Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-3029-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3029-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Koichi Sakaguchi
CORRESPONDING AUTHOR
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
L. Ruby Leung
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
Colin M. Zarzycki
Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
Jihyeon Jang
Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Seth McGinnis
Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Bryce E. Harrop
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
William C. Skamarock
Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Andrew Gettelman
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Chun Zhao
School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
William J. Gutowski
Geological And Atmospheric Sciences Department, Iowa State University, Ames, IA, USA
Stephen Leak
The National Energy Research Scientific Computing Center, Berkeley, CA, USA
Linda Mearns
Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Related authors
Kai Zhang, Chun Zhao, Hui Wan, Yun Qian, Richard C. Easter, Steven J. Ghan, Koichi Sakaguchi, and Xiaohong Liu
Geosci. Model Dev., 9, 607–632, https://doi.org/10.5194/gmd-9-607-2016, https://doi.org/10.5194/gmd-9-607-2016, 2016
Short summary
Short summary
A sub-grid treatment based on Weibull distribution is introduced to CAM5 to take into account the impact of unresolved variability of surface wind speed on sea salt and dust emissions. Simulations show that sub-grid wind variability has relatively small impacts on the global mean sea salt emissions, but considerable influence on dust emissions. Dry convective eddies and mesoscale flows associated with complex topography are the major causes of dust emission enhancement.
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernandez Banos, William C. Skamarock, and Michael G. Duda
EGUsphere, https://doi.org/10.5194/egusphere-2023-2299, https://doi.org/10.5194/egusphere-2023-2299, 2023
Short summary
Short summary
To mitigate the imbalances in the initial conditions, this study introduces our recent implementation of the the incremental analysis update (IAU) in the Model for Prediction Across Scales for the Atmospheric component (MPAS-A), coupled with the Joint Effort for Data assimilation Integration (JEDI), through the cycling system. A month-long cycling run demonstrates the successful implementation of the IAU capability in the MPAS-JEDI cycling system.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023, https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Short summary
This study assesses the flood risks concurrently induced by river flooding and coastal storm surge along the coast of the contiguous United States using statistical and numerical models. We reveal a few hotspots of such risks, the critical spatial variabilities within a river basin and over the whole US coast, and the uncertainties of the risk assessment. We highlight the importance of weighing different risk measures to avoid underestimating or exaggerating the compound flood impacts.
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
EGUsphere, https://doi.org/10.5194/egusphere-2023-1555, https://doi.org/10.5194/egusphere-2023-1555, 2023
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud-radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of the cloud-radiative heating, as well as those examining its covariance with circulations. The manuscript documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud-radiative heating impacts circulations and rainfall patterns.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and Lai-Yung Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2023-1879, https://doi.org/10.5194/egusphere-2023-1879, 2023
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled Earth System Model. We found that calibrate only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Skyler Graap and Colin M. Zarzycki
EGUsphere, https://doi.org/10.5194/egusphere-2023-1450, https://doi.org/10.5194/egusphere-2023-1450, 2023
Short summary
Short summary
A key target for improving climate models is how low, bright clouds are predicted over tropical oceans since they have important consequences for the Earth's energy budget. A climate model has been updated to improve the physical realism of the treatment of how momentum is moved up and down in the atmosphere. By comparing this updated model to real-world observations by balloon launches, it can be shown to more accurately depict atmospheric structure in trade-wind areas close to the Equator.
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-124, https://doi.org/10.5194/gmd-2023-124, 2023
Preprint under review for GMD
Short summary
Short summary
Improving climate predictions have profound socio-economic impacts. This study introduces a new land coupled data assimilation (LCDA) system for a coupled climate model. We demonstrate improved simulation of soil moisture and temperature in many global regions and throughout the soil layers. Furthermore, significant improvements are also found in reproducing the time evolution of the 2012 U.S. Midwest drought. The LCDA system provides the groundwork for future predictability studies.
Lingcheng Li, Gautam Bisht, Dalei Hao, and Lai-Yung Ruby Leung
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-242, https://doi.org/10.5194/essd-2023-242, 2023
Revised manuscript has not been submitted
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth System Modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-131, https://doi.org/10.5194/gmd-2023-131, 2023
Revised manuscript under review for GMD
Short summary
Short summary
We described the multivariate static background error covariance (B) for JEDI-MPAS 3DVar data assimilation system. With a tuned B parameters, the multivariate B gives a physically-balanced analysis increment fields in the single observation test framework. In the month-long cycling experiment with global 60 km mesh, the 3DVar with static B performs stable. Due to its simple workflow and minimal computational requirements, the JEDI-MPAS 3DVar can be useful for the research community.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-87, https://doi.org/10.5194/gmd-2023-87, 2023
Preprint under review for GMD
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for 9 climate models in an intercomparison project, providing solutions that aid in model development.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023, https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth system models. These updates include the ability to run the scheme on graphics processing units (GPUs), changes to the numerical description of precipitation, and a correction to the ice number. There are big improvements in the computational performance that can be achieved with GPU acceleration.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, https://doi.org/10.5194/gmd-15-8135-2022, 2022
Short summary
Short summary
We focus on the recent development of a state-of-the-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the western USA. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang
Geosci. Model Dev., 15, 5461–5480, https://doi.org/10.5194/gmd-15-5461-2022, https://doi.org/10.5194/gmd-15-5461-2022, 2022
Short summary
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022, https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary
Short summary
How sea spray aerosols may affect cloud and precipitation over the region by acting as ice-nucleating particles (INPs) is unknown. We explored the effects of INPs from marine aerosols on orographic cloud and precipitation for an atmospheric river event observed during the 2015 ACAPEX field campaign. The marine INPs enhance the formation of ice and snow, leading to less shallow warm clouds but more mixed-phase and deep clouds. This work suggests models need to consider the impacts of marine INPs.
Pinya Wang, Yang Yang, Huimin Li, Lei Chen, Ruijun Dang, Daokai Xue, Baojie Li, Jianping Tang, L. Ruby Leung, and Hong Liao
Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, https://doi.org/10.5194/acp-22-4705-2022, 2022
Short summary
Short summary
China is now suffering from both severe ozone (O3) pollution and heat events. We highlight that North China Plain is the hot spot of the co-occurrences of extremes in O3 and high temperatures in China. Such coupled extremes exhibit an increasing trend during 2014–2019 and will continue to increase until the middle of this century. And the coupled extremes impose more severe health impacts to human than O3 pollution occurring alone because of elevated O3 levels and temperatures.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Hong-Yi Li, Zeli Tan, Hongbo Ma, Zhenduo Zhu, Guta Wakbulcho Abeshu, Senlin Zhu, Sagy Cohen, Tian Zhou, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 665–688, https://doi.org/10.5194/hess-26-665-2022, https://doi.org/10.5194/hess-26-665-2022, 2022
Short summary
Short summary
We introduce a new multi-process river sediment module for Earth system models. Application and validation over the contiguous US indicate a satisfactory model performance over large river systems, including those heavily regulated by reservoirs. This new sediment module enables future modeling of the transportation and transformation of carbon and nutrients carried by the fine sediment along the river–ocean continuum to close the global carbon and nutrient cycles.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo
Geosci. Model Dev., 15, 199–218, https://doi.org/10.5194/gmd-15-199-2022, https://doi.org/10.5194/gmd-15-199-2022, 2022
Short summary
Short summary
Regional models are widely used to investigate aerosol climatic impacts. However, there are few studies examining the sensitivities of modeling results to regional domain size. In this study, the regional model is used to study the aerosol impacts on the East Asian summer monsoon system and focus on the modeling sensitivities to domain size. This study highlights the important impacts of domain size on regional modeling results of aerosol climatic impacts, which may not be limited to East Asia.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Mingshuai Zhang, Chun Zhao, Yuhan Yang, Qiuyan Du, Yonglin Shen, Shengfu Lin, Dasa Gu, Wenjing Su, and Cheng Liu
Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, https://doi.org/10.5194/gmd-14-6155-2021, 2021
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) can influence atmospheric chemistry and secondary pollutant formation. This study examines the performance of different versions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in modeling BVOCs and ozone and their sensitivities to vegetation distributions over eastern China. The results suggest more accurate vegetation distribution and measurements of BVOC emission fluxes are needed to reduce the uncertainties.
Paul A. Ullrich, Colin M. Zarzycki, Elizabeth E. McClenny, Marielle C. Pinheiro, Alyssa M. Stansfield, and Kevin A. Reed
Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021, https://doi.org/10.5194/gmd-14-5023-2021, 2021
Short summary
Short summary
TempestExtremes (TE) is a multifaceted framework for feature detection, tracking, and scientific analysis of regional or global Earth system datasets. Version 2.1 of TE now provides extensive support for nodal and areal features. This paper describes the algorithms that have been added to the TE framework since version 1.0 and gives several examples of how these can be combined to produce composite algorithms for evaluating and understanding atmospheric features.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Andrew Gettelman, Chieh-Chieh Chen, and Charles G. Bardeen
Atmos. Chem. Phys., 21, 9405–9416, https://doi.org/10.5194/acp-21-9405-2021, https://doi.org/10.5194/acp-21-9405-2021, 2021
Short summary
Short summary
The COVID-19 pandemic caused significant economic disruption in 2020 and severely impacted air traffic. We use a climate model to evaluate the effect of the reductions in aviation on climate in 2020. Contrails, in general, warm the planet, and COVID-19-related reductions in contrails cooled the land surface in 2020. The timing of reductions in aviation was important, and this may change how we think about the future effects of contrails.
Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung
Earth Syst. Sci. Data, 13, 827–856, https://doi.org/10.5194/essd-13-827-2021, https://doi.org/10.5194/essd-13-827-2021, 2021
Short summary
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Stefan Rahimi, Xiaohong Liu, Chun Zhao, Zheng Lu, and Zachary J. Lebo
Atmos. Chem. Phys., 20, 10911–10935, https://doi.org/10.5194/acp-20-10911-2020, https://doi.org/10.5194/acp-20-10911-2020, 2020
Short summary
Short summary
Dark particles emitted to the atmosphere can absorb sunlight and heat the air. As these particles settle, they may darken the surface, especially over snow-covered regions like the Rocky Mountains. This darkening of the surface may lead to changes in snowpack, affecting the local meteorology and hydrology. We seek to evaluate whether these light-absorbing particles more prominently affect this region through their atmospheric presence or their on-snow presence.
David Dziubanski, Kristie J. Franz, and William Gutowski
Hydrol. Earth Syst. Sci., 24, 2873–2894, https://doi.org/10.5194/hess-24-2873-2020, https://doi.org/10.5194/hess-24-2873-2020, 2020
Short summary
Short summary
We describe a socio-hydrologic model that couples an agent-based model (ABM) of human decision-making with a hydrologic model. We establish this model for a typical agricultural watershed in Iowa, USA, and simulate the evolution of large discharge events over a 47-year period under changing land use. Using this modeling approach, relationships between seemingly unrelated variables such as crop markets or crop yields and local peak flow trends are quantified.
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, https://doi.org/10.5194/acp-20-5923-2020, 2020
Short summary
Short summary
Analysis of multiple numerical experiments over the Himalayas and Tibetan Plateau (TP) shows that the complex topography results in 50 % stronger overall cross-Himalayan transport during the pre-monsoon season primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed in some valleys and deeper valley channels associated with larger transported BC mass volume, which leads to 30–50 % stronger BC radiative heating over the TP.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
Yi Zeng, Minghuai Wang, Chun Zhao, Siyu Chen, Zhoukun Liu, Xin Huang, and Yang Gao
Geosci. Model Dev., 13, 2125–2147, https://doi.org/10.5194/gmd-13-2125-2020, https://doi.org/10.5194/gmd-13-2125-2020, 2020
Short summary
Short summary
Dust aerosol can impact many processes of the Earth system, but large uncertainties still remain in dust simulations. In this study, we investigated dust simulation sensitivity to two dust emission schemes and three dry deposition schemes using WRF-Chem. An optimal combination of dry deposition scheme and dust emission scheme has been identified to best simulate the dust storm in comparison with observation. Our results highlight the importance of dry deposition schemes for dust simulation.
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Short summary
Simulated diurnal PM2.5 with WRF-Chem is primarily controlled by planetary boundary layer (PBL) mixing and emission variations. Modeling bias is likely primarily due to inefficient PBL mixing of primary PM2.5 during the night. The increase in PBL mixing strength during the night can significantly reduce biases. This study underscores that more effort is needed to improve the boundary mixing processes of pollutants in models with observations of PBL structure and mixing fluxes besides PBL height.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Qinjian Jin, Yuanyuan Ma, and Ben Yang
Atmos. Chem. Phys., 20, 1507–1529, https://doi.org/10.5194/acp-20-1507-2020, https://doi.org/10.5194/acp-20-1507-2020, 2020
Short summary
Short summary
This study investigates intercontinental transport of dust plums and distribution characteristics of dust at different altitudes over the Tibetan Plateau (TP). The results show that dust particles are emitted into atmosphere and then transport to the TP. The East Asian dust trasnports southward and is lifted up to the TP in northern slop, while the North Afican dust and Middle East dust transport eastward and concentrate in both northern and southern slops, then is lifted up to the TP.
Adeyemi A. Adebiyi, Jasper F. Kok, Yang Wang, Akinori Ito, David A. Ridley, Pierre Nabat, and Chun Zhao
Atmos. Chem. Phys., 20, 829–863, https://doi.org/10.5194/acp-20-829-2020, https://doi.org/10.5194/acp-20-829-2020, 2020
Short summary
Short summary
Although atmospheric dust particles produce significant impacts on the Earth system, most climate models still have difficulty representing the basic processes that affect these particles. In this study, we present new constraints on dust properties that consistently outperform the conventional climate models, when compared to independent measurements. As a result, our constraints can be used to improve climate models or serve as an alternative in constraining dust impacts on the Earth system.
Edward Gryspeerdt, Johannes Mülmenstädt, Andrew Gettelman, Florent F. Malavelle, Hugh Morrison, David Neubauer, Daniel G. Partridge, Philip Stier, Toshihiko Takemura, Hailong Wang, Minghuai Wang, and Kai Zhang
Atmos. Chem. Phys., 20, 613–623, https://doi.org/10.5194/acp-20-613-2020, https://doi.org/10.5194/acp-20-613-2020, 2020
Short summary
Short summary
Aerosol radiative forcing is a key uncertainty in our understanding of the human forcing of the climate, with much of this uncertainty coming from aerosol impacts on clouds. Observation-based estimates of the radiative forcing are typically smaller than those from global models, but it is not clear if they are more reliable. This work shows how the forcing components in global climate models can be identified, highlighting similarities between the two methods and areas for future investigation.
Zhen Liu, Yi Ming, Chun Zhao, Ngar Cheung Lau, Jianping Guo, Massimo Bollasina, and Steve Hung Lam Yim
Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020, https://doi.org/10.5194/acp-20-223-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019, https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Short summary
This study investigates aerosol chemical compositions and relative contributions to total aerosols in the western US. The results show that trans-Pacific aerosols have a maximum concentration in the boreal spring, with the greatest contribution from dust. Over western North America, the trans-Pacific aerosols dominate the column-integrated aerosol mass and number concentration. However, near the surface, aerosols mainly originated from local emissions.
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary
Short summary
Ozone pollution has become severe in China, and extremely high ozone episodes occurred in summer 2017 over the North China Plain. While meteorology impacts are clear, we find that enhanced biogenic emissions, previously ignored by the community, driven by high vapor pressure deficit, land cover change and urban landscape contribute substantially to ozone formation. This study has significant implications for ozone pollution control with more frequent heat waves and urbanization growth in future.
Lei Lin, Andrew Gettelman, Yangyang Xu, Chenglai Wu, Zhili Wang, Nan Rosenbloom, Susan C. Bates, and Wenjie Dong
Geosci. Model Dev., 12, 3773–3793, https://doi.org/10.5194/gmd-12-3773-2019, https://doi.org/10.5194/gmd-12-3773-2019, 2019
Short summary
Short summary
Here we evaluate the performance of the Community Atmosphere Model version 6 (CAM6) released in 2018, with the default 1º horizontal resolution and a higher-resolution simulation (approximately 0.25º), against various precipitation observational datasets over Asia. With the prognostic treatment of precipitation processes (which is missing in CAM5) and the new microphysics module, CAM6 is able to better simulate climatological mean and extreme precipitation over Asia.
Chun Zhao, Mingyue Xu, Yu Wang, Meixin Zhang, Jianping Guo, Zhiyuan Hu, L. Ruby Leung, Michael Duda, and William Skamarock
Geosci. Model Dev., 12, 2707–2726, https://doi.org/10.5194/gmd-12-2707-2019, https://doi.org/10.5194/gmd-12-2707-2019, 2019
Short summary
Short summary
Simulations at global uniform and variable resolutions share similar characteristics of precipitation and wind in the refined region. The experiments reveal the significant impacts of resolution on simulating the distribution and intensity of precipitation and updrafts. This study provides evidence supporting the use of convection-permitting global variable-resolution simulations to study extreme precipitation.
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019, https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
Short summary
A new tool is evaluated in which the climate and surface mass balance (SMB) of the Greenland ice sheet are resolved at 55 and 28 km resolution, while the rest of the globe is modelled at ~110 km. The local refinement of resolution leads to improved accumulation (SMB > 0) compared to observations; however ablation (SMB < 0) is deteriorated in some regions. This is attributed to changes in cloud cover and a reduced effectiveness of a model-specific vertical downscaling technique.
Edward Gryspeerdt, Tom Goren, Odran Sourdeval, Johannes Quaas, Johannes Mülmenstädt, Sudhakar Dipu, Claudia Unglaub, Andrew Gettelman, and Matthew Christensen
Atmos. Chem. Phys., 19, 5331–5347, https://doi.org/10.5194/acp-19-5331-2019, https://doi.org/10.5194/acp-19-5331-2019, 2019
Short summary
Short summary
The liquid water path (LWP) is the strongest control on cloud albedo, such that a small change in LWP can have a large radiative impact. By changing the droplet number concentration (Nd) aerosols may be able to change the LWP, but the sign and magnitude of the effect is unclear. This work uses satellite data to investigate the relationship between Nd and LWP at a global scale and in response to large aerosol perturbations, suggesting that a strong decrease in LWP at high Nd may be overestimated.
Colin M. Zarzycki, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Paul A. Ullrich, David M. Hall, Mark A. Taylor, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Xi Chen, Lucas Harris, Marco Giorgetta, Daniel Reinert, Christian Kühnlein, Robert Walko, Vivian Lee, Abdessamad Qaddouri, Monique Tanguay, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Sang-Hun Park, Joseph B. Klemp, and William C. Skamarock
Geosci. Model Dev., 12, 879–892, https://doi.org/10.5194/gmd-12-879-2019, https://doi.org/10.5194/gmd-12-879-2019, 2019
Short summary
Short summary
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized supercell test case. Supercells are storm-scale weather phenomena that are a key target for next-generation, non-hydrostatic weather prediction models. We show that the dynamical cores of most global numerical models converge between approximately 1 and 0.5 km grid spacing for this test, although differences in final solution exist, particularly due to differing grid discretizations and numerical diffusion.
Junxi Zhang, Yang Gao, L. Ruby Leung, Kun Luo, Huan Liu, Jean-Francois Lamarque, Jianren Fan, Xiaohong Yao, Huiwang Gao, and Tatsuya Nagashima
Atmos. Chem. Phys., 19, 887–900, https://doi.org/10.5194/acp-19-887-2019, https://doi.org/10.5194/acp-19-887-2019, 2019
Short summary
Short summary
ACCMIP simulations were used to study NOy deposition over East Asia in the future. Both dry and wet NOy deposition show significant decreases in the 2100s under RCP4.5 and RCP8.5 due to large anthropogenic emission reduction. The changes in climate only significantly affect the wet deposition primarily linked to changes in precipitation. Over the coastal seas of China, weaker transport of NOy from land due to emission reduction infers a larger impact from shipping and lightning emissions.
Ge Zhang, Yang Gao, Wenju Cai, L. Ruby Leung, Shuxiao Wang, Bin Zhao, Minghuai Wang, Huayao Shan, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 565–576, https://doi.org/10.5194/acp-19-565-2019, https://doi.org/10.5194/acp-19-565-2019, 2019
Short summary
Short summary
Based on observed data, this study reveals a distinct seesaw feature of abnormally high and low PM2.5 concentrations in December 2015 and January 2016 over North China. The mechanism of the seesaw pattern was found to be linked to a super El Niño and the Arctic Oscillation (AO). During the mature phase of El Niño in December 2015, the weakened East Asian winter monsoon favors strong haze formation; however, the circulation pattern was reversed in the next month due to the phase change of the AO.
Michael A. Brunke, John J. Cassano, Nicholas Dawson, Alice K. DuVivier, William J. Gutowski Jr., Joseph Hamman, Wieslaw Maslowski, Bart Nijssen, J. E. Jack Reeves Eyre, José C. Renteria, Andrew Roberts, and Xubin Zeng
Geosci. Model Dev., 11, 4817–4841, https://doi.org/10.5194/gmd-11-4817-2018, https://doi.org/10.5194/gmd-11-4817-2018, 2018
Short summary
Short summary
The Regional Arctic System Model version 1 (RASM1) was recently developed for high-resolution simulation of the coupled atmosphere–ocean–sea ice–land system in the Arctic. Its simulation of the atmosphere–land–ocean–sea ice interface is evaluated by using the spread in recent reanalyses and a global Earth system model as baselines. Such comparisons reveal that RASM1 simulates precipitation well and improves the simulation of surface fluxes over sea ice.
Junxi Zhang, Yang Gao, Kun Luo, L. Ruby Leung, Yang Zhang, Kai Wang, and Jianren Fan
Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, https://doi.org/10.5194/acp-18-9861-2018, 2018
Short summary
Short summary
We used a regional model to investigate the impact of atmosphere with high temperature and low wind speed on ozone concentration. When these compound events (heat waves and stagnant weather) occur simultaneously, a striking ozone enhancement is revealed. This type of compound event is projected to increase more dominantly compared to single events in the future over the US, Europe, and China, implying the importance of reducing emissions in order to alleviate the impact from the compound events.
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary
Short summary
ARTMIP (Atmospheric River Tracking Method Intercomparison Project) is a community effort with the explicit goal of understanding the uncertainties, and the implications of those uncertainties, in atmospheric river science solely due to detection algorithm. ARTMIP strives to quantify these differences and provide guidance on appropriate algorithmic choices for the science question posed. Project goals, experimental design, and preliminary results are provided.
Kai Zhang, Philip J. Rasch, Mark A. Taylor, Hui Wan, Ruby Leung, Po-Lun Ma, Jean-Christophe Golaz, Jon Wolfe, Wuyin Lin, Balwinder Singh, Susannah Burrows, Jin-Ho Yoon, Hailong Wang, Yun Qian, Qi Tang, Peter Caldwell, and Shaocheng Xie
Geosci. Model Dev., 11, 1971–1988, https://doi.org/10.5194/gmd-11-1971-2018, https://doi.org/10.5194/gmd-11-1971-2018, 2018
Short summary
Short summary
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model.
Longtao Wu, Yu Gu, Jonathan H. Jiang, Hui Su, Nanpeng Yu, Chun Zhao, Yun Qian, Bin Zhao, Kuo-Nan Liou, and Yong-Sang Choi
Atmos. Chem. Phys., 18, 5529–5547, https://doi.org/10.5194/acp-18-5529-2018, https://doi.org/10.5194/acp-18-5529-2018, 2018
Peter A. Bogenschutz, Andrew Gettelman, Cecile Hannay, Vincent E. Larson, Richard B. Neale, Cheryl Craig, and Chih-Chieh Chen
Geosci. Model Dev., 11, 235–255, https://doi.org/10.5194/gmd-11-235-2018, https://doi.org/10.5194/gmd-11-235-2018, 2018
Short summary
Short summary
This paper compares results of developmental versions of a widely used climate model. The simulations only differ in the choice of how to model the sub-grid-scale physics in the atmospheric model. This work is novel because it is the first time that a particular physics option has been tested in a fully coupled climate model. Here, we demonstrate that this physics option has the ability to produce credible coupled climate simulations, with improved metrics in certain fields.
Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner
Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, https://doi.org/10.5194/gmd-10-4477-2017, 2017
Short summary
Short summary
Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Joshua P. French, Seth McGinnis, and Armin Schwartzman
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 67–92, https://doi.org/10.5194/ascmo-3-67-2017, https://doi.org/10.5194/ascmo-3-67-2017, 2017
Short summary
Short summary
We assess the mean temperature effect of global and regional climate model combinations for the North American Regional Climate Change Assessment Program using varying classes of linear regression models, including possible interaction effects. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We conclusively show that accounting for multiple comparisons is important for making proper inference.
Longtao Wu, Hui Su, Olga V. Kalashnikova, Jonathan H. Jiang, Chun Zhao, Michael J. Garay, James R. Campbell, and Nanpeng Yu
Atmos. Chem. Phys., 17, 7291–7309, https://doi.org/10.5194/acp-17-7291-2017, https://doi.org/10.5194/acp-17-7291-2017, 2017
Short summary
Short summary
The WRF-Chem simulation successfully captures aerosol variations in the cold season in the San Joaquin Valley (SJV) but has poor performance in the warm season. High-resolution model simulation can better resolve nonhomogeneous distribution of anthropogenic emissions in urban areas, resulting in better simulation of aerosols in the cold season in the SJV. Poor performance of the WRF-Chem model in the warm season in the SJV is mainly due to misrepresentation of dust emission and vertical mixing.
Shi Zhong, Yun Qian, Chun Zhao, Ruby Leung, Hailong Wang, Ben Yang, Jiwen Fan, Huiping Yan, Xiu-Qun Yang, and Dongqing Liu
Atmos. Chem. Phys., 17, 5439–5457, https://doi.org/10.5194/acp-17-5439-2017, https://doi.org/10.5194/acp-17-5439-2017, 2017
Short summary
Short summary
An online climate–chemistry coupled model (WRF-Chem) is integrated for 5 years at cloud-permitting scale to quantify the impacts of urbanization-induced changes in land cover and pollutants emission on regional climate in the Yangtze River Delta region in eastern China. Urbanization over this region increases the frequency of extreme precipitation and heat wave in summer. The results could help China government in making policies in mitigating the environmental impact of urbanization.
Huan Yao, Yu Song, Mingxu Liu, Scott Archer-Nicholls, Douglas Lowe, Gordon McFiggans, Tingting Xu, Pin Du, Jianfeng Li, Yusheng Wu, Min Hu, Chun Zhao, and Tong Zhu
Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205-2017, https://doi.org/10.5194/acp-17-5205-2017, 2017
Chenglai Wu, Xiaohong Liu, Minghui Diao, Kai Zhang, Andrew Gettelman, Zheng Lu, Joyce E. Penner, and Zhaohui Lin
Atmos. Chem. Phys., 17, 4731–4749, https://doi.org/10.5194/acp-17-4731-2017, https://doi.org/10.5194/acp-17-4731-2017, 2017
Short summary
Short summary
This study utilizes a novel approach to directly compare the CAM5-simulated cloud macro- and microphysics with the collocated HIPPO observations for the period of 2009 to 2011. The model cannot capture the large spatial variabilities of observed RH, which is responsible for much of the model missing low-level warm clouds. A large portion of the RH bias results from the discrepancy in water vapor. The model underestimates the observed number concentration and ice water content.
Andrew Gettelman, Chih-Chieh Chen, Mark Z. Jacobson, Mary A. Cameron, Donald J. Wuebbles, and Arezoo Khodayari
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-218, https://doi.org/10.5194/acp-2017-218, 2017
Revised manuscript not accepted
Short summary
Short summary
Aviation emissions create several impacts on climate. Condensation trails (contrails) are aviation produced cirrus clouds. Aircraft also emit aerosols, including soot (black carbon) and sulfate. Analyses of the climate effects of 2050 aviation emissions have been conducted with two coupled Chemistry Climate Models (CCMs) including experiments with coupled ocean models.
Xiangyu Luo, Hong-Yi Li, L. Ruby Leung, Teklu K. Tesfa, Augusto Getirana, Fabrice Papa, and Laura L. Hess
Geosci. Model Dev., 10, 1233–1259, https://doi.org/10.5194/gmd-10-1233-2017, https://doi.org/10.5194/gmd-10-1233-2017, 2017
Short summary
Short summary
This study shows that alleviating vegetation-caused biases in DEM data, refining channel cross-sectional geometry and Manning roughness coefficients, as well as accounting for backwater effects can effectively improve the modeling of streamflow, river stages and flood extent in the Amazon Basin. The obtained understanding could be helpful to hydrological modeling in basins with evident inundation, which has important implications for improving land–atmosphere interactions in Earth system models.
Paul A. Ullrich and Colin M. Zarzycki
Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, https://doi.org/10.5194/gmd-10-1069-2017, 2017
Short summary
Short summary
Automated pointwise feature tracking is used for objective identification and tracking of meteorological features, such as extratropical cyclones, tropical cyclones and tropical easterly waves, and has emerged as an important and desirable data-processing capability in climate science. In the interest of exploring tracking functionality, this paper introduces a framework for the development of robust tracking algorithms that is useful for intercomparison and optimization of tracking schemes.
Teklu K. Tesfa and Lai-Yung Ruby Leung
Geosci. Model Dev., 10, 873–888, https://doi.org/10.5194/gmd-10-873-2017, https://doi.org/10.5194/gmd-10-873-2017, 2017
Short summary
Short summary
Motivated by the significant topographic influence on land surface processes, this study explored two methods to discretize watersheds into two types of subgrid structures to capture spatial heterogeneity for land surface models. Adopting geomorphologic concepts in watershed discretization yields improved capability in capturing subgrid topographic heterogeneity, which also allowed climatic and land cover variability to be better represented with a nominal increase in computational requirements.
Jiwen Fan, L. Ruby Leung, Daniel Rosenfeld, and Paul J. DeMott
Atmos. Chem. Phys., 17, 1017–1035, https://doi.org/10.5194/acp-17-1017-2017, https://doi.org/10.5194/acp-17-1017-2017, 2017
Short summary
Short summary
How orographic mixed-phase clouds respond to changes in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) is highly uncertain. We conducted this study to improve understanding of these processes. We found a new mechanism through which CCN can invigorate orographic mixed-phase clouds and drastically intensify snow precipitation when CCN concentrations are high. Our findings have very important implications for orographic precipitation in polluted regions.
David A. Ridley, Colette L. Heald, Jasper F. Kok, and Chun Zhao
Atmos. Chem. Phys., 16, 15097–15117, https://doi.org/10.5194/acp-16-15097-2016, https://doi.org/10.5194/acp-16-15097-2016, 2016
Short summary
Short summary
Mineral dust aerosol affects climate through interaction with radiation and clouds, human health through contribution to particulate matter, and ecosystem health through nutrient transport and deposition. In this study, we use satellite and in situ retrievals to derive an observational estimate of the global dust AOD with which evaluate modeled dust AOD. Differences in the seasonality and regional distribution of dust AOD between observations and models are highlighted.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Eric Gilleland, Melissa Bukovsky, Christopher L. Williams, Seth McGinnis, Caspar M. Ammann, Barbara G. Brown, and Linda O. Mearns
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 137–153, https://doi.org/10.5194/ascmo-2-137-2016, https://doi.org/10.5194/ascmo-2-137-2016, 2016
Short summary
Short summary
Several climate models are evaluated under current climate conditions to determine how well they are able to capture frequencies of severe-storm environments (conditions conducive for the formation of hail storms, tornadoes, etc.). They are found to underpredict the spatial extent of high-frequency areas (such as tornado alley), as well as underpredict the frequencies in the areas.
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
Chih-Chieh Chen and Andrew Gettelman
Atmos. Chem. Phys., 16, 7317–7333, https://doi.org/10.5194/acp-16-7317-2016, https://doi.org/10.5194/acp-16-7317-2016, 2016
Short summary
Short summary
The impact of aviation emissions through 2050 is simulated by a comprehensive global climate model. Four different future emission scenarios of the same flight tracks are considered. The results reveal that the global radiative forcing of contrail cirrus is positive and can increase by a factor of 7 in 2050 from the 2006 level. The aviation aerosols can produce negative forcing, mainly over the oceans, and increase by a factor of 4 in 2050 from the 2006 level.
Chun Zhao, Maoyi Huang, Jerome D. Fast, Larry K. Berg, Yun Qian, Alex Guenther, Dasa Gu, Manish Shrivastava, Ying Liu, Stacy Walters, Gabriele Pfister, Jiming Jin, John E. Shilling, and Carsten Warneke
Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, https://doi.org/10.5194/gmd-9-1959-2016, 2016
Short summary
Short summary
In this study, the latest version of MEGAN is coupled within CLM4 in WRF-Chem. In this implementation, MEGAN shares a consistent vegetation map with CLM4. This improved modeling framework is used to investigate the impact of two land surface schemes on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
Zhiyuan Hu, Chun Zhao, Jianping Huang, L. Ruby Leung, Yun Qian, Hongbin Yu, Lei Huang, and Olga V. Kalashnikova
Geosci. Model Dev., 9, 1725–1746, https://doi.org/10.5194/gmd-9-1725-2016, https://doi.org/10.5194/gmd-9-1725-2016, 2016
Short summary
Short summary
This study conducts the simulation of WRF-Chem with the quasi-global configuration for 2010–2014, and evaluates the simulation with multiple observation datasets for the first time. This study demonstrates that the WRF-Chem quasi-global simulation can be used for investigating trans-Pacific transport of aerosols and providing reasonable inflow chemical boundaries for the western USA to further understand the impact of transported pollutants on the regional air quality and climate.
Shipeng Zhang, Minghuai Wang, Steven J. Ghan, Aijun Ding, Hailong Wang, Kai Zhang, David Neubauer, Ulrike Lohmann, Sylvaine Ferrachat, Toshihiko Takeamura, Andrew Gettelman, Hugh Morrison, Yunha Lee, Drew T. Shindell, Daniel G. Partridge, Philip Stier, Zak Kipling, and Congbin Fu
Atmos. Chem. Phys., 16, 2765–2783, https://doi.org/10.5194/acp-16-2765-2016, https://doi.org/10.5194/acp-16-2765-2016, 2016
Short summary
Short summary
The variation of aerosol indirect effects (AIE) in several climate models is investigated across different dynamical regimes. Regimes with strong large-scale ascent are shown to be as important as stratocumulus regimes in studying AIE. AIE over regions with high monthly large-scale surface precipitation rate contributes the most to the total aerosol indirect forcing. These results point to the need to reduce the uncertainty in AIE in different dynamical regimes.
Colin M. Zarzycki, Kevin A. Reed, Julio T. Bacmeister, Anthony P. Craig, Susan C. Bates, and Nan A. Rosenbloom
Geosci. Model Dev., 9, 779–788, https://doi.org/10.5194/gmd-9-779-2016, https://doi.org/10.5194/gmd-9-779-2016, 2016
Short summary
Short summary
This paper highlights the sensitivity of simulated tropical cyclone climatology to the choice of ocean coupling grid in high-resolution climate simulations. When computations of atmosphere–ocean interactions are carried out on the coarser grid in the system, key quantities such as surface wind drag and heat fluxes are incorrectly calculated. In the case of a coarser ocean grid, significantly stronger cyclone winds result, due to misaligned frictional vectors in the atmospheric dynamical core.
Kai Zhang, Chun Zhao, Hui Wan, Yun Qian, Richard C. Easter, Steven J. Ghan, Koichi Sakaguchi, and Xiaohong Liu
Geosci. Model Dev., 9, 607–632, https://doi.org/10.5194/gmd-9-607-2016, https://doi.org/10.5194/gmd-9-607-2016, 2016
Short summary
Short summary
A sub-grid treatment based on Weibull distribution is introduced to CAM5 to take into account the impact of unresolved variability of surface wind speed on sea salt and dust emissions. Simulations show that sub-grid wind variability has relatively small impacts on the global mean sea salt emissions, but considerable influence on dust emissions. Dry convective eddies and mesoscale flows associated with complex topography are the major causes of dust emission enhancement.
Y. Feng, V. R. Kotamarthi, R. Coulter, C. Zhao, and M. Cadeddu
Atmos. Chem. Phys., 16, 247–264, https://doi.org/10.5194/acp-16-247-2016, https://doi.org/10.5194/acp-16-247-2016, 2016
Short summary
Short summary
Aerosol radiative effects are of great importance for climate studies over South Asia, such as the weakening of the South Asian monsoon in the 20th century. This study reveals the altitude dependence of commonly underestimated aerosol radiative properties over this region. It further demonstrates the importance of constraining aerosol vertical distributions and partitioning of scattering vs absorbing aerosols in simulating the subsequent regional dynamical and hydrological responses to aerosols.
K. Thayer-Calder, A. Gettelman, C. Craig, S. Goldhaber, P. A. Bogenschutz, C.-C. Chen, H. Morrison, J. Höft, E. Raut, B. M. Griffin, J. K. Weber, V. E. Larson, M. C. Wyant, M. Wang, Z. Guo, and S. J. Ghan
Geosci. Model Dev., 8, 3801–3821, https://doi.org/10.5194/gmd-8-3801-2015, https://doi.org/10.5194/gmd-8-3801-2015, 2015
Short summary
Short summary
This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that is implemented in CAM v5.3. We show mean climate and tropical variability results from global simulations. The model has a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. We also show estimation of computational expense and sensitivity to number of subcolumns.
A. Gettelman
Atmos. Chem. Phys., 15, 12397–12411, https://doi.org/10.5194/acp-15-12397-2015, https://doi.org/10.5194/acp-15-12397-2015, 2015
Short summary
Short summary
Aerosols affect cloud properties, and the radiative effects of clouds. Human emissions of aerosol particles and precursors may alter the radiative effects of clouds. This is generally a cooling effect that offsets other warming effects of human emissions of gases. Simulating these aerosol effects on clouds are highly dependent on the formulation of the microphysical (cloud droplet scale) processes. This work uses model simulations to show these effects are large, and depend on certain processes.
C. He, K.-N. Liou, Y. Takano, R. Zhang, M. Levy Zamora, P. Yang, Q. Li, and L. R. Leung
Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, https://doi.org/10.5194/acp-15-11967-2015, 2015
W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu
Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015, https://doi.org/10.5194/acp-15-5405-2015, 2015
Short summary
Short summary
This paper investigates 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (CAM4/CLM4) with a 0.23°×0.31° resolution for simulations over 6 years. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations.
Y. Fang, C. Liu, and L. R. Leung
Geosci. Model Dev., 8, 781–789, https://doi.org/10.5194/gmd-8-781-2015, https://doi.org/10.5194/gmd-8-781-2015, 2015
Short summary
Short summary
1. A gradient projection method was used to reduce the computation time of carbon-nitrogen spin-up processes in CLM4.
2. Point-scale simulations showed that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability.
3. The instability issue is resolved after the hydrology scheme in CLM4 is replaced with a flow model for variably saturated porous media.
C. Zhao, Z. Hu, Y. Qian, L. Ruby Leung, J. Huang, M. Huang, J. Jin, M. G. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, https://doi.org/10.5194/acp-14-11475-2014, 2014
S. Yu, R. Mathur, J. Pleim, D. Wong, R. Gilliam, K. Alapaty, C. Zhao, and X. Liu
Atmos. Chem. Phys., 14, 11247–11285, https://doi.org/10.5194/acp-14-11247-2014, https://doi.org/10.5194/acp-14-11247-2014, 2014
T. Eidhammer, H. Morrison, A. Bansemer, A. Gettelman, and A. J. Heymsfield
Atmos. Chem. Phys., 14, 10103–10118, https://doi.org/10.5194/acp-14-10103-2014, https://doi.org/10.5194/acp-14-10103-2014, 2014
H. Wan, P. J. Rasch, K. Zhang, Y. Qian, H. Yan, and C. Zhao
Geosci. Model Dev., 7, 1961–1977, https://doi.org/10.5194/gmd-7-1961-2014, https://doi.org/10.5194/gmd-7-1961-2014, 2014
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka
Atmos. Chem. Phys., 14, 8701–8721, https://doi.org/10.5194/acp-14-8701-2014, https://doi.org/10.5194/acp-14-8701-2014, 2014
D. Barahona, A. Molod, J. Bacmeister, A. Nenes, A. Gettelman, H. Morrison, V. Phillips, and A. Eichmann
Geosci. Model Dev., 7, 1733–1766, https://doi.org/10.5194/gmd-7-1733-2014, https://doi.org/10.5194/gmd-7-1733-2014, 2014
T. K. Tesfa, H.-Y. Li, L. R. Leung, M. Huang, Y. Ke, Y. Sun, and Y. Liu
Geosci. Model Dev., 7, 947–963, https://doi.org/10.5194/gmd-7-947-2014, https://doi.org/10.5194/gmd-7-947-2014, 2014
P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Sørensen, M. A. Taylor, and M. A. Tolstykh
Geosci. Model Dev., 7, 105–145, https://doi.org/10.5194/gmd-7-105-2014, https://doi.org/10.5194/gmd-7-105-2014, 2014
J. Fan, L. R. Leung, P. J. DeMott, J. M. Comstock, B. Singh, D. Rosenfeld, J. M. Tomlinson, A. White, K. A. Prather, P. Minnis, J. K. Ayers, and Q. Min
Atmos. Chem. Phys., 14, 81–101, https://doi.org/10.5194/acp-14-81-2014, https://doi.org/10.5194/acp-14-81-2014, 2014
C.-C. Chen and A. Gettelman
Atmos. Chem. Phys., 13, 12525–12536, https://doi.org/10.5194/acp-13-12525-2013, https://doi.org/10.5194/acp-13-12525-2013, 2013
Y. Sun, Z. Hou, M. Huang, F. Tian, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 17, 4995–5011, https://doi.org/10.5194/hess-17-4995-2013, https://doi.org/10.5194/hess-17-4995-2013, 2013
K. N. Liou, Y. Gu, L. R. Leung, W. L. Lee, and R. G. Fovell
Atmos. Chem. Phys., 13, 11709–11721, https://doi.org/10.5194/acp-13-11709-2013, https://doi.org/10.5194/acp-13-11709-2013, 2013
N. Voisin, L. Liu, M. Hejazi, T. Tesfa, H. Li, M. Huang, Y. Liu, and L. R. Leung
Hydrol. Earth Syst. Sci., 17, 4555–4575, https://doi.org/10.5194/hess-17-4555-2013, https://doi.org/10.5194/hess-17-4555-2013, 2013
Y. Fang, M. Huang, C. Liu, H. Li, and L. R. Leung
Geosci. Model Dev., 6, 1977–1988, https://doi.org/10.5194/gmd-6-1977-2013, https://doi.org/10.5194/gmd-6-1977-2013, 2013
C. Zhao, X. Liu, Y. Qian, J. Yoon, Z. Hou, G. Lin, S. McFarlane, H. Wang, B. Yang, P.-L. Ma, H. Yan, and J. Bao
Atmos. Chem. Phys., 13, 10969–10987, https://doi.org/10.5194/acp-13-10969-2013, https://doi.org/10.5194/acp-13-10969-2013, 2013
C. Zhao, S. Chen, L. R. Leung, Y. Qian, J. F. Kok, R. A. Zaveri, and J. Huang
Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, https://doi.org/10.5194/acp-13-10733-2013, 2013
A. Gettelman, H. Morrison, C. R. Terai, and R. Wood
Atmos. Chem. Phys., 13, 9855–9867, https://doi.org/10.5194/acp-13-9855-2013, https://doi.org/10.5194/acp-13-9855-2013, 2013
N. Voisin, H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung
Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, https://doi.org/10.5194/hess-17-3605-2013, 2013
Y. Ke, L. R. Leung, M. Huang, and H. Li
Geosci. Model Dev., 6, 1609–1622, https://doi.org/10.5194/gmd-6-1609-2013, https://doi.org/10.5194/gmd-6-1609-2013, 2013
H. Wan, P. J. Rasch, K. Zhang, J. Kazil, and L. R. Leung
Geosci. Model Dev., 6, 861–874, https://doi.org/10.5194/gmd-6-861-2013, https://doi.org/10.5194/gmd-6-861-2013, 2013
K. A. Cummings, T. L. Huntemann, K. E. Pickering, M. C. Barth, W. C. Skamarock, H. Höller, H.-D. Betz, A. Volz-Thomas, and H. Schlager
Atmos. Chem. Phys., 13, 2757–2777, https://doi.org/10.5194/acp-13-2757-2013, https://doi.org/10.5194/acp-13-2757-2013, 2013
S. Kalenderski, G. Stenchikov, and C. Zhao
Atmos. Chem. Phys., 13, 1999–2014, https://doi.org/10.5194/acp-13-1999-2013, https://doi.org/10.5194/acp-13-1999-2013, 2013
Related subject area
Atmospheric sciences
Simulations of 7Be and 10Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates
Comprehensive evaluation of typical planetary boundary layer (PBL) parameterization schemes in China – Part 2: Influence of uncertainty factors
A mountain-induced moist baroclinic wave test case for the dynamical cores of atmospheric general circulation models
The effect of emission source chemical profiles on simulated PM2.5 components: sensitivity analysis with the Community Multiscale Air Quality (CMAQ) modeling system version 5.0.2
Comprehensive evaluation of typical planetary boundary layer (PBL) parameterization schemes in China – Part 1: Understanding expressiveness of schemes for different regions from the mechanism perspective
Evaluating 3 decades of precipitation in the Upper Colorado River basin from a high-resolution regional climate model
Implementation of a satellite-based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data
The capabilities of the adjoint of GEOS-Chem model to support HEMCO emission inventories and MERRA-2 meteorological data
Rapid O3 assimilations – Part 1: Background and local contributions to tropospheric O3 changes in China in 2015–2020
Description and evaluation of the new UM–UKCA (vn11.0) Double Extended Stratospheric–Tropospheric (DEST vn1.0) scheme for comprehensive modelling of halogen chemistry in the stratosphere
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, variational mode decomposition, principal component analysis, and random forest: VMD-PCA-RF (version 1.0.0)
Description and performance of a sectional aerosol microphysical model in the Community Earth System Model (CESM2)
A simplified non-linear chemistry transport model for analyzing NO2 column observations: STILT–NOx
The Hydro-ABC model (Version 2.0): a simplified convective-scale model with moist dynamics
Rapid Adaptive Optimization Model for Atmospheric Chemistry (ROMAC) v1.0
A standardized methodology for the validation of air quality forecast applications (F-MQO): lessons learnt from its application across Europe
Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality research in Africa
A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for emission estimates: system development and application
Evaluation of vertically resolved longwave radiation in SPARTACUS-Urban 0.7.3 and the sensitivity to urban surface temperatures
Key factors for quantitative precipitation nowcasting using ground weather radar data based on deep learning
QES-Plume v1.0: a Lagrangian dispersion model
A two-way coupled regional urban–street network air quality model system for Beijing, China
Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere
Emulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution
Evaluating WRF-GC v2.0 predictions of boundary layer height and vertical ozone profile during the 2021 TRACER-AQ campaign in Houston, Texas
An optimisation method to improve modelling of wet deposition in atmospheric transport models: applied to FLEXPART v10.4
Modelling concentration heterogeneities in streets using the street-network model MUNICH
Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0
J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Use of threshold parameter variation for tropical cyclone tracking
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemical transport model using Cloud-J v7.3e
Plume detection and emission estimate for biomass burning plumes from TROPOMI carbon monoxide observations using APE v1.1
CHEEREIO 1.0: a versatile and user-friendly ensemble-based chemical data assimilation and emissions inversion platform for the GEOS-Chem chemical transport model
A method to derive Fourier–wavelet spectra for the characterization of global-scale waves in the mesosphere and lower thermosphere and its MATLAB and Python software (fourierwavelet v1.1)
Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met.3D (1.6.0-multivar1)
A global grid model for the estimation of zenith tropospheric delay considering the variations at different altitudes
Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
Evaluation of surface shortwave downward radiation forecasts by the numerical weather prediction model AROME
A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
The development and validation of the Inhomogeneous Wind Scheme for Urban Street (IWSUS-v1)
GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10)
Variability and combination as an ensemble of mineral dust forecasts during the 2021 CADDIWA experiment using the WRF 3.7.1 and CHIMERE v2020r3 models
Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6833–6856, https://doi.org/10.5194/gmd-16-6833-2023, https://doi.org/10.5194/gmd-16-6833-2023, 2023
Short summary
Short summary
In addition to the dominant role of the PBL scheme on the results of the meteorological field, many factors in the model are influenced by large uncertainties. This study focuses on the uncertainties that influence numerical simulation results (including horizontal resolution, vertical resolution, near-surface scheme, initial and boundary conditions, underlying surface update, and update of model version), hoping to provide a reference for scholars conducting research on the model.
Owen K. Hughes and Christiane Jablonowski
Geosci. Model Dev., 16, 6805–6831, https://doi.org/10.5194/gmd-16-6805-2023, https://doi.org/10.5194/gmd-16-6805-2023, 2023
Short summary
Short summary
Atmospheric models benefit from idealized tests that assess their accuracy in a simpler simulation. A new test with artificial mountains is developed for models on a spherical earth. The mountains trigger the development of both planetary-scale and small-scale waves. These can be analyzed in dry or moist environments, with a simple rainfall mechanism. Four atmospheric models are intercompared. This sheds light on the pros and cons of the model design and the impact of mountains on the flow.
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
Geosci. Model Dev., 16, 6757–6771, https://doi.org/10.5194/gmd-16-6757-2023, https://doi.org/10.5194/gmd-16-6757-2023, 2023
Short summary
Short summary
This study explores how the variation in the source profiles adopted in chemical transport models (CTMs) impacts the simulated results of chemical components in PM2.5 based on sensitivity analysis. The impact on PM2.5 components cannot be ignored, and its influence can be transmitted and linked between components. The representativeness and timeliness of the source profile should be paid adequate attention in air quality simulation.
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6635–6670, https://doi.org/10.5194/gmd-16-6635-2023, https://doi.org/10.5194/gmd-16-6635-2023, 2023
Short summary
Short summary
Most current studies on planetary boundary layer (PBL) parameterization schemes are relatively fragmented and lack systematic in-depth analysis and discussion. In this study, we comprehensively evaluate the performance capability of the PBL scheme in five typical regions of China in different seasons from the mechanism of the scheme and the effects of PBL schemes on the near-surface meteorological parameters, vertical structures of the PBL, PBL height, and turbulent diffusion.
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev., 16, 6531–6552, https://doi.org/10.5194/gmd-16-6531-2023, https://doi.org/10.5194/gmd-16-6531-2023, 2023
Short summary
Short summary
It is important to know how well atmospheric models do in mountains, but there are not very many weather stations. We evaluate rain and snow from a model from 1987–2020 in the Upper Colorado River basin against the available data. The model works rather well, but there are still some uncertainties in remote locations. We then use snow maps collected by aircraft, streamflow measurements, and some advanced statistics to help identify how well the model works in ways we could not do before.
Angel Liduvino Vara-Vela, Christoffer Karoff, Noelia Rojas Benavente, and Janaina P. Nascimento
Geosci. Model Dev., 16, 6413–6431, https://doi.org/10.5194/gmd-16-6413-2023, https://doi.org/10.5194/gmd-16-6413-2023, 2023
Short summary
Short summary
A 1-year simulation of atmospheric CH4 over Europe is performed and evaluated against observations based on the TROPOspheric Monitoring Instrument (TROPOMI). A good general model–observation agreement is found, with discrepancies reaching their minimum and maximum values during the summer peak season and winter months, respectively. A huge and under-explored potential for CH4 inverse modeling using improved TROPOMI XCH4 data sets in large-scale applications is identified.
Zhaojun Tang, Zhe Jiang, Jiaqi Chen, Panpan Yang, and Yanan Shen
Geosci. Model Dev., 16, 6377–6392, https://doi.org/10.5194/gmd-16-6377-2023, https://doi.org/10.5194/gmd-16-6377-2023, 2023
Short summary
Short summary
We designed a new framework to facilitate emission inventory updates in the adjoint of GEOS-Chem model. It allows us to support Harmonized Emissions Component (HEMCO) emission inventories conveniently and to easily add more emission inventories following future updates in GEOS-Chem forward simulations. Furthermore, we developed new modules to support MERRA-2 meteorological data; this allows us to perform long-term analysis with consistent meteorological data.
Rui Zhu, Zhaojun Tang, Xiaokang Chen, Xiong Liu, and Zhe Jiang
Geosci. Model Dev., 16, 6337–6354, https://doi.org/10.5194/gmd-16-6337-2023, https://doi.org/10.5194/gmd-16-6337-2023, 2023
Short summary
Short summary
A single ozone (O3) tracer mode was developed in this work to build the capability of the GEOS-Chem model for rapid O3 simulation. It is combined with OMI and surface O3 observations to investigate the changes in tropospheric O3 in China in 2015–2020. The assimilations indicate rapid surface O3 increases that are underestimated by the a priori simulations. We find stronger increases in tropospheric O3 columns over polluted areas and a large discrepancy by assimilating different observations.
Ewa M. Bednarz, Ryan Hossaini, N. Luke Abraham, and Martyn P. Chipperfield
Geosci. Model Dev., 16, 6187–6209, https://doi.org/10.5194/gmd-16-6187-2023, https://doi.org/10.5194/gmd-16-6187-2023, 2023
Short summary
Short summary
Development and performance of the new DEST chemistry scheme of UM–UKCA is described. The scheme extends the standard StratTrop scheme by including important updates to the halogen chemistry, thus allowing process-oriented studies of stratospheric ozone depletion and recovery, including impacts from both controlled long-lived ozone-depleting substances and emerging issues around uncontrolled, very short-lived substances. It will thus aid studies in support of future ozone assessment reports.
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266, https://doi.org/10.5194/gmd-16-6247-2023, https://doi.org/10.5194/gmd-16-6247-2023, 2023
Short summary
Short summary
The proposed wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF evaluation indices for 13 months remain relatively stable: the forecasting accuracy rate FA is above 85 %. In future research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of the five southern provinces to generate a 3 km grid-corrected wind speed product.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev., 16, 6087–6125, https://doi.org/10.5194/gmd-16-6087-2023, https://doi.org/10.5194/gmd-16-6087-2023, 2023
Short summary
Short summary
We implemented an alternative aerosol scheme in the high- and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. This development enables the comparison of different aerosol schemes with different complexity in the same model framework. It identifies improvements compared to a range of observations in both the troposphere and stratosphere.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023, https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and assess its performance against TROPOMI v2 over power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind directions and prior emissions.
Jiangshan Zhu and Ross Noel Bannister
Geosci. Model Dev., 16, 6067–6085, https://doi.org/10.5194/gmd-16-6067-2023, https://doi.org/10.5194/gmd-16-6067-2023, 2023
Short summary
Short summary
We describe how condensation and evaporation are included in the existing (otherwise dry) simplified ABC model. The new model (Hydro-ABC) includes transport of vapour and condensate within a dynamical core, and it transitions between these two phases via a micro-physics scheme. The model shows the development of an anvil cloud and excitation of atmospheric waves over many frequencies. The covariances that develop between variables are also studied together with indicators of convective motion.
Jiangyong Li, Chunlin Zhang, Wenlong Zhao, Shijie Han, Yu Wang, Hao Wang, and Boguang Wang
Geosci. Model Dev., 16, 6049–6066, https://doi.org/10.5194/gmd-16-6049-2023, https://doi.org/10.5194/gmd-16-6049-2023, 2023
Short summary
Short summary
Photochemical box models, crucial for understanding tropospheric chemistry, face challenges due to slow computational efficiency with large chemical equations. The model introduced in this study, ROMAC, boosts efficiency by up to 96 % using an advanced atmospheric solver and an adaptive optimization algorithm. Moreover, ROMAC exceeds traditional box models in evaluating the impact of physical processes on pollutant concentrations.
Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, and Philippe Thunis
Geosci. Model Dev., 16, 6029–6047, https://doi.org/10.5194/gmd-16-6029-2023, https://doi.org/10.5194/gmd-16-6029-2023, 2023
Short summary
Short summary
Air quality forecasting models play a key role in fostering short-term measures aimed at reducing human exposure to air pollution. Together with this role comes the need for a thorough assessment of the model performances to build confidence in models’ capabilities, in particular when model applications support policymaking. In this paper, we propose an evaluation methodology and test it on several domains across Europe, highlighting its strengths and room for improvement.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Shuzhuang Feng, Fei Jiang, Zheng Wu, Hengmao Wang, Wei He, Yang Shen, Lingyu Zhang, Yanhua Zheng, Chenxi Lou, Ziqiang Jiang, and Weimin Ju
Geosci. Model Dev., 16, 5949–5977, https://doi.org/10.5194/gmd-16-5949-2023, https://doi.org/10.5194/gmd-16-5949-2023, 2023
Short summary
Short summary
We document the system development and application of a Regional multi-Air Pollutant Assimilation System (RAPAS v1.0). This system is developed to optimize gridded source emissions of CO, SO2, NOx, primary PM2.5, and coarse PM10 on a regional scale via simultaneously assimilating surface measurements of CO, SO2, NO2, PM2.5, and PM10. A series of sensitivity experiments demonstrates the advantage of the “two-step” inversion strategy and the robustness of the system in estimating the emissions.
Megan A. Stretton, William Morrison, Robin J. Hogan, and Sue Grimmond
Geosci. Model Dev., 16, 5931–5947, https://doi.org/10.5194/gmd-16-5931-2023, https://doi.org/10.5194/gmd-16-5931-2023, 2023
Short summary
Short summary
Cities' materials and forms impact radiative fluxes. We evaluate the SPARTACUS-Urban multi-layer approach to modelling longwave radiation, describing realistic 3D geometry statistically using the explicit DART (Discrete Anisotropic Radiative Transfer) model. The temperature configurations used are derived from thermal camera observations. SPARTACUS-Urban accurately predicts longwave fluxes, with a low computational time (cf. DART), but has larger errors with sunlit/shaded surface temperatures.
Daehyeon Han, Jungho Im, Yeji Shin, and Juhyun Lee
Geosci. Model Dev., 16, 5895–5914, https://doi.org/10.5194/gmd-16-5895-2023, https://doi.org/10.5194/gmd-16-5895-2023, 2023
Short summary
Short summary
To identify the key factors affecting quantitative precipitation nowcasting (QPN) using deep learning (DL), we carried out a comprehensive evaluation and analysis. We compared four key factors: DL model, length of the input sequence, loss function, and ensemble approach. Generally, U-Net outperformed ConvLSTM. Loss function and ensemble showed potential for improving performance when they synergized well. The length of the input sequence did not significantly affect the results.
Fabien Margairaz, Balwinder Singh, Jeremy A. Gibbs, Loren Atwood, Eric R. Pardyjak, and Rob Stoll
Geosci. Model Dev., 16, 5729–5754, https://doi.org/10.5194/gmd-16-5729-2023, https://doi.org/10.5194/gmd-16-5729-2023, 2023
Short summary
Short summary
The Quick Environmental Simulation (QES) tool is a low-computational-cost fast-response framework. It provides high-resolution wind and concentration information to study complex problems, such as spore or smoke transport, urban pollution, and air quality. This paper presents the particle dispersion model and its validation against analytical solutions and wind-tunnel data for a mock-urban setting. In all cases, the model provides accurate results with competitive computational performance.
Tao Wang, Hang Liu, Jie Li, Shuai Wang, Youngseob Kim, Yele Sun, Wenyi Yang, Huiyun Du, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 16, 5585–5599, https://doi.org/10.5194/gmd-16-5585-2023, https://doi.org/10.5194/gmd-16-5585-2023, 2023
Short summary
Short summary
This paper developed a two-way coupled module in a new version of a regional urban–street network model, IAQMS-street v2.0, in which the mass flux from streets to background is considered. Test cases are defined to evaluate the performance of IAQMS-street v2.0 in Beijing by comparing it with that simulated by IAQMS-street v1.0 and a regional model. The contribution of local emissions and the influence of on-road vehicle control measures on air quality are evaluated by using IAQMS-street v2.0.
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavčič, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 16, 5601–5626, https://doi.org/10.5194/gmd-16-5601-2023, https://doi.org/10.5194/gmd-16-5601-2023, 2023
Short summary
Short summary
Three-dimensional climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Geosci. Model Dev., 16, 5323–5338, https://doi.org/10.5194/gmd-16-5323-2023, https://doi.org/10.5194/gmd-16-5323-2023, 2023
Short summary
Short summary
Precipitation collects airborne particles and deposits these on the ground. This process is called wet deposition and greatly determines how airborne radioactive particles (released routinely or accidentally) contaminate the surface. In this work we present a new method to improve the calculation of wet deposition in computer models. We apply this method to the existing model FLEXPART by simulating the Fukushima nuclear accident (2011) and show that it improves the simulation of wet deposition.
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023, https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Short summary
A new version of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is developed to represent heterogeneities of concentrations in streets. The street volume is discretized vertically and horizontally to limit the artificial dilution of emissions and concentrations. This new version is applied to street networks in Copenhagen and Paris. The comparisons to observations are improved, with higher concentrations of pollutants emitted by traffic at the bottom of the street.
Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim
Geosci. Model Dev., 16, 5251–5263, https://doi.org/10.5194/gmd-16-5251-2023, https://doi.org/10.5194/gmd-16-5251-2023, 2023
Short summary
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.
Daniel Yazgi and Tinja Olenius
Geosci. Model Dev., 16, 5237–5249, https://doi.org/10.5194/gmd-16-5237-2023, https://doi.org/10.5194/gmd-16-5237-2023, 2023
Short summary
Short summary
We present flexible tools to implement aerosol formation rate predictions in climate and chemical transport models. New-particle formation is a significant but uncertain factor affecting aerosol numbers and an active field within molecular modeling which provides data for assessing formation rates for different chemical species. We introduce tools to generate and interpolate formation rate lookup tables for user-defined data, thus enabling the easy inclusion and testing of formation schemes.
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023, https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Short summary
Measuring the performance of inversions in linear Bayesian problems is crucial in real-life applications. In this work, we provide analytical forms of the local and global sensitivities of the estimated fluxes with respect to various inputs. We provide methods to uniquely map the observational signal to spatiotemporal domains. Utilizing this, we also show techniques to assess correlations between the Jacobians that naturally translate to nonstationary covariance matrix components.
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023, https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Short summary
We introduce new and revised chemistry and physics modules in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model aiming to improve the representation of volcanic SO2 transport and depletion. We test these modules in a case study of the Ambae eruption in July 2018 in which the SO2 plume underwent wet removal and convection. The lifetime of SO2 shows highly variable and complex dependencies on the atmospheric conditions at different release heights.
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112, https://doi.org/10.5194/gmd-16-5093-2023, https://doi.org/10.5194/gmd-16-5093-2023, 2023
Short summary
Short summary
An algorithm to track tropical cyclones in model simulation data has been developed. The algorithm uses many combinations of varying parameter thresholds to detect weaker phases of tropical cyclones while still being resilient to false positives. It is shown that the algorithm performs well and adequately represents the tropical cyclone activity of the underlying simulation data. The impact of false positives on overall tropical cyclone activity is shown to be insignificant.
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023, https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
Short summary
We have combined various capabilities within a WRF model to generate simulations of atmospheric pollutant dispersion at 50 m resolution. The study objective was to resolve transport processes at the scale of measurements to assess and optimize aircraft-based emission rate retrievals. Model performance evaluation resulted in agreement within 5 % of observed meteorological and within 1–2 standard deviations of observed wind fields. Mass was conserved in the model within 5 % of input emissions.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882, https://doi.org/10.5194/gmd-16-4867-2023, https://doi.org/10.5194/gmd-16-4867-2023, 2023
Short summary
Short summary
Machine learning models have gained great popularity in air quality prediction. However, they are only available at air quality monitoring stations. In contrast, chemical transport models (CTM) provide predictions that are continuous in the 3D field. Owing to complex error sources, they are typically biased. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our regional feature selection machine learning prediction (RFSML v1.0) and a CTM prediction.
Willem Elias van Caspel, David Simpson, Jan Eiof Jonson, Anna Maria Katarina Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah Walker, and Mathew Heal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-147, https://doi.org/10.5194/gmd-2023-147, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Radiation coming from the sun is essential to atmospheric chemistry, driving the break-up, or photo-dissociation, of atmospheric molecules. This in turn affects the chemical composition and reactivity of the atmosphere. The representation of these photo-dissociation effects is therefore essential in atmospheric chemistry modeling. One such models is the EMEP MSC-W model, for which in this paper a new way of calculating the photo-dissociation rates is tested and evaluated.
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852, https://doi.org/10.5194/gmd-16-4835-2023, https://doi.org/10.5194/gmd-16-4835-2023, 2023
Short summary
Short summary
A framework was developed to automatically detect plumes and compute emission estimates with cross-sectional flux method (CFM) for biomass burning events in TROPOMI CO datasets using Visible Infrared Imaging Radiometer Suite active fire data. The emissions were more reliable when changing plume height in downwind direction was used instead of constant injection height. The CFM had uncertainty even when the meteorological conditions were accurate; thus there is a need for better inversion models.
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023, https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
Short summary
We have built a tool called CHEEREIO that allows scientists to use observations of pollutants or gases in the atmosphere, such as from satellites or surface stations, to update supercomputer models that simulate the Earth. CHEEREIO uses the difference between the model simulations of the atmosphere and real-world observations to come up with a good guess for the actual composition of our atmosphere, the true emissions of various pollutants, and whatever else they may want to study.
Yosuke Yamazaki
Geosci. Model Dev., 16, 4749–4766, https://doi.org/10.5194/gmd-16-4749-2023, https://doi.org/10.5194/gmd-16-4749-2023, 2023
Short summary
Short summary
The Earth's atmosphere can support various types of global-scale waves. Some waves propagate eastward and others westward, and they can have different zonal wavenumbers. The Fourier–wavelet analysis is a useful technique for identifying different components of global-scale waves and their temporal variability. This paper introduces an easy-to-implement method to derive Fourier–wavelet spectra from 2-D space–time data. Application examples are presented using atmospheric models.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023, https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid-scale processes, which are a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories regarding similarities in temporal development and spatiotemporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-139, https://doi.org/10.5194/gmd-2023-139, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The existing ZTD models have limitations such as using a single fitting function, neglecting daily cycle variations, and relying on only one resolution grid data for modeling. This model considers the daily-cycle variation and latitude factor of ZTD, using the sliding window algorithm based on ERA5 atmospheric reanalysis data. The ZTD data from 545 radiosonde stations and MERRA-2 atmospheric reanalysis data are used to validate the accuracy of the GGZTD-P model.
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579, https://doi.org/10.5194/gmd-16-4551-2023, https://doi.org/10.5194/gmd-16-4551-2023, 2023
Short summary
Short summary
The performance of the Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated against the observed surface exchanges (fluxes) of heat and carbon dioxide in a densely built neighborhood in Beijing. The heat flux modeling is noticeably improved by using the observed maximum conductance and by optimizing the vegetation phenology modeling. SUEWS also performs well in simulating carbon dioxide flux.
Marie-Adèle Magnaldo, Quentin Libois, Sébastien Riette, and Christine Lac
EGUsphere, https://doi.org/10.5194/egusphere-2023-1181, https://doi.org/10.5194/egusphere-2023-1181, 2023
Short summary
Short summary
With the worlwide development of the solar energy sector, the need for reliable solar radiation forecasts has significantly increased. However meteorological models that predict among others things solar radiation, have errors. Therefore, we so wanted to know in which situtaions these errors are most significant. We found that errors mostly occurs in cloudy situations, and different errors were highlighted depending of the cloud altitude. Several potential sources of errors were identified.
Simone Dietmüller, Sigrun Matthes, Katrin Dahlmann, Hiroshi Yamashita, Abolfazl Simorgh, Manuel Soler, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Christian Weder, Volker Grewe, Feijia Yin, and Federica Castino
Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, https://doi.org/10.5194/gmd-16-4405-2023, 2023
Short summary
Short summary
Climate-optimized aircraft trajectories avoid atmospheric regions with a large climate impact due to aviation emissions. This requires spatially and temporally resolved information on aviation's climate impact. We propose using algorithmic climate change functions (aCCFs) for CO2 and non-CO2 effects (ozone, methane, water vapor, contrail cirrus). Merged aCCFs combine individual aCCFs by assuming aircraft-specific parameters and climate metrics. Technically this is done with a Python library.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023, https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
Short summary
We investigate the benefit of objective 3-D front detection with modern interactive visual analysis techniques for case studies of extra-tropical cyclones and comparisons of frontal structures between different numerical weather prediction models. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment them in the vertical dimension. We see great potential for more complex studies of atmospheric dynamics and for operational weather forecasting.
Zhenxin Liu, Yuanhao Chen, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev., 16, 4385–4403, https://doi.org/10.5194/gmd-16-4385-2023, https://doi.org/10.5194/gmd-16-4385-2023, 2023
Short summary
Short summary
The heterogeneous layout of urban buildings leads to the complex wind field in and over the urban canopy. Large discrepancies between the observations and the current simulations result from misunderstanding the character of the wind field. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) was developed to simulate the heterogeneity of the wind speed in a typical street and then improve the simulated energy budget in the lower atmospheric layer over the urban canopy.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Laurent Menut
Geosci. Model Dev., 16, 4265–4281, https://doi.org/10.5194/gmd-16-4265-2023, https://doi.org/10.5194/gmd-16-4265-2023, 2023
Short summary
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211, https://doi.org/10.5194/gmd-16-4193-2023, https://doi.org/10.5194/gmd-16-4193-2023, 2023
Short summary
Short summary
In clouds, collisional breakup occurs when two colliding droplets splinter into new, smaller fragments. Particle-based modeling approaches often do not represent breakup because of the computational demands of creating new droplets. We present a particle-based breakup method that preserves the computational efficiency of these methods. In a series of simple demonstrations, we show that this representation alters cloud processes in reasonable and expected ways.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferrado, R., Xie, P.-P., Janowiak, J.,
Rudolf, B., Schneider, U., Curtis, S., Bolvin, D. T., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation
Climatology Project (GPCP) monthly precipitation analysis (1979 – Present), J. Hydrometeorol., 4, 1147–1167, 2003. a
Allen, T., Daley, C. S., Doerfler, D., Austin, B., and Wright, N. J.:
Performance and energy usage of workloads on KNL and haswell architectures,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 10724 LNCS,
236–249, https://doi.org/10.1007/978-3-319-72971-8_12, 2018. a
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C.,
Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory
high-resolution climate simulations using the Community Atmosphere Model
(CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1,
2014. a, b, c
Balaji, V., Boville, B., Cheung, S., Collins, N., Cruz, C., Silva, A., Deluca,
C., Fainchtein, R. D., Eaton, B., Hallberg, B., Henderson, T., Hill, C.,
Iredell, M., Jacob, R., Jones, P., Kluzek, E., Kauffman, B., Larson, J., Li,
P., Liu, F., Michalakes, J., Murphy, S., Neckels, D., Kuinghttons, R. O.,
Oehmke, B., Panaccione, C., Rosinski, J., Sawyer, W., Schwab, E., Smithline,
S., Spector, W., Stark, D., Suarez, M., Swift, S., Theurich, G., Trayanov,
A., Vasquez, S., Wolfe, J., Yang, W., Young, M., and Zaslavsky, L.: Earth
System Modeling Framework ESMF Reference Manual for Fortran Version 7.1.0r,
Tech. rep., The Earth System Modeling Framework, https://earthsystemmodeling.org/docs/release/ESMF_7_1_0r/ESMF_refdoc.pdf (last access: 18 May 2023), 2018. a, b, c
Barnes, T., Cook, B., Deslippe, J., Doerfler, D., Friesen, B., He, Y., Kurth,
T., Koskela, T., Lobet, M., Malas, T., Oliker, L., Ovsyannikov, A., Sarje,
A., Vay, J. L., Vincenti, H., Williams, S., Carrier, P., Wichmann, N.,
Wagner, M., Kent, P., Kerr, C., and Dennis, J.: Evaluating and optimizing
the NERSC workload on knights landing, Proceedings of PMBS 2016: 7th
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computing Systems – Held in conjunction with SC 2016: The
International Conference for High Performance Computing, Networking, St,
Salt Lake City, UT, USA, 14–14 November 2016, 43–53, https://doi.org/10.1109/PMBS.2016.010, 2017. a, b, c, d, e
Bogenschutz, P. A., Gettelman, A., Hannay, C., Larson, V. E., Neale, R. B., Craig, C., and Chen, C.-C.: The path to CAM6: coupled simulations with CAM5.4 and CAM5.5, Geosci. Model Dev., 11, 235–255, https://doi.org/10.5194/gmd-11-235-2018, 2018. a, b, c
Bretherton, C. S. and Park, S.: A New Moist Turbulence Parameterization in the
Community Atmosphere Model, J. Climate, 22, 3422–3448,
https://doi.org/10.1175/2008JCLI2556.1, 2009. a
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.:
Uncertainty estimates in regional and global observed temperature changes: A
new data set from 1850, J. Geophys. Res., 111, D12106,
https://doi.org/10.1029/2005JD006548, 2006. a
Bukovsky, M. S., McCrary, R. R., Seth, A., and Mearns, L. O.: A
mechanistically credible, poleward shift in warm-season precipitation
projected for the U.S. Southern Great Plains?, J. Climate, 30,
8275–8298, https://doi.org/10.1175/JCLI-D-16-0316.1, 2017. a, b
CESM: CCSM4 half-degree runs,
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CCSM4-HDEG.html (last access: 19 May 2023),
2016. a
Chang, H.-i., Castro, C. L., Carrillo, C. M., and Dominguez, F.: The more
extreme nature of U.S. warm season climate in the recent observational record
and two “well‐performing” dynamically downscaled CMIP3 models, J. Geophys. Res.-Atmos., 120, 8244–8263,
https://doi.org/10.1002/2015JD023333, 2015. a
Chen, C. T. and Knutson, T.: On the verification and comparison of extreme
rainfall indices from climate models, J. Climate, 21, 1605–1621,
https://doi.org/10.1175/2007JCLI1494.1, 2008. a
Christensen, O. B., Gutowski, W. J., Nikulin, G., and Legutke, S.: CORDEX
Archive Design, Tech. Rep. March, CORDEX, https://is-enes-data.github.io/cordex_archive_specifications.pdf (last access: 18 May 2023), 2014. a
Christenson, C. E., Martin, J. E., and Handlos, Z. J.: A synoptic climatology
of Northern Hemisphere, cold season polar and subtropical jet superposition
events, J. Climate, 30, 7231–7246, https://doi.org/10.1175/JCLI-D-16-0565.1,
2017. a
Coburn, J. and Pryor, S. C.: Differential Credibility of Climate Modes in
CMIP6, J. Climate, 34, 8145–8164, https://doi.org/10.1175/JCLI-D-21-0359.1,
2021. a
CORDEX: CORDEX domains for model integrations, Tech. rep., WCRP,
https://cordex.org/wp-content/uploads/2012/11/CORDEX-domain-description_231015.pdf (last access: 19 May 2023),
2015. a
Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F.,
Schaake, J. C., Robock, A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W.,
Pinker, R. T., and Tarpley, J. D.: Land surface model spin-up behavior in
the North American Land Data Assimilation System (NLDAS), J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002jd003316, 2003. a
Danabasoglu, G., Lamarque, J., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay,
C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto‐Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S.,
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox‐Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson,
V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L.,
Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2
(CESM2), J. Adv. Model. Earth Sy., 12, 1–35,
https://doi.org/10.1029/2019MS001916, 2020. a
Dee, D. P., Uppala, S. M., Simmons, a. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. a., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, a. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, a. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, a. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b, c
Dennis, J. M., Dobbins, B., Kerr, C., and Kim, Y.: Optimizing the HOMME
dynamical core for multicore platforms,
Int. J. High Perform. C., 33, 1030–1045,
https://doi.org/10.1177/1094342019849618, 2019. a, b, c, d
Diaconescu, E. P., Gachon, P., and Laprise, R.: On the remapping procedure of
daily precipitation statistics and indices used in regional climate model
evaluation, J. Hydrometeorol., 16, 2301–2310,
https://doi.org/10.1175/JHM-D-15-0025.1, 2015. a
Dong, L., Leung, L. R., Song, F., and Lu, J.: Roles of SST versus internal
atmospheric variability in winter extreme precipitation variability along the
U.S. West Coast, J. Climate, 31, 8039–8058,
https://doi.org/10.1175/JCLI-D-18-0062.1, 2018. a
Duda, M. G., Fowler, L. D., Skamarock, W. C., Roesch, C., Jacobsen, D., and
Ringler, T. D.: MPAS-Atmosphere Model User's Guide Version 7.0, Tech. rep.,
NCAR, Boulder, Colo., https://www2.mmm.ucar.edu/projects/mpas/mpas_atmosphere_users_guide_7.0.pdf (last accss: 18 May 2023), 2019. a
Elshamy, M. E., Princz, D., Sapriza-Azuri, G., Abdelhamed, M. S., Pietroniro, A., Wheater, H. S., and Razavi, S.: On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost, Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020, 2020. a
English, J. M., Kay, J. E., Gettelman, A., Liu, X., Wang, Y., Zhang, Y., and
Chepfer, H.: Contributions of clouds, surface albedos, and mixed-phase ice
nucleation schemes to Arctic radiation biases in CAM5, J. Climate,
27, 5174–5197, https://doi.org/10.1175/JCLI-D-13-00608.1, 2014. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Feng, Z., Song, F., Sakaguchi, K., and Leung, L. R.: Evaluation of mesoscale
convective systems in climate simulations: Methodological development and
results from MPAS-CAM over the United States, J. Climate, 34,
2611–2633, https://doi.org/10.1175/JCLI-D-20-0136.1, 2021. a, b
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change
modelling to impacts studies: recent advances in downscaling techniques for
hydrological modelling, Int. J. Climatol., 27,
1547–1578, https://doi.org/10.1002/joc.1556, 2007. a
Fowler, L. D., Skamarock, W. C., Grell, G. A., Freitas, S. R., and Duda, M. G.:
Analyzing the Grell-Freitas Convection Scheme from Hydrostatic to
Nonhydrostatic Scales within a Global Model, Mon. Weather Rev., 144,
2285–2306, https://doi.org/10.1175/MWR-D-15-0311.1, 2016. a
Fox-Rabinovitz, M. S., Stenchikov, G. L., Suarez, Max, J., Takacs, L. L., and
Govindaraju, R. C.: A Uniform- and Variable-Resolution Stretched-Grid GCM
Dynamical Core with Realistic Orography, Mon. Weather Rev., 128,
1883–1898, 2000. a
Fox-Rabinovitz, M. S., Côté, J., Dugas, B., Déqué, M.,
and McGregor, J. L.: Variable resolution general circulation models:
Stretched-grid model intercomparison project (SGMIP),
J. Geophys. Res., 111, D16104, https://doi.org/10.1029/2005JD006520, 2006. a
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018. a
Gates, W. L.: AMIP: The Atmospheric Model Intercomparison Project,
B. Am. Meteorol. Soc., 73, 1962–1970, 1992. a
Geil, K. L. and Zeng, X.: Quantitative characterization of spurious numerical
oscillations in 48 CMIP5 models, Geophys. Res. Lett., 42, 1–8,
https://doi.org/10.1002/2015GL063931, 2015. a
Gesch, D. B. and Larson, K. S.: Techniques for development of global
1-kilometer digital elevation models, in: Proc. Pecora Thirteenth Symposium, Sioux Falls, South Dakota, United States, 1–6, 1996. a
Gettelman, A. and Morrison, H.: Advanced two-moment bulk microphysics for
global models. Part I: Off-line tests and comparison with other schemes,
J. Climate, 28, 1268–1287, https://doi.org/10.1175/JCLI-D-14-00102.1, 2015. a, b
Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., and Caldwell, P. M.:
Advanced two-moment bulk microphysics for global models. Part II: Global
model solutions and aerosol-cloud interactions, J. Climate, 28,
1288–1307, https://doi.org/10.1175/JCLI-D-14-00103.1, 2015. a, b
Gettelman, A., Callaghan, P., Larson, V. E., Zarzycki, C. M., Bacmeister,
J. T., Lauritzen, P. H., Bogenschutz, P. A., and Neale, R. B.: Regional
Climate Simulations With the Community Earth System Model, J. Adv. Model. Earth Sy., 10, 1245–1265,
https://doi.org/10.1002/2017MS001227, 2018. a, b
Gettelman, A., Barth, M. C., Hanli, L., Skamarock, W. C., and Powers, J. G.:
The System for Integrated Modeling of the Atmosphere (SIMA): Unifying
community modeling for Weather, Climate, Air Quality and Geospace
Applications, AGU Fall Meeting 2021, New Orleans, LO, United States,
13–17 December 2021, A45O-2048, 2021. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038,
2013. a
Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are We and Where
Are We Going next?, J. Geophys. Res.-Atmos., 124,
5696–5723, https://doi.org/10.1029/2018JD030094, 2019. a
Giorgi, F. and Gutowski, W. J.: Regional Dynamical Downscaling and the CORDEX
Initiative, Annu. Rev. Env. Resour., 40, 467–490,
https://doi.org/10.1146/annurev-environ-102014-021217, 2015. a
Giorgi, F. and Mearns, L. O.: Approaches to the simulation of regional climate
change: A review, Rev. Geophys., 29, 191–216, https://doi.org/10.1029/90RG02636,
1991. a, b
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014. a
Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, D. L., Klocke,
D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B.,
Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P.,
Gassmann, A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi, K.,
Leung, R., Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson,
D. L., Klocke, D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M.,
Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia,
P., Gassmann, A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi,
K., and Leung, R.: Physics–Dynamics Coupling in weather, climate and Earth
system models: Challenges and recent progress, Mon. Weather Rev., 3505–3544, https://doi.org/10.1175/MWR-D-17-0345.1, 2018. a, b, c
Gutowski Jr., W. J., Ullrich, P. A., Hall, A., Leung, L. R., O'Brien, T. A.,
Patricola, C. M., Arritt, R. W., Bukovsky, M. S., Calvin, K. V., Feng, Z.,
Jones, A. D., Kooperman, G. J., Monier, E., Pritchard, M. S., Pryor, S. C.,
Qian, Y., Rhoades, A. M., Roberts, A. F., Sakaguchi, K., Urban, N., Zarzycki,
C., O'Brien, T. A., Patricola, C. M., Arritt, R. W., Bukovsky, M. S., Calvin,
K. V., Feng, Z., Jones, A. D., Kooperman, G. J., Monier, E., Pritchard,
M. S., Pryor, S. C., Qian, Y., Rhoades, A. M., Roberts, A. F., Sakaguchi, K.,
Urban, N., Zarzycki, C., Gutowski, W. J. J., Ullrich, P. A., Hall, A., Leung,
L. R., O'Brien, T. A., Patricola, C. M., Arritt, R. W., Bukovsky, M. S.,
Calvin, K. V., Feng, Z., Jones, A. D., Kooperman, G. J., Monier, E.,
Pritchard, M. S., Pryor, S. C., Qian, Y., Rhoades, A. M., Roberts, A. F.,
Sakaguchi, K., Urban, N., and Zarzycki, C.: The Ongoing Need for
High-Resolution Regional Climate Models, American Meteorological Society,
101, 664–683, 2020. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a, b, c
Hager, G. and Wellein, G.: Introduction to High Performance Computing for
Scientists and Engineers, CRC Press, Boca Raton, https://doi.org/10.1201/EBK1439811924, 2011. a, b
Hagos, S., Leung, L. R., Rauscher, S. A., and Ringler, T.: Error
characteristics of two grid refinement approaches in aquaplanet simulations:
MPAS-A and WRF, Mon. Weather Rev., 141, 3022–3036,
https://doi.org/10.1175/MWR-D-12-00338.1, 2013. a, b, c
Hagos, S., Ruby Leung, L., Zhao, C., Feng, Z., and Sakaguchi, K.: How Do
Microphysical Processes Influence Large-Scale Precipitation Variability and
Extremes?, Geophys. Res. Lett., 45, 1661–1667,
https://doi.org/10.1002/2017GL076375, 2018. a, b, c
He, H.: Advanced OpenMP and CESM Case Study,
https://www.nersc.gov/assets/Uploads/Advanced-OpenMP-CESM-NUG2016-He.pdf (last access: 20 May 2013),
2016. a
He, Y., Cook, B., Deslippe, J., Friesen, B., Gerber, R., Hartman-Baker, R.,
Koniges, A., Kurth, T., Leak, S., Yang, W.-S., Zhao, Z., Baron, E., and
Hauschildt, P.: Preparing NERSC users for Cori, a Cray XC40 system with
Intel many integrated cores, Concurr. Comp.-Pract.
E., 30, e4291, https://doi.org/10.1002/cpe.4291, 2018. a, b, c
Heinzeller, D., Duda, M. G., and Kunstmann, H.: Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment, Geosci. Model Dev., 9, 77–110, https://doi.org/10.5194/gmd-9-77-2016, 2016. a, b
Herrington, A. R. and Reed, K. A.: On resolution sensitivity in the Community
Atmosphere Model, Q. J. Roy. Meteor. Soc., 146,
3789–3807, https://doi.org/10.1002/qj.3873, 2020. a, b, c
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J. C., Balaji, V., Duan, Q.,
Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L.,
Watanabe, M., and Williamson, D.: The art and science of climate model
tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a
Huang, X., Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: An evaluation
of the variable-resolution CESM for modeling California's climate, J. Adv. Model. Earth Sy., 8, 345–369,
https://doi.org/10.1002/2013MS000282., 2016. a, b
Huang, X., Gettelman, A., Skamarock, W. C., Lauritzen, P. H., Curry, M., Herrington, A., Truesdale, J. T., and Duda, M.: Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States, Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, 2022. a, b
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model,
Documentation and Software, Version 4.0, Tech. rep., Los Alamos National
Laboratory, Los Alamos, https://github.com/CICE-Consortium/CICE/wiki/CICE-Release-Table (last access: 18 May 2023), 2010. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, 2–9, https://doi.org/10.1029/2008JD009944, 2008. a
Jablonowski, C. and Williamson, D. L.: The Pros and Cons of Diffusion, Filters
and Fixers in Atmospheric General CirculationModels, in: Numerical
Techniques for Global Atmospheric Models, edited by: Lauritzen, P.,
Jablonowski, C., Taylor, M., and Nair, R., vol. 80, Lecture Notes in
Computational Science and Engineering, 13, 381–493, Springer
Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-11640-7, 2011. a
Jang, J., Skamarock, W. C., Park, S., Zarzycki, C. M., Sakaguchi, K., and Leung, L.
R.: Effect of the Grell-Freitas Deep Convection Scheme in Quasi-uniform and Variableresolution
Aquaplanet CAM Simulations, J. Adv. Model. Earth Sy., e2020MS002459,
https://doi.org/10.1029/2020ms002459, 2022. a
Ji, H., Nan, Z., Hu, J., Zhao, Y., and Zhang, Y.: On the Spin‐Up Strategy
for Spatial Modeling of Permafrost Dynamics: A Case Study on the
Qinghai‐Tibet Plateau, J. Adv. Model. Earth Sy., 14, e2021MS002750,
https://doi.org/10.1029/2021MS002750, 2022. a
Ju, L., Ringler, T., and Gunzburger, M.: Voronoi tessellations and their
application to climate and global modeling, in: Numerical Techniques for
Global Atmospheric Models, edited by: Lauritzen, P., Jablonowski, C., Taylor,
M., and Nair, R., vol. 80, Lecture Notes in Computational Science and
Engineering, 10, 313–342, Springer Berlin Heidelberg, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-642-11640-7, 2011. a, b
Kiehl, J. T., Schneider, T. L., Rasch, P. J., Barth, M. C., and Wong, J.:
Radiative forcing due to sulfate aerosols from simulations with the National
Center for Atmospheric Research Community Climate Model, Version 3, J. Geophys. Res.-Atmos., 105, 1441–1457,
https://doi.org/10.1029/1999JD900495, 2000. a
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-c.,
Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.:
Cloud and Aerosol Properties, Precipitable Water, and Profiles of
Temperature and Water Vapor from MODIS, IEEE T. Geosci. Remote, 41, 442–458, 2003. a
Klemp, J. B.: A Terrain-Following Coordinate with Smoothed Coordinate
Surfaces, Mon. Weather Rev., 139, 2163–2169,
https://doi.org/10.1175/MWR-D-10-05046.1, 2011. a
Lauritzen, P. H., Mirin, a. a., Truesdale, J., Raeder, K., Anderson, J. L.,
Bacmeister, J., and Neale, R. B.: Implementation of new diffusion/filtering
operators in the CAM-FV dynamical core, Int. J. High Perform. C., 26, 63–73,
https://doi.org/10.1177/1094342011410088, 2012. a
Lauritzen, P. H., Bacmeister, J. T., Callaghan, P. F., and Taylor, M. A.: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids, Geosci. Model Dev., 8, 3975–3986, https://doi.org/10.5194/gmd-8-3975-2015, 2015. a
Lauritzen, P. H., Nair, R. D., Herrington, A. R., Callaghan, P., Goldhaber, S.,
Dennis, J. M., Bacmeister, J. T., Eaton, B. E., Zarzycki, C. M., Taylor,
M. A., Ullrich, P. A., Dubos, T., Gettelman, A., Neale, R. B., Dobbins, B.,
Reed, K. A., Hannay, C., Medeiros, B., Benedict, J. J., and Tribbia, J. J.:
NCAR Release of CAM-SE in CESM2.0: A Reformulation of the Spectral Element
Dynamical Core in Dry-Mass Vertical Coordinates With Comprehensive Treatment
of Condensates and Energy, J. Adv. Model. Earth Sy.,
10, 1537–1570, https://doi.org/10.1029/2017MS001257, 2018. a
Lawrence, D. M., Slater, A. G., Romanovsky, V. E., and Nicolsky, D. J.:
Sensitivity of a model projection of near-surface permafrost degradation to
soil column depth and representation of soil organic matter, J. Geophys. Res., 113, F02011, https://doi.org/10.1029/2007JF000883, 2008. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson,
S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K.,
Bonan, G. B., and Slater, A. G.: Parameterization improvements and
functional and structural advances in Version 4 of the Community Land Model,
J. Adv. Model. Earth Sy., 3, 1–27,
https://doi.org/10.1029/2011MS000045, 2011. a, b
Lawrence, D. M., Slater, A. G., and Swenson, S. C.: Simulation of Present-Day
and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4,
J. Climate, 25, 2207–2225, https://doi.org/10.1175/JCLI-D-11-00334.1, 2012. a
Lee, S. and Kim, H.-K.: The dynamical relationship between subtropical and
eddy-driven jets, J. Atmos. Sci., 60, 1490–1503, 2003. a
Leung, L. R. and Qian, Y.: Atmospheric rivers induced heavy precipitation and
flooding in the western U.S. simulated by the WRF regional climate model,
Geophys. Res. Lett., 36, 1–6, https://doi.org/10.1029/2008GL036445, 2009. a
Leung, L. R., Ringler, T. D., Collins, W. D., Taylor, M. A., Ashfaq, M., and
Framework, A. H. E.: A hierarchical evaluation of regional climate
simulations, EOS, 94, 297–298, https://doi.org/10.1002/2013EO340001, 2013. a
Liang, Y., Yang, B., Wang, M., Tang, J., Sakaguchi, K., Leung, L. R., and Xu,
X.: Multiscale Simulation of Precipitation Over East Asia by Variable
Resolution CAM-MPAS, J. Adv. Model. Earth Sy., 13,
1–18, https://doi.org/10.1029/2021MS002656, 2021. a
Lindvall, J., Svensson, G., and Hannay, C.: Evaluation of Near-Surface
Parameters in the Two Versions of the Atmospheric Model in CESM1 using Flux
Station Observations, J. Climate, 26, 26–44,
https://doi.org/10.1175/JCLI-D-12-00020.1, 2013. a
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012. a
Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and Rasch, P. J.: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model, Geosci. Model Dev., 9, 505–522, https://doi.org/10.5194/gmd-9-505-2016, 2016. a
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F.,
Kato, S., Manalo-Smith, N., and Wong, T.: Toward optimal closure of the
Earth's top-of-atmosphere radiation budget, J. Climate, 22,
748–766, https://doi.org/10.1175/2008JCLI2637.1, 2009. a
Loft, R.: Earth System Modeling Must Become More Energy Efficient, Eos (Washington. DC)., 101, 18–22, https://doi.org/10.1029/2020eo147051, 2020. a
Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G.: Hydrometeor
detection using Cloudsat – An earth-orbiting 94-GHz cloud radar, J.
Atmos. Ocean. Tech., 25, 519–533,
https://doi.org/10.1175/2007JTECHA1006.1, 2008. a
McGinnis, S. and Mearns, L.: Building a climate service for North America
based on the NA-CORDEX data archive, Climate Services, 22, 100233,
https://doi.org/10.1016/j.cliser.2021.100233, 2021. a
McGregor, J. L.: Recent developments in variable-resolution global climate
modelling, Climatic Change, 129, 369–380, https://doi.org/10.1007/s10584-013-0866-5,
2013. a
McIlhattan, E. A., L'Ecuyer, T. S., and Miller, N. B.: Observational evidence
linking arctic supercooled liquid cloud biases in CESM to snowfall
processes, J. Climate, 30, 4477–4495,
https://doi.org/10.1175/JCLI-D-16-0666.1, 2017. a
Mearns, L. O., McGinnis, S., Korytina, D., Scinocca, J. F., Kharin, S., Jiao,
Y., Qian, M., Lazare, M., Winger, K., Christensen, O. B., Nikulin, G.,
Arritt, R. W., Herzmann, D., Bukovsky, M. S., Chang, H.-I., Castro, C.,
Frigon, A., and Gutowski, W. J. J.: The NA-CORDEX dataset, version 1.0.,
https://doi.org/10.5065/D6SJ1JCH, 2017. a, b, c, d, e
Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H., Tebaldi,
C., Sanderson, B. N., Lamarque, J.-F., Conley, A., Strand, W. G., and White,
J. B.: Climate System Response to External Forcings and Climate Change
Projections in CCSM4, J. Climate, 25, 3661–3683,
https://doi.org/10.1175/JCLI-D-11-00240.1, 2012. a
Meehl, G. a., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H., Kay,
J. E., Gettelman, A., Lawrence, D. M., Sanderson, B. M., and Strand, W. G.:
Climate change projections in CESM1(CAM5) compared to CCSM4, J. Climate, 26, 6287–6308, https://doi.org/10.1175/JCLI-D-12-00572.1, 2013. a
Mishra, S. K. and Srinivasan, J.: Sensitivity of the simulated precipitation to changes in convective relaxation time scale, Ann. Geophys., 28, 1827–1846, https://doi.org/10.5194/angeo-28-1827-2010, 2010. a
Morcrette, C. J., Van Weverberg, K., Ma, H. Y., Ahlgrimm, M., Bazile, E.,
Berg, L. K., Cheng, A., Cheruy, F., Cole, J., Forbes, R., Gustafson, W. I.,
Huang, M., Lee, W. S., Liu, Y., Mellul, L., Merryfield, W. J., Qian, Y.,
Roehrig, R., Wang, Y. C., Xie, S., Xu, K. M., Zhang, C., Klein, S., and
Petch, J.: Introduction to CAUSES: Description of Weather and Climate Models
and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the
Southern Great Plains, J. Geophys. Res.-Atmos., 123,
2655–2683, https://doi.org/10.1002/2017JD027199, 2018. a
NCAR Research Computing: Derecho supercomputer,
https://arc.ucar.edu/knowledge_base/74317833 (last access: 20 May 2023), 2022. a
Neale, R. B., Richter, J. H., and Jochum, M.: The impact of convection on
ENSO: From a delayed oscillator to a series of events, J. Climate,
21, 5904–5924, https://doi.org/10.1175/2008JCLI2244.1, 2008. a
Neale, R. B., Chen, C.-c., Gettelman, A., Lauritzen, P. H., Park, S.,
Williamson, D. L., Conley, A. J., Garcia, R. R., Kinnison, D. E., Lamarque,
J.-F., Marsh, D. R., Smith, A. K., Mills, M., Tilmes, S., Vitt, F., Morrison,
H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan,
S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR
Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, Tech.
rep., NCAR, Boulder, Colo., https://doi.org/10.5065/wgtk-4g06, 2010. a
NERSC: NERSC Strategic Plan for FY2014–2023, Tech. rep., NERSC, https://www.nersc.gov/news-publications/publications-reports/nersc-strategic-plan-fy2014-2023/ (last access: 23 May 2023), 2014. a
NERSC: NERSC Technical Documentation,
https://docs.nersc.gov/ (last access: 20 May 2023), 2018. a
NERSC: NERSC History of Systems,
https://www.nersc.gov/about/nersc-history/history-of-systems/ (last access: 20 May 2023),
2021. a
NERSC: Perlmutter Architecture,
https://docs.nersc.gov/systems/perlmutter/architecture/ (last access: 20 May 2023),
2022. a
Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter,
J., Levis, S., Swenson, S. C., Thornton, E., Dai, A., Decker, M., Dickinson,
R., Feddema, J., Heald, C. L., Lamarque, J.-f., Niu, G.-y., Qian, T.,
Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang,
L., Zeng, X., and Zeng, X.: Technical Description of version 4.0 of the
Community Land Model (CLM), in: NCAR Tech. Note, TN-478+STR, p. 257, Natl.
Cent. for Atmos. Res., Boulder, Colo., https://doi.org/10.5065/D6FB50WZ, 2010. a, b
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H.,
Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada,
K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-25
Reanalysis, J. Meteorol. Soc. Jpn., 85, 369–432,
https://doi.org/10.2151/jmsj.85.369, 2007. a
Park, S. and Bretherton, C. S.: The University of Washington Shallow
Convection and Moist Turbulence Schemes and Their Impact on Climate
Simulations with the Community Atmosphere Model, J. Climate, 22,
3449–3469, https://doi.org/10.1175/2008JCLI2557.1, 2009. a
Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating cloud processes in
the Community Atmosphere Model, Version 5, J. Climate, 27,
6821–6856, https://doi.org/10.1175/JCLI-D-14-00087.1, 2014. a
Park, S.-H. H., Skamarock, W. C., Klemp, J. B., Fowler, L. D., and Duda, M. G.:
Evaluation of global atmospheric solvers using extensions of the Jablonowski
and Williamson baroclinic wave test case, Mon. Weather Rev., 141,
3116–3129, https://doi.org/10.1175/MWR-D-12-00096.1, 2013. a, b
Pendergrass, A. G., Gleckler, P. J., Leung, L. R., and Jakob, C.: Benchmarking
Simulated Precipitation in Earth System Models, B. Am. Meteorol. Soc., 101, E814–E816, https://doi.org/10.1175/BAMS-D-19-0318.1,
2020. a
Pope, V. D. and Stratton, R. A.: The processes governing horizontal resolution
sensitivity in a climate model, Clim. Dynam., 19, 211–236,
https://doi.org/10.1007/s00382-001-0222-8, 2002. a, b
Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland,
G. J., and Clark, M. P.: Increased rainfall volume from future convective
storms in the US, Nat. Clim. Change, 7, 880–884,
https://doi.org/10.1038/s41558-017-0007-7, 2017. a
Prein, A. F., Ban, N., Ou, T., Tang, J., Sakaguchi, K., Collier, E.,
Jayanarayanan, S., Li, L., Sobolowski, S., Chen, X., Zhou, X., Lai, H. W.,
Sugimoto, S., Zou, L., ul Hasson, S., Ekstrom, M., Pothapakula, P. K.,
Ahrens, B., Stuart, R., Steen-Larsen, H. C., Leung, R., Belusic, D.,
Kukulies, J., Curio, J., and Chen, D.: Towards Ensemble-Based
Kilometer-Scale Climate Simulations over the Third Pole Region, Clim.
Dynam., https://doi.org/10.1007/s00382-022-06543-3, 2022. a
Pryor, S. C. and Schoof, J. T.: Differential credibility assessment for
statistical downscaling, J. Appl. Meteorol. Clim., 59,
1333–1349, https://doi.org/10.1175/jamc-d-19-0296.1, 2020. a
Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., and Sakaguchi,
K.: Climate change impacts on wind power generation,
Nature Reviews Earth and Environment, 2, 627–643, https://doi.org/10.1038/s43017-020-0101-7, 2020. a, b
Randel, D. L., Vonder Haar, T. H., Ringerud, M. A., Stephens, G. L.,
Greenwald, T. J., and Combs, C. L.: A New Global Water Vapor Dataset,
B. Am. Meteorol. Soc., 77, 1233–1246,
https://doi.org/10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2, 1996. a
Rauscher, S. A. and Ringler, T. D.: Impact of variable-resolution meshes on
midlatitude baroclinic eddies using CAM-MPAS-A, Mon. Weather Rev., 142,
4256–4268, https://doi.org/10.1175/MWR-D-13-00366.1, 2014. a
Rhoades, A. M., Huang, X., Ullrich, P. A., and Zarzycki, C. M.: Characterizing
Sierra Nevada snowpack using variable-resolution CESM, J. Appl.
Meteorol. Clim., 55, 173–196, https://doi.org/10.1175/JAMC-D-15-0156.1,
2016. a
Rhoades, A. M., Jones, A. D., and Ullrich, P. A.: Assessing Mountains as
Natural Reservoirs With a Multimetric Framework, Earth's Future, 6,
1221–1241, https://doi.org/10.1002/2017EF000789, 2018a. a
Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Johansen, H., Margulis, S. A.,
Morrison, H., Xu, Z., and Collins, W. D.: Sensitivity of Mountain
Hydroclimate Simulations in Variable‐Resolution CESM to Microphysics and
Horizontal Resolution, J. Adv. Model. Earth Sy., 10,
1357–1380, https://doi.org/10.1029/2018MS001326, 2018b. a, b, c
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a Physically Based
Gravity Wave Source Parameterization in a General Circulation Model, J. Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010. a
Ringler, T. D., Thuburn, J., Klemp, J., and Skamarock, W.: A unified approach
to energy conservation and potential vorticity dynamics for
arbitrarily-structured C-grids, J. Comput. Phys., 229,
3065–3090, https://doi.org/10.1016/j.jcp.2009.12.007, 2010. a
Ringler, T. D., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and
Maltrud, M.: A multi-resolution approach to global ocean modeling, Ocean
Model., 69, 211–232, https://doi.org/10.1016/j.ocemod.2013.04.010, 2013. a
Roberts, M. J., Vidale, P. L., Senior, C., Hewitt, H. T., Bates, C., Berthou,
S., Chang, P., Christensen, H. M., Danilov, S., Demory, M. E., Griffies,
S. M., Haarsma, R., Jung, T., Martin, G., Minobe, S., Ringler, T., Satoh, M.,
Schiemann, R., Scoccimarro, E., Stephens, G., and Wehner, M. F.: The
benefits of global high resolution for climate simulation process
understanding and the enabling of stakeholder decisions at the regional
scale, B. Am. Meteorol. Soc., 99, 2341–2359,
https://doi.org/10.1175/BAMS-D-15-00320.1, 2018. a
Rossow, W. B. and Schiffer, R. A.: Advances in Understanding Clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287,
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999. a
Sacks, W. J., Dobbins, B., Fischer, C., Rosen, D., Kay, J. E., Edwards, J., Thayer-Calder, K., Oehmke,
R. C., and Turuncoglu, U. U.: The Community Earth System Model, Github [code], https://github.com/ESCOMP/CESM (last access: 18 May 2023), 2020. a
Sakaguchi, K.: Model input data for the FACETS downscaling simulation with the
CAM-MPAS model, Zenodo [data], https://doi.org/10.5281/zenodo.7490129, 2022. a
Sakaguchi, K.: Full dataset of the FACETS Dynamical Downscaling
Simulations over North America by the CAM-MPAS Variable-Resoluton Model, https://portal.nersc.gov/archive/home/k/ksa/www/FACETS/CAM-MPAS (last access: 18 May 2023), 2023. a
Sakaguchi, K. and Harrop, B.: kosaka90/cesm1.5-mpasv4: Code version used for
the FACETS downscaling data, Zenodo [code], https://doi.org/10.5281/zenodo.7262209, 2022. a
Sakaguchi, K., Leung, L. R., Zhao, C., Yang, Q., Lu, J., Hagos, S., Rauscher,
S. a., Dong, L., Ringler, T. D., and Lauritzen, P. H.: Exploring a
multiresolution approach using AMIP simulations, J. Climate, 28,
5549–5574, https://doi.org/10.1175/JCLI-D-14-00729.1, 2015. a, b, c, d
Sakaguchi, K., Lu, J., Leung, L. R., Zhao, C., Li, Y., and Hagos, S.: Sources
and pathways of the upscale effects on the Southern Hemisphere jet in
MPAS-CAM4 variable-Resolution simulations, J. Adv. Model. Earth Sy., 8, 1786–1805, https://doi.org/10.1002/2016MS000743, 2016. a
Sakaguchi, K., McGinnis, S. A., Leung, L. R., Bukovsky, M. S., McCrary, R. R.,
and Mearns, L. O.: Differential Credibility Analysis of Dynamical
Downscaling Framework with a Focus on Precipitation Characteristics over
Southern Great Plains, AGU Fall Meeting 2021, New Orleans, LO, 13–17 December
2021, A55Q-1635, 2021. a, b
Sakaguchi, K., McGinnis, S. A., Leung, L. R., Gutowski, W. J., and Dong, L.:
FACETS Dynamical Downscaling Simulations over North America by the CAM-MPAS
Variable-Resolution Model, the Pacific NorthWest National Laboratory DataHub, https://doi.org/10.25584/PNNL.data/1895153,
2022. a
Shaw, T. A.: Mechanisms of Future Predicted Changes in the Zonal Mean
Mid-Latitude Circulation, Current Climate Change Reports, 5, 345–357,
https://doi.org/10.1007/s40641-019-00145-8, 2019. a
Skamarock, W. C. and Gassmann, A.: Conservative transport schemes for
spherical geodesic grids: High-order flux operators for ODE-based time
integration, Mon. Weather Rev., 139, 2962–2975,
https://doi.org/10.1175/MWR-D-10-05056.1, 2011. a
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and
Ringler, T. D.: A multiscale nonhydrostatic atmospheric model using
Centroidal Voronoi Tesselations and C-grid staggering, Mon. Weather Rev., 140, 3090–3105, https://doi.org/10.1175/MWR-D-11-00215.1, 2012. a, b, c
Smid, M. and Costa, A. C.: Climate projections and downscaling techniques: a
discussion for impact studies in urban systems,
International Journal of Urban Sciences, 22, 277–307, https://doi.org/10.1080/12265934.2017.1409132, 2018. a
Smith, G., Barkstrom, B. R., and Harrison, E. F.: The earth radiation budget
experiment: Early validation results, Adv. Space Res., 7,
167–177, https://doi.org/10.1016/0273-1177(87)90141-4, 1987. a
Song, F., Feng, Z., Ruby Leung, L., Houze, R. A., Wang, J., Hardin, J., and
Homeyer, C. R.: Contrasting spring and summer large-scale environments
associated with mesoscale convective systems over the U.S. Great Plains,
J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1, 2019. a
Song, F., Feng, Z., Leung, L. R., Pokharel, B., Wang, S. Y., Chen, X.,
Sakaguchi, K., and chia Wang, C.: Crucial Roles of Eastward Propagating
Environments in the Summer MCS Initiation Over the U.S. Great Plains,
J. Geophys. Res.-Atmos., 126, e2021JD034991,
https://doi.org/10.1029/2021JD034991, 2021. a
Staniforth, A. and Thuburn, J.: Horizontal grids for global weather and
climate prediction models: a review, Q. J. Roy. Meteor. Soc., 138, 1–26, https://doi.org/10.1002/qj.958, 2011. a
Susskind, J., Barnet, C. D., and Blaisdell, J. M.: Retrieval of atmospheric
and surface parameters from AIRS/AMSU/HSB data in the presence of clouds,
IEEE T. Geosci. Remote, 41, 390–409,
https://doi.org/10.1109/TGRS.2002.808236, 2003. a
Tange, O.: GNU Parallel 2018, Zenodo, https://doi.org/10.5281/zenodo.5523272, 2018. a
The MPAS project: MPAS home page,
http://mpas-dev.github.io/ (last access: 22 May 2023), 2013. a
Trenberth, K. E.: Truncation and use of model-coordinate data, Tellus, 47A,
287–303, 1995. a
Trzaska, S. and Schnarr, E.: A review of downscaling methods for climate
change projections, United States Agency for International Development by
Tetra Tech ARD, 1–42, https://www.climatelinks.org/sites/default/files/asset/document/Downscaling_CLEARED.pdf (last access: 25 May 2023), 2014. a
UCAR/NCAR/CISL/TDD: The NCAR Command Language, National Center for Atmospheric Research Climate Data Gateway, https://doi.org/10.5065/D6WD3XH5,
2017a. a
UCAR/NCAR/CISL/TDD: NCL: Regridding using NCL with Earth System Modeling
Framework (ESMF) software,
https://www.ncl.ucar.edu/Applications/ESMF.shtml (last access: 22 May 2023),
2017b. a
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette,
J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth,
K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131,
2961–3012, https://doi.org/10.1256/qj.04.176, 2005. a
Wang, Y., Leung, L. R., McGregor, J. L., Lee, D.-K., Wang, W.-C., Ding, Y., and
Kimura, F.: Regional climate modeling: Progress, challenges, and prospects,
J. Meteorol. Soc. Jpn., 82, 1599–1628,
https://doi.org/10.2151/jmsj.82.1599, 2004. a
Wang, Y., Hu, K., Huang, G., and Tao, W.: Asymmetric impacts of El Niño
and la Niña on the Pacific-North American teleconnection pattern: The
role of subtropical jet stream, Environ. Res. Lett., 16, 114040,
https://doi.org/10.1088/1748-9326/ac31ed, 2021. a
Wehner, M. F., Reed, Kevin, A., Li, F., Prabhat, Bacmeister, J. T., Chen,
C.-T., Paciorek, C. J., Gleckler, P. J., Sperber, K. R., Collins, W. D.,
Gettelman, A., and Jablonowski, C.: The effect of horizontal resolution on
simulation quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth Sy., 6, 980–997,
https://doi.org/10.1002/2013MS000276, 2014. a
Wilby, R. L. and Dawson, C. W.: The statistical downscaling model: Insights
from one decade of application, Int. J. Climatol., 33,
1707–1719, https://doi.org/10.1002/joc.3544, 2013. a
Wilby, R. L., Hay, L. E., Gutowski, W. J., Arritt, R. W., Takle, E. S., Pan,
Z., Leavesley, G. H., and Clark, M. P.: Hydrological responses to
dynamically and statistically downscaled climate model output, Geophys. Res. Lett., 27, 1199–1202, https://doi.org/10.1029/1999GL006078, 2000. a
Williamson, D. L.: The evolution of dynamical cores for global atmospheric
models, J. Meteorol. Soc. Jpn., 85B, 241–269,
2007. a
Williamson, D. L.: Convergence of aqua-planet simulations with increasing
resolution in the Community Atmospheric Model, Version 3, Tellus A,
60, 848–862, https://doi.org/10.1111/j.1600-0870.2008.00339.x, 2008.
a, b
Williamson, D. L.: The effect of time steps and time-scales on
parameterization suites, Q. J. Roy. Meteor. Soc., 139, 548–560, https://doi.org/10.1002/qj.1992, 2013. a
Wills, R. C., White, R. H., and Levine, X. J.: Northern Hemisphere Stationary
Waves in a Changing Climate, Current Climate Change Reports, 5, 372–389,
https://doi.org/10.1007/s40641-019-00147-6, 2019. a
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
implications of dynamical and statistical approaches to downscaling climate
model outputs, Climatic Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004. a
Xie, S., Lin, W., Rasch, P. J., Ma, P. L., Neale, R., Larson, V. E., Qian, Y.,
Bogenschutz, P. A., Caldwell, P., Cameron-Smith, P., Golaz, J. C., Mahajan,
S., Singh, B., Tang, Q., Wang, H., Yoon, J. H., Zhang, K., and Zhang, Y.:
Understanding Cloud and Convective Characteristics in Version 1 of the E3SM
Atmosphere Model, J. Adv. Model. Earth Sy., 10,
2618–2644, https://doi.org/10.1029/2018MS001350, 2018. a
Xu, Z., Rhoades, A. M., Johansen, H., Ullrich, P. A., and Collins, W. D.: An
intercomparison of GCM and RCM dynamical downscaling for characterizing the
hydroclimatology of California and Nevada, J. Hydrometeorol., 19,
1485–1506, https://doi.org/10.1175/JHM-D-17-0181.1, 2018. a
Xu, Z., Di Vittorio, A., Zhang, J., Rhoades, A., Xin, X., Xu, H., and Xiao,
C.: Evaluating Variable-Resolution CESM Over China and Western United States
for Use in Water-Energy Nexus and Impacts Modeling, J. Geophys. Res.-Atmos., 126, e2020JD034361, https://doi.org/10.1029/2020JD034361, 2021. a
Zarzycki, C. M.: VR-CESM-Toolkit,
https://github.com/zarzycki/vr-cesm-toolkit (last access: 22 May 2023), 2018. a
Zender, C. S.: netCDF Operators (NCO), Zenodo, https://doi.org/10.5281/zenodo.595745, 2017. a
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian Climate Centre General
Circulation Model, Atmos. Ocean, 33, 407–446, 1995. a
Zhao, C., Leung, L. R., Park, S.-H., Hagos, S., Lu, J., Sakaguchi, K., Yoon,
J.-H., Harrop, B. E., Skamarock, W. C., and Duda, M. G.: Exploring the
impacts of physics and resolution on aqua-planet simulations from a
non-hydrostatic global variable-resolution modeling framework, J. Adv. Model. Earth Sy., 8, 1751–1768, https://doi.org/10.1002/2016MS000727, 2016. a, b, c
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
We document details of the regional climate downscaling dataset produced by a global...