TH),
https://doi.org/10.5445/IR/1000007777, 2007.

Sensfuß, F., Ragwitz, M., and Genoese, M.: The merit-order effect:
A detailed analysis of the price effect of renewable electricity
generation on spot market prices in Germany, Energ. Policy, 36,
3076–3084, 2008.

Sepulveda, N. A., Jenkins, J. D., de Sisternes, F. J., and Lester,
R. K.: The Role of Firm Low-Carbon Electricity Resources in
Deep Decarbonization of Power Generation, Joule, 2, 2403–
2420, https://doi.org/10.1016/j.joule.2018.08.006, 2018.

Sitarz, J., Pahle, M., Osorio, S., Luderer, G., and Pietzcker, R.: EU
carbon prices signal high policy credibility and farsighted ac-
tors, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-
2761645/v1, 2023.

Staub-Kaminski, I., Zimmer, A., Jakob, M. and Marschinski, R.:
Climate policy in practice: a typology of obstacles and implica-
tions for integrated assessment modeling, Clim. Change Econ.,
05, 1440004, https://doi.org/10.1142/S2010007814400041,
2014.

Stehfest, E., van Vuuren, D., Bouwman, L., and Kram, T.: Integrated
assessment of global environmental change with IMAGE 3.0:
Model description and policy applications, Netherlands Environ-
mental Assessment Agency (PBL), ISBN 978-94-91506-71-0,
2014.

Stöckl, F., Schill, W.-P., and Zerrahn, A.: Optimal supply chains and
power sector benefits of green hydrogen, Sci. Rep., 11, 14191,
https://doi.org/10.1038/s41598-021-92511-6, 2021.

Sullivan, P., Krey, V., and Riahi, K.: Impacts of consid-
ering electric sector variability and reliability in the
MESSAGE model, Energy Strateg. Rev., 1, 157–163,
https://doi.org/10.1016/j.esr.2013.01.001, 2013.

The White House: The Long-Term Strategy of the United States:
Pathways to Net-Zero Greenhouse Gas Emissions by 2050,
United States Department of State and the United States Exec-
utive Office of the President, Washington DC, https://unfccc.int/
documents/308100 (last access: 22 January 2022), 2021.

Ueckerdt, F., Brecha, R., Luderer, G., Sullivan, P., Schmid,
E., Bauer, N., Böttger, D., and Pietzcker, R.: Representing
power sector variability and the integration of variable re-
newables in long-term energy-economy models using resid-
ual load duration curves, Energy, 90, Part 2, 1799–1814,
https://doi.org/10.1016/j.energy.2015.07.006, 2015.

Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Gian-
nousakis, A., and Luderer, G.: Decarbonizing global
power supply under region-specific consideration of chal-
lenges and options of integrating variable renewables
in the REMIND model, Energy Econ., 64, 665–684,
https://doi.org/10.1016/j.eneco.2016.05.012, 2017.

UNEP: The Emissions Gap Report 2019, UNEP, Nairobi, Kenya,
ISBN 978-92-807-3766-0, 2019.

van Ouwerkerk, J., Gils, H. C., Gardian, H., Kittel, M., Schill, W.-
P., Zerrahn, A., Murmann, A., Launer, J., Torralba-Díaz, L., and
Bußar, C.: Impacts of power sector model features on optimal
capacity expansion: A comparative study, Renew. Sust. Energ.
Rev., 157, 112004, https://doi.org/10.1016/j.rser.2021.112004,
2022.

Welsch, M., Mentis, D., and Howells, M.: Chapter 17 – Long-
Term Energy Systems Planning: Accounting for Short-Term
Variability and Flexibility, in: Renewable Energy Integration,
edited by: Jones, L. E., Academic Press, Boston, 215–225,
https://doi.org/10.1016/B978-0-12-407910-6.00017-X, 2014.

Weyant, J.: Some Contributions of Integrated Assessment Models
of Global Climate Change, Rev. Env. Econ. Policy, 11, 115–137,
https://doi.org/10.1093/reep/rew018, 2017.

Wilson, C., Guivarch, C., Kriegler, E., van Ruijven, B., van
Vuuren, D. P., Krey, V., Schwanitz, V. J., and Thompson,
E. L.: Evaluating process-based integrated assessment mod-
els of climate change mitigation, Climatic Change, 166, 3,
https://doi.org/10.1007/s10584-021-03099-9, 2021.

Younis, A., Benders, R., Ramírez, J., de Wolf, M., and Faaij, A.:
Scrutinizing the Intermittency of Renewable Energy in a Long-
Term Planning Model via Combining Direct Integration and
Soft-Linking Methods for Colombia’s Power System, Energies,
15, 7604, https://doi.org/10.3390/en15207604, 2022.

Zerrahn, A. and Schill, W.-P.: Long-run power storage re-
quirements for high shares of renewables: review and a
new model, Renew. Sust. Energ. Rev., 79, 1518–1534,
https://doi.org/10.1016/j.rser.2016.11.098, 2017.

Zerrahn, A., Schill, W.-P., and Kemfert, C.: On the
economics of electrical storage for variable renew-
able energy sources, Eur. Econ. Rev., 108, 259–279,
https://doi.org/10.1016/j.euroecorev.2018.07.004, 2018.

https://doi.org/10.5194/gmd-16-4977-2023 Geosci. Model Dev., 16, 4977–5033, 2023

https://doi.org/10.18723/diw_dwr:2022-26-1
https://doi.org/10.1016/j.energy.2020.117311
https://doi.org/10.5445/IR/1000007777
https://doi.org/10.1016/j.joule.2018.08.006
https://doi.org/10.21203/rs.3.rs-2761645/v1
https://doi.org/10.21203/rs.3.rs-2761645/v1
https://doi.org/10.1142/S2010007814400041
https://doi.org/10.1038/s41598-021-92511-6
https://doi.org/10.1016/j.esr.2013.01.001
https://unfccc.int/documents/308100
https://unfccc.int/documents/308100
https://doi.org/10.1016/j.energy.2015.07.006
https://doi.org/10.1016/j.eneco.2016.05.012
https://doi.org/10.1016/j.rser.2021.112004
https://doi.org/10.1016/B978-0-12-407910-6.00017-X
https://doi.org/10.1093/reep/rew018
https://doi.org/10.1007/s10584-021-03099-9
https://doi.org/10.3390/en15207604
https://doi.org/10.1016/j.rser.2016.11.098
https://doi.org/10.1016/j.euroecorev.2018.07.004

	Abstract
	Introduction
	Current modeling approaches and limitations
	Iterative coupling for full model convergence

	Models
	IAM: REMIND
	PSM: DIETER

	A novel coupling approach
	Descriptions of uncoupled models
	Economic theory of model convergence
	Derivation of convergence conditions
	List of convergence conditions
	Theoretical tools for validating convergence

	Implementation via interface: exchange of variables
	REMIND to DIETER
	DIETER to REMIND


	Numerical convergence under the proof-of-concept baseline scenario
	Electricity price convergence
	Quantity convergence
	Zero-profit rules for the coupled model
	System-level zero-profit rule
	Technology-specific zero-profit rules


	Scenario results under baseline and policy scenarios
	Long-term development
	Baseline scenario
	Net-zero policy scenario

	Short-term dispatch
	Residual load duration curve model comparison
	Hourly dispatch and power consumptions for typical days in summer and winter


	Discussion
	Remaining discrepancies
	Limitations of the coupling methodology
	Limitation of coupled results
	Potential computational barriers under soft-coupling

	Conclusion and outlook
	Appendix A: Comparison of model scope and specification
	Appendix B: Model-coupling scope
	Appendix C: REMIND's interannual intertemporal objective function for a single region
	Appendix D: Deriving the soft-coupling convergence conditions
	Appendix E: Coupling iteration schematics
	Appendix F: Derivation of the equilibrium conditions for the uncoupled REMIND and DIETER
	Appendix F1: Lagrangians and KKT conditions
	Appendix F2: Derivation of the zero-profit rules
	Appendix F2.1: REMIND
	Appendix F2.2: DIETER


	Appendix G: Derivation of the equilibrium conditions for the coupled models
	Appendix H: Additional methods for numerical stability in coupled runs
	Appendix H1: Dispatchable capacity constraints by peak demand
	Appendix H1.1: Description of the capacity constraint and price manipulation in DIETER postprocessing
	Appendix H1.2: Equivalence between the surplus scarcity price in DIETER and the capacity shadow price due to the peak residual demand in REMIND

	Appendix H2: Stabilization techniques using prefactors

	Appendix I: Derivation for the equilibrium condition for REMIND in the case of an additional adjustment cost
	Appendix J: Comparing the coupled and uncoupled runs
	Appendix K: Complete list of mathematical symbols
	Appendix L: Complete list of abbreviations
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

