Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2515-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2515-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Met Office operational wave forecasting system: the evolution of the regional and global models
Nieves G. Valiente
CORRESPONDING AUTHOR
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Andrew Saulter
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Breogan Gomez
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Christopher Bunney
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Jian-Guo Li
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Tamzin Palmer
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Christine Pequignet
Met Office, Fitzroy Road, EX1 3PB, Exeter, UK
Related authors
No articles found.
Piyali Goswami, Ségolène Berthou, Theodore G. Shepherd, Ambrogio Volonté, Sana Mahmood, Juan Manuel Castillo, Anne-Christine Péquignet, Yong-June Park, Mark Worsfold, Regina Rodrigues, and Magdalena A. Balmaseda
EGUsphere, https://doi.org/10.5194/egusphere-2025-5662, https://doi.org/10.5194/egusphere-2025-5662, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We examined how a marine heatwave - period of unusually warm ocean conditions - affected flooding and coastal erosion during a storm in northwest Europe. Using a state-of-the-art regional coupled model at km-scale, we compared simulations with and without the marine heatwave to isolate its effects on the storm hazards. Warmer shallow seas intensified rainfall, winds and surface depression of the storm, which integrated into larger increases of surge, wave power and river flows.
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
Diego Bruciaferri, Marina Tonani, Isabella Ascione, Fahad Al Senafi, Enda O'Dea, Helene T. Hewitt, and Andrew Saulter
Geosci. Model Dev., 15, 8705–8730, https://doi.org/10.5194/gmd-15-8705-2022, https://doi.org/10.5194/gmd-15-8705-2022, 2022
Short summary
Short summary
More accurate predictions of the Gulf's ocean dynamics are needed. We investigate the impact on the predictive skills of a numerical shelf sea model of the Gulf after changing a few key aspects. Increasing the lateral and vertical resolution and optimising the vertical coordinate system to best represent the leading physical processes at stake significantly improve the accuracy of the simulated dynamics. Additional work may be needed to get real benefit from using a more realistic bathymetry.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Marion Mittermaier, Rachel North, Jan Maksymczuk, Christine Pequignet, and David Ford
Ocean Sci., 17, 1527–1543, https://doi.org/10.5194/os-17-1527-2021, https://doi.org/10.5194/os-17-1527-2021, 2021
Short summary
Short summary
Regions of enhanced chlorophyll-a concentrations can be identified by applying a threshold to the concentration value to a forecast and observed field (or analysis). These regions can then be treated and analysed as features using diagnostic techniques to consider of the evolution of the chlorophyll-a blooms in space and time. This allows us to understand whether the biogeochemistry in the model has any skill in predicting these blooms, their location, intensity, onset, duration and demise.
Cited articles
Alday, M., Ardhuin, F., Dodet, G., and Accensi, M.: Accuracy of numerical wave model results: application to the Atlantic coasts of Europe, Ocean Sci., 18, 1665–1689, https://doi.org/10.5194/os-18-1665-2022, 2022.
Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A.,
Queffelou, P., Lefevre, J. M., Aouf, L., Babanin, A., and Collard, F.:
Semi-empirical dissipation source functions for wind-wave models: part I, definition, calibration and validation at global scales, J.
Phys. Oceanogr., 40, 1917–1941, 2010.
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P.,
Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical Wave Modeling in
Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind,
J. Phys. Oceanogr., 42, 2101–2120,
https://doi.org/10.1175/JPO-D-11-0220.1, 2012.
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N.,
Chapron, B., Gula, J., and Molemaker, J.: Small-scale open ocean currents
have large effects on wind wave heights, J. Geophys. Res.-Oceans, 122, 4500–4517, https://doi.org/10.1002/2016JC012413, 2017.
Battjes, J. A. and Janssen, P.: Energy loss and set-up due to breaking of
random waves, Coast. Eng., 1, 32,
https://doi.org/10.9753/icce.v16.32, 1978.
Bidlot, J., Wittmann, P., Fauchon, M., Chen, H., Lefèvre, J. M., Bruns,
T., Greensdale, T., Ardhuin, F., Kohno, N., and Park, S.: Inter-comparison
of operational wave forecasting systems, in: 10th International Workshop on Wave
Hindcasting and Forecasting and Coastal Hazard Symposium, North Shore, Oahu,
Hawaii, 11–16 November 2007, 1–22, http://www.waveworkshop.org/10thWaves/Papers/paper_10th_workshop_Bidlot_at_al.pdf (last access: 27 April 2023), 2007.
Booij, N. and Holthuijsen, L. H.: Propagation of ocean waves in discrete
spectral wave models, J. Comput. Phys., 68, 307–326,
https://doi.org/10.1016/0021-9991(87)90060-X, 1987.
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly,
A.: Unified modeling and prediction of weather and climate: A 25-year
journey, B. Am. Meteorol. Soc., 93,
1865–1877, https://doi.org/10.1175/BAMS-D-12-00018.1, 2012.
Bruciaferri, D., Tonani, M., Lewis, H. W., Siddorn, J. R., Saulter, A.,
Castillo Sanchez, J. M., Valiente, N. G., Conley, D., Sykes, P., Ascione,
I., and McConnell, N.: The Impact of Ocean-Wave Coupling on the Upper Ocean
Circulation During Storm Events, J. Geophys. Res.-Oceans,
126, e2021JC017343, https://doi.org/10.1029/2021JC017343, 2021.
Bunney, C. and Saulter, A.: An ensemble forecast system for prediction of
Atlantic-UK wind waves, Ocean Model., 96, 103–116,
https://doi.org/10.1016/j.ocemod.2015.07.005, 2015.
Castillo, J. M., Lewis, H. W., Mishra, A., Mitra, A., Polton, J., Brereton, A., Saulter, A., Arnold, A., Berthou, S., Clark, D., Crook, J., Das, A., Edwards, J., Feng, X., Gupta, A., Joseph, S., Klingaman, N., Momin, I., Pequignet, C., Sanchez, C., Saxby, J., and Valdivieso da Costa, M.: The Regional Coupled Suite (RCS-IND1): application of a flexible regional coupled modelling framework to the Indian region at kilometre scale, Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, 2022.
Cavaleri, L. and Rizzoli, P. M.: Wind Wave Prediction in Shallow Water:
Theory and Applications, J. Geophys. Res., 86,
10961–10973, https://doi.org/10.1029/JC086iC11p10961, 1981.
Cefas: Homepage, https://www.cefas.co.uk/cefas-data-hub/wavenet/, last access: 8 November 2022.
Copernicus Marine Environment Monitoring Service in Situ Thematic Assembly Centre: Homepage, http://www.marineinsitu.eu/dashboard/, last access: 8 November 2022.
Crocker, R., Maksymczuk, J., Mittermaier, M., Tonani, M., and Pequignet, C.: An approach to the verification of high-resolution ocean models using spatial methods, Ocean Sci., 16, 831–845, https://doi.org/10.5194/os-16-831-2020, 2020.
Dodet, G., Piolle, J.-F., Quilfen, Y., Abdalla, S., Accensi, M., Ardhuin, F., Ash, E., Bidlot, J.-R., Gommenginger, C., Marechal, G., Passaro, M., Quartly, G., Stopa, J., Timmermans, B., Young, I., Cipollini, P., and Donlon, C.: The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations, Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, 2020.
Echevarria, E. R., Hemer, M. A., and Holbrook, N. J.: Global implications of
surface current modulation of the wind-wave field, Ocean Model.,
161, 101792, https://doi.org/10.1016/j.ocemod.2021.101792, 2021.
Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R., Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R., Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The current configuration of the OSTIA system
for operational production of foundation sea surface temperature and ice
concentration analyses, Remote Sensing, 12, 720,
https://doi.org/10.3390/rs12040720, 2020.
Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S., Castillo Sanchez, J. M., and Mayorga Adame, C. G.: AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf, Geosci. Model Dev., 11, 681–696, https://doi.org/10.5194/gmd-11-681-2018, 2018.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E.,
Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P.,
Meerburg, A., Muller, P., Olsbers, D. J., Richter, K., Sell, W., and Walden,
H.: Measurements of wind-wave growth and swell decay during the joint North
Sea wave project (JONSWAP),
https://repository.tudelft.nl/islandora/object/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc?collection=research (last access: 8 October 2022), 1973.
Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P.:
Computations and Parameterizations of the Nonlinear Energy Transfer in a
Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy
Transfer for Application in Wave Models, J. Phys. Oceanogr.,
15, 1378–1391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2, 1985.
Hersbach, H. and Bidlot, J.-R.: The relevance of ocean surface current in
the ECMWF analysis and forecast system, in: ECMWF Workshop on Ocean-atmosphere interactions, Reading, UK, 10–12 November 2008, 61–73, https://www.ecmwf.int/sites/default/files/elibrary/2009/9866-relevance-ocean-surface-current-ecmwf-analysis-and-forecast-system.pdf (last access: 8 October 2022), 2008.
Janssen, P.: The Interaction of Ocean Waves and Wind, Cambridge University Press, 386 pp., https://doi.org/10.1017/cbo9780511525018, 2004.
King, R. R., While, J., Martin, M. J., Lea, D. J., Lemieux-Dudon, B.,
Waters, J., and O'Dea, E.: Improving the initialisation of the Met Office
operational shelf-seas model, Ocean Model., 130, 1–14,
https://doi.org/10.1016/j.ocemod.2018.07.004, 2018.
Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Palmer, T., Lock, A., Edwards, J., Bricheno, L., Martínez-de la Torre, A., and Clark, J.: The UKC3 regional coupled environmental prediction system, Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, 2019.
Li, J. G.: Upstream nonoscillatory advection schemes, Mon. Weather Rev., 136, 4709–4729, https://doi.org/10.1175/2008MWR2451.1, 2008.
Li, J. G.: Global transport on a spherical multiple-cell grid, Mon.
Weather Rev., 139, 1536–1555, https://doi.org/10.1175/2010MWR3196.1,
2011.
Li, J. G.: Propagation of ocean surface waves on a spherical multiple-cell
grid, J. Comput. Phys., 231, 8262–8277,
https://doi.org/10.1016/j.jcp.2012.08.007, 2012.
Li, J.-G.: Hybrid multi-grid parallelisation of WAVEWATCH III model on
spherical multiple-cell grids, J. Parallel Distr.
Com., 167, 187–198, https://doi.org/10.1016/j.jpdc.2022.05.002, 2022.
Li, J. G. and Saulter, A.: Unified global and regional wave model on a
multi-resolution grid, Ocean Dynam., 64, 1657–1670,
https://doi.org/10.1007/s10236-014-0774-x, 2014.
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de modélisation, No. 27, Institut Pierre-Simon Laplace (IPSL), France, ISSN 1288-1619, 2016.
National Network of Regional Coastal Monitoring Programmes (NNRCMP): Homepage, http://www.channelcoast.org/, last access: 8 November 2022.
NOAA: WAVEWATCH III® Production Hindcast, Multigrid: Feb 2005
to May 2019, https://polar.ncep.noaa.gov/waves/hindcasts/prod-multi_1.php (last access: 8 November 2022),
2020.
NOAA: WAVEWATCH III® model main page, NOAA [code], https://polar.ncep.noaa.gov/waves/wavewatch/wavewatch.shtml (last access: 4 May 2023), 2021a.
NOAA, WAVEWATCH III® Source Code Request, NOAA [code], https://polar.ncep.noaa.gov/waves/wavewatch/license.shtml (last access: 4 May 2023), 2021b.
Palmer, T. and Saulter, A.: Evaluating the effects of ocean current fields
on a UK regional wave model, Met Office Research Technical Report No: 612, https://library.metoffice.gov.uk/Portal/Default/en-GB/DownloadImageFile.ashx?objectId=407&ownerType=0&ownerId=212801
(last access: 26 November 2022), 2016.
Phillips, O. M.: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J. Fluid Mech., 156, 505–531, https://doi.org/10.1017/S0022112085002221, 1985.
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate Change Initiative (Sea_State_cci) : Global remote sensing daily
merged multi-mission along-track significant wave height, L3 product, version 1.1., Centre for Environmental Data Analysis [data set],
https://doi.org/10.5285/3ef6a5a66e9947d39b356251909dc12b, 2020.
Roland, A. and Ardhuin, F.: On the developments of spectral wave models: Numerics and parameterizations for the coastal ocean, Ocean Dynam., 64, 833–846, https://doi.org/10.1007/s10236-014-0711-z, 2014.
Saulter, A.: North West European Shelf Production Centre – Quality
Information Document, 1–60, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-014.pdf
(last access: 26 November 2022), 2020.
Saulter, A., Bunney, C., and Li, J.: Application of a refined grid global
model for operational wave forecasting, Forecasting Met Office Research
Technical Report No: 614, 46, https://doi.org/10.13140/RG.2.2.22242.17600,
2016.
Saulter, A., Bunney, C., Li, J.-G., and Palmer, T.: Process and resolution
impacts on UK coastal wave predictions from operational global-regional wave
models, in: The 1st International Workshop on Waves, Storm Surges and
Coastal Hazards incorporating the 15th international workshop on
wave hindcasting and forecasting, Liverpool, United Kingdom, September 2017, http://www.waveworkshop.org/15thWaves/Papers/K1_WHF_SaulterEtAl_UKCoastalWave_20170913.pdf (last access: 8 November 2022), 2017.
Saulter, A. N., Bunney, C., King, R. R., and Waters, J.: An Application of
NEMOVAR for Regional Wave Model Data Assimilation, Front. Mar. Sci., 7, 579834, https://doi.org/10.3389/fmars.2020.579834,
2020.
Siddorn, J. R., Good, S. A., Harris, C. M., Lewis, H. W., Maksymczuk, J., Martin, M. J., and Saulter, A.: Research priorities in support of ocean monitoring and forecasting at the Met Office, Ocean Sci., 12, 217–231, https://doi.org/10.5194/os-12-217-2016, 2016.
Tolman, H. L.: User manual and system documentation of WAVEWATCH
III® version 4.18, http://polar.ncep.noaa.gov/waves/wavewatch/manual.v4.18.pdf (last access: 8 December 2022), 2014.
Tonani, M., Sykes, P., King, R. R., McConnell, N., Péquignet, A.-C., O'Dea, E., Graham, J. A., Polton, J., and Siddorn, J.: The impact of a new high-resolution ocean model on the Met Office North-West European Shelf forecasting system, Ocean Sci., 15, 1133–1158, https://doi.org/10.5194/os-15-1133-2019, 2019.
Tonani, M., Bruciaferri, D., Pequignet, C., King, R., Sykes, P., McConnell, N., Siddorn, J., Saulter, A., and
Ascione, I.: North West European
Shelf Production Centre – Quality Information Document, NORTHWESTSHELF_ANALYSIS_FORECAST_PHYS_004_013, Issue: 1.5, 1–52, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-013.pdf (last access: 26 November 2022), 2022.
Valckle, S., Craig, T., and Coquart, L.: OASIS3 MCT User Guide OASIS3-MCT_3.0, Cerfacs,
Technical Report TR/CMGC/15/38, https://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf (last access: 4 May 2023), 2015.
Valiente, N. G.: Supporting data – The Met Office operational wave forecasting system: the evolution of the Regional and Global models, Zenodo [data set], https://doi.org/10.5281/zenodo.7019826, 2022.
Valiente, N. G., Saulter, A., Edwards, J. M., Lewis, H. W., Sanchez, J. M.
C., Bruciaferri, D., Bunney, C., and Siddorn, J.: The impact of wave model
source terms and coupling strategies to rapidly developing waves across the
north-west european shelf during extreme events, Journal of Marine Science
and Engineering, 9, 403, https://doi.org/10.3390/jmse9040403, 2021a.
Valiente, N. G., Saulter, A., and Lewis, H. W.: The effect of different
levels of coupling in surface wind waves along the NWS during extreme
events, Met Office Forecasting Research Technical Report No:642, https://digital.nmla.metoffice.gov.uk/ (last access: 26 November 2022), 2021b.
Valiente, N. G., Saulter, A., Bunney, C., and Gomez, B.: Configurations files – The Met Office operational wave forecasting system: the evolution of the Regional and Global models, Zenodo [code], https://doi.org/10.5281/zenodo.7148687, 2022.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While,
J.: Implementing a variational data assimilation system in an operational
1/4degree global ocean model, Q. J. Roy. Meteor.
Soc., 141, 333–349, https://doi.org/10.1002/qj.2388, 2015.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert,
D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P.,
Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S.
F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey,
D., thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A.,
Woollings, T., and Xavier, P. K.: The Met Office Global Coupled Model 3.0
and 3.1 (GC3.0 and GC3.1) Configurations, J. Adv. Model.
Earth Sy., 10, 357–380, https://doi.org/10.1002/2017MS001115, 2018.
Young, I. R. and Verhagen, L. A.: The growth of fetch limited waves in
water of finite depth. Part 1. Total energy and peak frequency, Coast. Eng., 29, 47–78, 1996.
WAVEWATCH III Development Group (WW3DG): User manual and system
documentation of WAVEWATCH III® version 6.07. Tech. Note 333,
NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp. + Appendices, https://raw.githubusercontent.com/wiki/NOAA-EMC/WW3/files/manual.pdf (last access: 1 November 2022), 2019.
WW3 Development
Group (WW3DG): ukmo-waves/WW3:ukmo_ps45-1.1, Zenodo [code], https://doi.org/10.5281/zenodo.7874843, 2023.
Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R.: Observation-based
source terms in the third-generation wave model WAVEWATCH, Ocean Model., 96,
2–25, https://doi.org/10.1016/j.ocemod.2015.07.014, 2015.
Short summary
We document the Met Office operational global and regional wave models which provide wave forecasts up to 7 d ahead. Our models present coarser resolution offshore to higher resolution near the coastline. The increased resolution led to replication of the extremes but to some overestimation during modal conditions. If currents are included, wave directions and long period swells near the coast are significantly improved. New developments focus on the optimisation of the models with resolution.
We document the Met Office operational global and regional wave models which provide wave...