Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3447-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3447-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Empirical values and assumptions in the convection schemes of numerical models
Anahí Villalba-Pradas
CORRESPONDING AUTHOR
Earth and Space Sciences (ess) Research
Group, Department of Environmental Sciences, Institute of Environmental
Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n, Toledo 45071, Spain
Francisco J. Tapiador
Earth and Space Sciences (ess) Research
Group, Department of Environmental Sciences, Institute of Environmental
Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n, Toledo 45071, Spain
Related authors
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
EGUsphere, https://doi.org/10.5194/egusphere-2023-1037, https://doi.org/10.5194/egusphere-2023-1037, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Urbanization transforms rural land into artificial one, while due to human activities, it also introduces a great quantity of emissions. We attempt to quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
EGUsphere, https://doi.org/10.5194/egusphere-2023-1037, https://doi.org/10.5194/egusphere-2023-1037, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Urbanization transforms rural land into artificial one, while due to human activities, it also introduces a great quantity of emissions. We attempt to quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Kwonil Kim, Wonbae Bang, Eun-Chul Chang, Francisco J. Tapiador, Chia-Lun Tsai, Eunsil Jung, and Gyuwon Lee
Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, https://doi.org/10.5194/acp-21-11955-2021, 2021
Short summary
Short summary
This study analyzes the microphysical characteristics of snow in complex terrain and the nearby ocean according to topography and wind pattern during the ICE-POP 2018 campaign. The observations from collocated vertically pointing radars and disdrometers indicate that the riming in the mountainous region is likely caused by a strong shear and turbulence. The different behaviors of aggregation and riming were found by three different synoptic patterns (air–sea interaction, cold low, and warm low).
Andrés Navarro, Raúl Moreno, and Francisco J. Tapiador
Earth Syst. Dynam., 9, 1045–1062, https://doi.org/10.5194/esd-9-1045-2018, https://doi.org/10.5194/esd-9-1045-2018, 2018
Short summary
Short summary
Earth system models provide simplified accounts of human–Earth interactions. Most current models treat CO2 emissions as a homogeneously distributed forcing. However, this paper presents a new parameterization, POPEM (POpulation Parameterization for Earth Models), that computes anthropogenic CO2 emissions at a grid point scale. A major advantage of this approach is the increased capacity to understand the potential effects of localized pollutant emissions on long-term global climate statistics.
R. Checa-Garcia, A. Tokay, and F. J. Tapiador
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-2339-2014, https://doi.org/10.5194/amtd-7-2339-2014, 2014
Preprint withdrawn
Related subject area
Climate and Earth system modeling
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Differentiable programming for Earth system modeling
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations
Various ways of using empirical orthogonal functions for climate model evaluation
C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling
FEOTS v0.0.0: a new offline code for the fast equilibration of tracers in the ocean
Pace v0.2: a Python-based performance-portable atmospheric model
Simulated stable water isotopes during the mid-Holocene and pre-industrial using AWI-ESM-2.1-wiso
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)/RTTOV (v12.3)
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
ModE-Sim – A medium size AGCM ensemble to study climate variability during the modern era (1420 to 2009)
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin
Modernizing the open-source community Noah-MP land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
URock 2023a: An open source GIS-based wind model for complex urban settings
The impact of lateral boundary forcing in the CORDEX-Africa ensemble over southern Africa
Effects of complex terrain on the shortwave radiative balance: a sub-grid-scale parameterization for the GFDL Earth System Model version 4.1
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
Geosci. Model Dev., 16, 3355–3373, https://doi.org/10.5194/gmd-16-3355-2023, https://doi.org/10.5194/gmd-16-3355-2023, 2023
Short summary
Short summary
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023, https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary
Short summary
This paper describes a newly developed submodel ACCF V1.0 based on the MESSy 2.53.0 infrastructure. The ACCF V1.0 is based on the prototype algorithmic climate change functions (aCCFs) v1.0 to enable climate-optimized flight trajectories. One highlight of this paper is that we describe a consistent full set of aCCFs formulas with respect to fuel scenario and metrics. We demonstrate the usage of the ACCF submodel using AirTraf V2.0 to optimize trajectories for cost and climate impact.
Peter Ukkonen and Robin J. Hogan
Geosci. Model Dev., 16, 3241–3261, https://doi.org/10.5194/gmd-16-3241-2023, https://doi.org/10.5194/gmd-16-3241-2023, 2023
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023, https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Short summary
Desert dust has significant impacts on climate, public health, infrastructure and ecosystems. An impact assessment requires numerical predictions, which are challenging because the dust emissions are not well known. We present a novel approach using satellite observations and machine learning to more accurately estimate the emissions and to improve the model simulations.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023, https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
Short summary
Using outputs of global biogeochemical ocean model and machine learning methods, we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023, https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary
Short summary
This study introduces an improved method of the Globally Resolved Energy Balance (GREB) model by the Bayesian network. The improved method constructs a coarse–fine structure that combines a dynamical model with a statistical model based on employing the GREB model as the global framework and utilizing Bayesian networks as the local optimization. The results show that the improved model has better applicability and stability on a global scale and maintains good robustness on the timescale.
Colin Tully, David Neubauer, and Ulrike Lohmann
Geosci. Model Dev., 16, 2957–2973, https://doi.org/10.5194/gmd-16-2957-2023, https://doi.org/10.5194/gmd-16-2957-2023, 2023
Short summary
Short summary
A new method to simulate deterministic ice nucleation processes based on the differential activated fraction was evaluated against a cumulative approach. Box model simulations of heterogeneous-only ice nucleation within cirrus suggest that the latter approach likely underpredicts the ice crystal number concentration. Longer simulations with a GCM show that choosing between these two approaches impacts ice nucleation competition within cirrus but leads to small and insignificant climate effects.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023, https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
Joseph Schoonover, Wilbert Weijer, and Jiaxu Zhang
Geosci. Model Dev., 16, 2795–2809, https://doi.org/10.5194/gmd-16-2795-2023, https://doi.org/10.5194/gmd-16-2795-2023, 2023
Short summary
Short summary
FEOTS aims to enhance the value of data produced by state-of-the-art climate models by providing a framework to diagnose and use ocean transport operators for offline passive tracer simulations. We show that we can capture ocean transport operators from a validated climate model and employ these operators to estimate water mass budgets in an offline regional simulation, using a small fraction of the compute resources required to run a full climate simulation.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
Geosci. Model Dev., 16, 2719–2736, https://doi.org/10.5194/gmd-16-2719-2023, https://doi.org/10.5194/gmd-16-2719-2023, 2023
Short summary
Short summary
It is hard for scientists to write code which is efficient on different kinds of supercomputers. Python is popular for its user-friendliness. We converted a Fortran code, simulating Earth's atmosphere, into Python. This new code auto-converts to a faster language for processors or graphic cards. Our code runs 3.5–4 times faster on graphic cards than the original on processors in a specific supercomputer system.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-68, https://doi.org/10.5194/gmd-2023-68, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We develpoed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observation and reconstruction. Based on our analyses, the observed isotope-temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach for determining the onset date of the West African summer monsoon.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-60, https://doi.org/10.5194/gmd-2023-60, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2023-209, https://doi.org/10.5194/egusphere-2023-209, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions and volcanic aerosols for the period 1420 to 2009 as model input while accounting for uncertainties in these. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand mechanism that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023, https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023, https://doi.org/10.5194/gmd-16-2055-2023, 2023
Short summary
Short summary
Bias correction (BC) has become indispensable to climate model output as a post-processing step to render output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX, and CORDEX-CORE) for a multivariate drought index (i.e., standardized precipitation evapotranspiration index).
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
EGUsphere, https://doi.org/10.5194/egusphere-2023-675, https://doi.org/10.5194/egusphere-2023-675, 2023
Short summary
Short summary
Noah-MP is one of the most widely-used community land surface models in the world, which is designed for applications ranging from uncoupled land-surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhances the model modularity, interoperability, and applicability.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2023-354, https://doi.org/10.5194/egusphere-2023-354, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This manuscript shows that the new wind model, URock, fits generally well with observations and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students and practitioners).
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
Geosci. Model Dev., 16, 1937–1960, https://doi.org/10.5194/gmd-16-1937-2023, https://doi.org/10.5194/gmd-16-1937-2023, 2023
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth system models, where coarse grid cells hinder the description of fine-scale land–atmosphere interactions. We adopt a clustering algorithm to partition the land domain into a set of homogeneous sub-grid
tiles, and for each tile we evaluate solar radiation received by land based on terrain properties.
Cited articles
Albrecht, B. A., Betts, A. K., Schubert, W. H., and Cox, S. K.: Model of the
Thermodynamic Structure of the Trade-Wind Boundary Layer: Part I.
Theoretical Formulation and Sensitivity Tests, J. Atmos. Sci., 36, 73–89,
https://doi.org/10.1175/1520-0469(1979)036<0073:MOTTSO>2.0.CO;2, 1979.
Alexander, G. D. and Cotton, W. R.: The Use of Cloud-Resolving Simulations
of Mesoscale Convective Systems to Build a Mesoscale Parameterization
Scheme, J. Atmos. Sci., 55, 2137–2161,
https://doi.org/10.1175/1520-0469(1998)055<2137:TUOCRS>2.0.CO;2, 1998.
Allan, R. P. and Soden, B. J.: Atmospheric Warming and the Amplification of
Precipitation Extremes, Science, 321, 1481–1484,
https://doi.org/10.1126/science.1160787,2008.
Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L.,
Dixon, K. W., Donner, L. J., Dunne, K. A., Freidenreich, S. M., Garner, S.
T., and Gudgel, R. G.: The New GFDL Global Atmosphere and Land Model
AM2–LM2: Evaluation with Prescribed SST Simulations, J. Climate, 17,
4641–4673, https://doi.org/10.1175/JCLI-3223.1, 2004.
Añel, J. A., García-Rodríguez, M., and Rodeiro, J.: Current status on the need for improved accessibility to climate models code, Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, 2021.
Angevine, W. M.: An Integrated Turbulence Scheme for Boundary Layers with
Shallow Cumulus Applied to Pollutant Transport, J. Appl. Meteorol., 44,
1436–1452, https://doi.org/10.1175/JAM2284.1, 2005.
Angevine, W. M., Jiang, H., and Mauritsen, T.: Performance of an Eddy
Diffusivity–Mass Flux Scheme for Shallow Cumulus Boundary Layers, Mon.
Weather Rev., 138, 2895–2912, https://doi.org/10.1175/2010MWR3142.1, 2010.
Anthes, R. A.: A Cumulus Parameterization Scheme Utilizing a One-Dimensional
Cloud Model, Mon. Weather Rev., 138, 2895–2912,
https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2, 1977.
Arakawa, A.: Parameterization of cumulus convection, Proceedings of WMO/IUGG
Symposium, Numerical Weather Prediction, Japan Meteorological Agency, IV,8,
1–6, 1969.
Arakawa, A.: The Cumulus Parameterization Problem: Past, Present, and
Future, J. Climate, 17, 2493–2525,
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2, 2004.
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble
with the Large-Scale Environment, Part I., J. Atmos. Sci., 31, 674–701,
https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974.
Arakawa, A. and Wu, C.-M.: A Unified Representation of Deep Moist Convection
in Numerical Modeling of the Atmosphere. Part I, J. Atmos. Sci., 70,
1977–1992, https://doi.org/10.1175/JAS-D-12-0330.1, 2013.
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011.
Asai, T. and Kasahara, A.: A Theoretical Study of the Compensating Downward
Motions Associated with Cumulus Clouds, J. Atmos. Sci., 24, 487–496,
https://doi.org/10.1175/1520-0469(1967)024<0487:ATSOTC>2.0.CO;2, 1967.
Baba, Y.: Spectral cumulus parameterization based on cloud-resolving model,
Clim. Dynam., 52, 309–334, https://doi.org/10.1007/s00382-018-4137-z, 2019.
Baik, J.-J., DeMaria, M., and Raman, S.: Tropical Cyclone Simulations with
the Betts Convective Adjustment Scheme. Part II: Sensitivity Experiments,
Mon. Weather Rev., 118, 529–541,
https://doi.org/10.1175/1520-0493(1990)118<0529:TCSWTB>2.0.CO;2, 1990.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett., 59, 381, https://doi.org/10.1103/PHYSREVLETT.59.381, 1987.
Baldwin, M. E., Kain, J. S., and Kay, M. P.: Properties of the Convection
Scheme in NCEP's Eta Model that Affect Forecast Sounding Interpretation,
Weather Forecast., 17, 1063–1079,
https://doi.org/10.1175/1520-0434(2002)017<1063:POTCSI>2.0.CO;2, 2002.
Barros, D. F., Albernaz, A. L. M., Barros, D. F., and Albernaz, A. L. M.:
Possible impacts of climate change on wetlands and its biota in the
Brazilian Amazon, Braz. J. Biol., 74, 810–820,
https://doi.org/10.1590/1519-6984.04013, 2014.
Bechtold, P. (Ed.): Atmospheric moist convection, Meteorological Training Course
Lecture Series, ECMWF, https://www.ecmwf.int/node/16953 (last access: 10 September 2021), 2019.
Bechtold, P., Pinty, J. P., and Fravalo, C.: A Model of Marine
Boundary-Layer Cloudiness for Mesoscale Applications, J. Atmos. Sci., 49,
1723–1744, https://doi.org/10.1175/1520-0469(1992)049<1723:AMOMBL>2.0.CO;2, 1992.
Bechtold, P., Cuijpers, J. W. M., Mascart, P., and Trouilhet, P.: Modeling
of Trade Wind Cumuli with a Low-Order Turbulence Model: Toward a Unified
Description of Cu and Se Clouds in Meteorological Models, J. Atmos. Sci.,
52, 455–463, https://doi.org/10.1175/1520-0469(1995)052<0455:MOTWCW>2.0.CO;2, 1995.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A
mass-flux convection scheme for regional and global models, Q. J. Roy.
Meteor. Soc., 127, 869–886, https://doi.org/10.1002/qj.49712757309, 2001.
Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A. K., Köhler, M.,
Miller, M., and Redelsperger, J.-L.: The simulation of the diurnal cycle of
convective precipitation over land in a global model, Q. J. Roy. Meteor.
Soc., 130, 3119–3137, https://doi.org/10.1256/qj.03.103, 2004.
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351,
https://doi.org/10.1002/qj.289, 2008.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in
Large-Scale Models, J. Atmos. Sci., 71, 734–753,
https://doi.org/10.1175/JAS-D-13-0163.1, 2014.
Becker, T. and Hohenegger, C.: Estimating Bulk Entrainment for Deep Convection – from Idealized to Realistic Simulations, American Geophysical Union, Fall Meeting 2018, Washington, D.C., abstract #A21K-2864, 21, 2018.
Becker, T., Bechtold, P., and Sandu, I.: Characteristics of convective precipitation over tropical Africa in storm‐resolving global simulations, Q. J. Roy. Meteor. Soc., 147, 4388–4407, https://doi.org/10.1002/qj.4185, 2021.
Bengtsson, L., Körnich, H., Källén, E., and Svensson, G.:
Large-Scale Dynamical Response to Subgrid-Scale Organization Provided by
Cellular Automata, J. Atmos. Sci., 68, 3132–3144,
https://doi.org/10.1175/JAS-D-10-05028.1, 2011.
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J.-F.: A
stochastic parametrization for deep convection using cellular automata, Q.
J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108,
2013.
Bengtsson, L., Bao, J.-W., Pegion, P., Penland, C., Michelson, S., and
Whitaker, J.: A Model Framework for Stochastic Representation of
Uncertainties Associated with Physical Processes in NOAA's Next Generation
Global Prediction System (NGGPS), Mon. Weather Rev., 147, 893–911,
https://doi.org/10.1175/MWR-D-18-0238.1, 2019.
Bengtsson, L., Dias, J., Tulich, S., Gehne, M., and Bao, J.-W.: A Stochastic
Parameterization of Organized Tropical Convection Using Cellular Automata
for Global Forecasts in NOAA's Unified Forecast System, J. Adv. Model Earth
Sy.,
13, e2020MS002260, https://doi.org/10.1029/2020MS002260, 2021.
Berg, L. K., Gustafson, W. I., Kassianov, E. I., and Deng, L.: Evaluation of
a Modified Scheme for Shallow Convection: Implementation of CuP and Case
Studies, Mon. Weather Rev., 141, 134–147,
https://doi.org/10.1175/MWR-D-12-00136.1, 2013.
Betts, A. K.: Parametric Interpretation of Trade-Wind Cumulus Budget
Studies, J. Atmos. Sci., 32, 1934–1945,
https://doi.org/10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2, 1975.
Betts, A. K.: Saturation Point Analysis of Moist Convective Overturning, J.
Atmos. Sci., 39, 1484–1505,
https://doi.org/10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2, 1982.
Betts, A. K.: Mixing Line Analysis of Clouds and Cloudy Boundary Layers, J.
Atmos. Sci., 42, 2751–2763,
https://doi.org/10.1175/1520-0469(1985)042<2751:MLAOCA>2.0.CO;2, 1985.
Betts, A. K.: A new convective adjustment scheme. Part I: Observational and
theoretical basis, Q. J. Roy. Meteor. Soc., 112, 677–691,
https://doi.org/10.1002/qj.49711247307, 1986.
Betts, A. K. and Albrecht, B. A.: Conserved Variable Analysis of the
Convective Boundary Layer Thermodynamic Structure over the Tropical Oceans,
J. Atmos. Sci., 44, 83–99,
https://doi.org/10.1175/1520-0469(1987)044<0083:CVAOTC>2.0.CO;2, 1987.
Betts, A. K. and Jakob, C.: Evaluation of the diurnal cycle of
precipitation, surface thermodynamics, and surface fluxes in the ECMWF model
using LBA data, J. Geophys. Res.-Atmos., 107, LBA 12-1–LBA 12-8,
https://doi.org/10.1029/2001JD000427, 2002.
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II:
Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data
sets, Q. J. Roy. Meteor. Soc., 112, 693–709,
https://doi.org/10.1002/qj.49711247308, 1986.
Bhatla, R., Ghosh, S., Mandal, B., Mall, R. K., and Sharma, K.: Simulation
of Indian summer monsoon onset with different parameterization convection
schemes of RegCM-4.3, Atmos. Res., 176–177, 10–18,
https://doi.org/10.1016/j.atmosres.2016.02.010, 2016.
Bhattacharya, R., Bordoni, S., Suselj, K., and Teixeira, J.:
Parameterization Interactions in Global Aquaplanet Simulations, J. Adv.
Model Earth Sy., 10, 403–420, https://doi.org/10.1002/2017MS000991, 2018.
Blyth, A. M.: Entrainment in Cumulus Clouds, J. Appl. Meteorol. Clim., 32,
626–641, https://doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2, 1993.
Blyth, A. M., Cooper, W. A., and Jensen, J. B.: A Study of the Source of
Entrained Air in Montana Cumuli, J. Atmos. Sci., 45, 3944–3964,
https://doi.org/10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2, 1988.
Boatman, J. F. and Auer, A. H.: The Role of Cloud Top Entrainment in Cumulus
Clouds, J. Atmos. Sci., 40, 1517–1534,
https://doi.org/10.1175/1520-0469(1983)040<1517:TROCTE>2.0.CO;2, 1983.
Bogenschutz, P. A. and Krueger, S. K.: A simplified PDF parameterization of
subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv.
Model Earth Sy., 5, 195–211, https://doi.org/10.1002/jame.20018, 2013.
Bogenschutz, P. A., Krueger, S. K., and Khairoutdinov, M.: Assumed
Probability Density Functions for Shallow and Deep Convection, J. Adv. Model
Earth Sy., 2, 10, https://doi.org/10.3894/JAMES.2010.2.10, 2010.
Böing, S. J.: An object-based model for convective cold pool dynamics, Mathematics of Climate and Weather Forecasting, 2, 43–60, https://doi.org/10.1515/mcwf-2016-0003, 2016.
Böing, S. J., Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.:
Influence of the Subcloud Layer on the Development of a Deep Convective
Ensemble, J. Atmos. Sci., 69, 2682–2698,
https://doi.org/10.1175/JAS-D-11-0317.1, 2012.
Böing, S. J., Jonker, H. J. J., Nawara, W. A., and Siebesma, A. P.: On
the Deceiving Aspects of Mixing Diagrams of Deep Cumulus Convection, J.
Atmos. Sci., 71, 56–68, https://doi.org/10.1175/JAS-D-13-0127.1, 2014.
Bombardi, R. J., Schneider, E. K., Marx, L., Halder, S., Singh, B., Tawfik,
A. B., Dirmeyer, P. A., and Kinter, J. L.: Improvements in the
representation of the Indian summer monsoon in the NCEP climate forecast
system version 2, Clim. Dynam., 45, 2485–2498,
https://doi.org/10.1007/s00382-015-2484-6, 2015.
Bombardi, R. J., Tawfik, A. B., Manganello, J. V., Marx, L., Shin, C.-S.,
Halder, S., Schneider, E. K., Dirmeyer, P. A., and Kinter, J. L.: The heated
condensation framework as a convective trigger in the NCEP Climate Forecast
System version 2, J. Adv. Model Earth Sy., 8, 1310–1329,
https://doi.org/10.1002/2016MS000668, 2016.
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of
tropical cloud feedback uncertainties in climate models, Geophys. Res.
Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005.
Bony, S. and Emanuel, K. A.: A Parameterization of the Cloudiness Associated
with Cumulus Convection; Evaluation Using TOGA COARE Data, J. Atmos. Sci.,
58, 3158–3183, https://doi.org/10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2, 2001.
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus,
R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H.,
Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity,
Nat. Geosci, 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015.
Bony, S., Stevens, B., Ament, F., Bigorre, S., Chazette, P., Crewell, S.,
Delanoë, J., Emanuel, K., Farrell, D., Flamant, C., Gross, S., Hirsch,
L., Karstensen, J., Mayer, B., Nuijens, L., Ruppert, J. H., Sandu, I.,
Siebesma, P., Speich, S., Szczap, F., Totems, J., Vogel, R., Wendisch, M.,
and Wirth, M.: EUREC4A: A Field Campaign to Elucidate the Couplings Between
Clouds, Convection and Circulation, Surv. Geophys., 38, 1529–1568,
https://doi.org/10.1007/s10712-017-9428-0, 2017.
Bougeault, P.: Cloud-Ensemble Relations Based on the Gamma Probability
Distribution for the Higher-Order Models of the Planetary Boundary Layer, J.
Atmos. Sci., 39, 2691–2700,
https://doi.org/10.1175/1520-0469(1982)039<2691:CERBOT>2.0.CO;2, 1982.
Bougeault, P.: A Simple Parameterization of the Large-Scale Effects of
Cumulus Convection, Mon. Weather Rev., 113, 2108–2121,
https://doi.org/10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2, 1985.
Brast, M., Schemann, V., and Neggers, R. A. J.: Investigating the Scale
Adaptivity of a Size-Filtered Mass Flux Parameterization in the Gray Zone of
Shallow Cumulus Convection, J. Atmos. Sci., 75, 1195–1214,
https://doi.org/10.1175/JAS-D-17-0231.1, 2018.
Bretherton, C. S., McCaa, J. R., and Grenier, H.: A New Parameterization for
Shallow Cumulus Convection and Its Application to Marine Subtropical
Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Mon.
Weather Rev., 132, 864–882,
https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2, 2004.
Bright, D. R. and Mullen, S. L.: Short-Range Ensemble Forecasts of
Precipitation during the Southwest Monsoon, Weather Forecast., 17,
1080–1100, https://doi.org/10.1175/1520-0434(2002)017<1080:SREFOP>2.0.CO;2, 2002.
Brisson, E., Van Weverberg, K., Demuzere, M., Devis, A., Saeed, S., Stengel,
M., and van Lipzig, N. P. M.: How well can a convection-permitting climate
model reproduce decadal statistics of precipitation, temperature and cloud
characteristics?, Clim. Dynam., 47, 3043–3061,
https://doi.org/10.1007/s00382-016-3012-z, 2016.
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution Requirements
for the Simulation of Deep Moist Convection, Mon. Weather Rev., 131,
2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003.
Buizza, R., Milleer, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. Roy. Meteor. Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006, 1999.
Burnet, F. and Brenguier, J.-L.: Observational Study of the
Entrainment-Mixing Process in Warm Convective Clouds, J. Atmos. Sci., 64,
1995–2011, https://doi.org/10.1175/JAS3928.1, 2007.
Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J.
B.: The Albedo of Fractal Stratocumulus Clouds, J. Atmos. Sci., 51,
2434–2455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2, 1994.
Chaboureau, J.-P. and Bechtold, P.: A Simple Cloud Parameterization Derived
from Cloud Resolving Model Data: Diagnostic and Prognostic Applications, J.
Atmos. Sci., 59, 2362–2372,
https://doi.org/10.1175/1520-0469(2002)059<2362:ASCPDF>2.0.CO;2, 2002.
Chaboureau, J.-P. and Bechtold, P.: Statistical representation of clouds in
a regional model and the impact on the diurnal cycle of convection during
Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX), J. Geophys.
Res.-Atmos.,
110, D17103, https://doi.org/10.1029/2004JD005645, 2005.
Charney, J. G. and Eliassen, A.: On the Growth of the Hurricane Depression,
J. Atmos. Sci., 21, 68–75,
https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2, 1964.
Chatfield, R. B. and Brost, R. A.: A two-stream model of the vertical
transport of trace species in the convective boundary layer, J. Geophys.
Res.-Atmos., 92, 13263–13276, https://doi.org/10.1029/JD092iD11p13263,
1987.
Cheinet, S.: A Multiple Mass-Flux Parameterization for the Surface-Generated
Convection. Part I: Dry Plumes, J. Atmos. Sci., 60, 2313–2327,
https://doi.org/10.1175/1520-0469(2003)060<2313:AMMPFT>2.0.CO;2, 2003.
Cheinet, S.: A Multiple Mass Flux Parameterization for the Surface-Generated
Convection. Part II: Cloudy Cores, J. Atmos. Sci., 61, 1093–1113,
https://doi.org/10.1175/1520-0469(2004)061<1093:AMMFPF>2.0.CO;2, 2004.
Cheng, A. and Xu, K.-M.: Simulation of shallow cumuli and their transition
to deep convective clouds by cloud-resolving models with different
third-order turbulence closures, Q. J. Roy. Meteor. Soc., 132, 359–382,
https://doi.org/10.1256/qj.05.29, 2006.
Chikira, M.: A Cumulus Parameterization with State-Dependent Entrainment
Rate. Part II: Impact on Climatology in a General Circulation Model, J.
Atmos. Sci., 67, 2194–2211, https://doi.org/10.1175/2010JAS3317.1, 2010.
Chikira, M. and Sugiyama, M.: A Cumulus Parameterization with
State-Dependent Entrainment Rate. Part I: Description and Sensitivity to
Temperature and Humidity Profiles, J. Atmos. Sci., 67, 2171–2193,
https://doi.org/10.1175/2010JAS3316.1, 2010.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar,
R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A.
L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini,
M., Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J.
S., Westoby, M., Wright, I. J., and Zanne, A. E.: Global convergence in the
vulnerability of forests to drought, Nature, 491, 752–755,
https://doi.org/10.1038/nature11688, 2012.
Chopard, B.: Cellular Automata Modeling of Physical Systems, in:
Encyclopedia of Complexity and Systems Science, edited by: Meyers, R. A.,
Encyclopedia of Complexity and Systems Science Springer, New York, NY,
865–892, https://doi.org/10.1007/978-0-387-30440-3_57, 2009.
Cohen, Y., Lopez-Gomez, I., Jaruga, A., He, J., Kaul, C. M., and Schneider,
T.: Unified Entrainment and Detrainment Closures for Extended
Eddy-Diffusivity Mass-Flux Schemes, J. Adv. Model Earth Sy., 12,
e2020MS002162, https://doi.org/10.1029/2020MS002162, 2020.
Colin, M.: Convective memory, and the role of cold pools, Meteorology, Sorbonne Université, HAL Id: tel-02864797, 2018.
Colin, M., Sherwood, S., Geoffroy, O., Bony, S., and Fuchs, D.: Identifying
the Sources of Convective Memory in Cloud-Resolving Simulations, J. Atmos.
Sci., 76, 947–962, https://doi.org/10.1175/JAS-D-18-0036.1, 2019.
Collier, J. C. and Bowman, K. P.: Diurnal cycle of tropical precipitation in
a general circulation model, J. Geophys. Res.-Atmos., 109, D17105,
https://doi.org/10.1029/2004JD004818, 2004.
Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V.,
Villefranque, N., Rio, C., Audouin, O., Salter, J., Bazile, E., Brient, F.,
Favot, F., Honnert, R., Lefebvre, M.-P., Madeleine, J.-B., Rodier, Q., and
Xu, W.: Process-Based Climate Model Development Harnessing Machine Learning:
I. A Calibration Tool for Parameterization Improvement, J. Adv. Model Earth
Sy., 13, e2020MS002217, https://doi.org/10.1029/2020MS002217, 2021.
Cotton, W. and Anthes, R.: Storm and Cloud Dynamics, 1st edn., Academic Press, 1992.
Craig, G. C. and Cohen, B. G.: Fluctuations in an Equilibrium Convective
Ensemble. Part I: Theoretical Formulation, J. Atmos. Sci., 63, 1996–2004,
https://doi.org/10.1175/JAS3709.1, 2006.
Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models,
J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006.
Dai, A. and Trenberth, K. E.: The Diurnal Cycle and Its Depiction in the
Community Climate System Model, J. Climate, 17, 930–951,
https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2, 2004.
D'Andrea, F., Gentine, P., Betts, A. K., and Lintner, B. R.: Triggering Deep
Convection with a Probabilistic Plume Model, J. Atmos. Sci., 71, 3881–3901,
https://doi.org/10.1175/JAS-D-13-0340.1, 2014.
Davies, L., Plant, R. S., and Derbyshire, S. H.: A simple model of
convection with memory, J. Geophys. Res.-Atmos., 114, D17202,
https://doi.org/10.1029/2008JD011653, 2009.
Davies, L., Jakob, C., Cheung, K., Genio, A. D., Hill, A., Hume, T., Keane,
R. J., Komori, T., Larson, V. E., Lin, Y., Liu, X., Nielsen, B. J., Petch,
J., Plant, R. S., Singh, M. S., Shi, X., Song, X., Wang, W., Whitall, M. A.,
Wolf, A., Xie, S., and Zhang, G.: A single-column model ensemble approach
applied to the TWP-ICE experiment, J. Geophys. Res.-Atmos., 118, 6544–6563,
https://doi.org/10.1002/jgrd.50450, 2013a.
Davies, L., Plant, R. S., and Derbyshire, S. H.: Departures from convective
equilibrium with a rapidly varying surface forcing, Q. J. Roy. Meteor. Soc.,
139, 1731–1746, https://doi.org/10.1002/qj.2065, 2013b.
Dawe, J. T. and Austin, P. H.: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES, Atmos. Chem. Phys., 13, 7795–7811, https://doi.org/10.5194/acp-13-7795-2013, 2013.
Deardorff, J. W.: The Counter-Gradient Heat Flux in the Lower Atmosphere and
in the Laboratory, J. Atmos. Sci., 23, 503–506,
https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2, 1966.
Deardorff, J. W., Willis, G. E., and Lilly, D. K.: Laboratory investigation
of non-steady penetrative convection, J. Fliud Mech., 35, 7–31,
https://doi.org/10.1017/S0022112069000942, 1969.
Deguines, N., Brashares, J. S., and Prugh, L. R.: Precipitation alters
interactions in a grassland ecological community, J. Anim. Ecol., 86,
262–272, https://doi.org/10.1111/1365-2656.12614, 2017.
Del Genio, A. D. and Wu, J.: The Role of Entrainment in the Diurnal Cycle of
Continental Convection, J. Climate, 23, 2722–2738,
https://doi.org/10.1175/2009JCLI3340.1, 2010.
Del Genio, A. D., Chen, Y., Kim, D., and Yao, M.-S.: The MJO Transition from
Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM
Simulations, J. Climate, 25, 3755–3770,
https://doi.org/10.1175/JCLI-D-11-00384.1, 2012.
Del Genio, A. D., Wu, J., Wolf, A. B., Chen, Y., Yao, M.-S., and Kim, D.:
Constraints on Cumulus Parameterization from Simulations of Observed MJO
Events, J. Climate, 28, 6419–6442,
https://doi.org/10.1175/JCLI-D-14-00832.1, 2015.
DeMott, C. A., Randall, D. A., and Khairoutdinov, M.: Convective
Precipitation Variability as a Tool for General Circulation Model Analysis,
J. Climate, 20, 91–112, https://doi.org/10.1175/JCLI3991.1, 2007.
Deng, A., Seaman, N. L., and Kain, J. S.: A Shallow-Convection Parameterization for Mesoscale Models. Part I: Submodel Description
and Preliminary Applications, J. Atmos. Sci., 60, 34–56, https://doi.org/10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2, 2003.
Deng, Q., Khouider, B., and Majda, A. J.: The MJO in a Coarse-Resolution GCM
with a Stochastic Multicloud Parameterization, J. Atmos. Sci., 72, 55–74,
https://doi.org/10.1175/JAS-D-14-0120.1, 2015.
Derbyshire, S. H., Maidens, A. V., Milton, S. F., Stratton, R. A., and
Willett, M. R.: Adaptive detrainment in a convective parametrization, Q. J.
Roy. Meteor. Soc., 137, 1856–1871, https://doi.org/10.1002/qj.875, 2011.
de Roode, S. R., Siebesma, A. P., Jonker, H. J. J., and de Voogd, Y.:
Parameterization of the Vertical Velocity Equation for Shallow Cumulus
Clouds, Mon. Weather Rev., 140, 2424–2436,
https://doi.org/10.1175/MWR-D-11-00277.1, 2012.
De Rooy, W. C. and Siebesma, A. P.: A Simple Parameterization for
Detrainment in Shallow Cumulus, Mon. Weather Rev., 136, 560–576,
https://doi.org/10.1175/2007MWR2201.1, 2008.
De Rooy, W. C. and Siebesma, A. P.: Analytical expressions for entrainment
and detrainment in cumulus convection, Q. J. Roy. Meteor. Soc., 136,
1216–1227, https://doi.org/10.1002/qj.640, 2010.
De Rooy, W. C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H.,
Mironov, D., Siebesma, A. P., Teixeira, J., and Yano, J.-I.: Entrainment and
detrainment in cumulus convection: an overview, Q. J. Roy. Meteor. Soc.,
139, 1–19, https://doi.org/10.1002/qj.1959, 2013.
Donner, L. J.: A Cumulus Parameterization Including Mass Fluxes, Vertical
Momentum Dynamics, and Mesoscale Effects, J. Climate, 50, 889–906,
https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2, 1993.
Donner, L. J. and Phillips, V. T.: Boundary layer control on convective
available potential energy: Implications for cumulus parameterization, J.
Geophys. Res.-Atmos., 108, 4701, https://doi.org/10.1029/2003JD003773, 2003.
Donner, L. J., Seman, C. J., Hemler, R. S., and Fan, S.: A Cumulus
Parameterization Including Mass Fluxes, Convective Vertical Velocities, and
Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General
Circulation Model, J. Atmos. Sci., 14, 3444–3463,
https://doi.org/10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2, 2001.
Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao,
M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J.,
Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C.
T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T.
R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L.,
Milly, P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J.,
Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F.,
Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.:
The Dynamical Core, Physical Parameterizations, and Basic Simulation
Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled
Model CM3, J. Climate, 24, 3484–3519,
https://doi.org/10.1175/2011JCLI3955.1, 2011.
Donner, L. J., O'Brien, T. A., Rieger, D., Vogel, B., and Cooke, W. F.: Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?, Atmos. Chem. Phys., 16, 12983–12992, https://doi.org/10.5194/acp-16-12983-2016, 2016.
Dore, M. H. I.: Climate change and changes in global precipitation patterns:
What do we know?, Environ. Int., 31, 1167–1181,
https://doi.org/10.1016/j.envint.2005.03.004, 2005.
Dorrestijn, J., Crommelin, D. T., Biello, J. A., and Böing, S. J.: A
data-driven multi-cloud model for stochastic parametrization of deep
convection, Philos. T. Roy. Soc. A., 371, 20120374,
https://doi.org/10.1098/rsta.2012.0374, 2013a.
Dorrestijn, J., Crommelin, D. T., Siebesma, A. Pier., and Jonker, H. J. J.:
Stochastic parameterization of shallow cumulus convection estimated from
high-resolution model data, Theor. Comp. Fluid Dyn., 27, 133–148,
https://doi.org/10.1007/s00162-012-0281-y, 2013b.
Dorrestijn, J., Crommelin, D. T., Siebesma, A. P., Jonker, H. J. J., and
Jakob, C.: Stochastic Parameterization of Convective Area Fractions with a
Multicloud Model Inferred from Observational Data, J. Atmos. Sci., 72,
854–869, https://doi.org/10.1175/JAS-D-14-0110.1, 2015.
Drueke, S., Kirshbaum, D. J., and Kollias, P.: Evaluation of Shallow-Cumulus
Entrainment Rate Retrievals Using Large-Eddy Simulation, J. Geophys.
Res.-Atmos., 124, 9624–9643, https://doi.org/10.1029/2019JD030889, 2019.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.,
and Mearns, L. O.: Climate Extremes: Observations, Modeling, and Impacts,
Science, 289, 2068–2074, https://doi.org/10.1126/science.289.5487.2068,
2000.
Emanuel, K.: Atmospheric convection, Oxford University Press, 592 pp., ISBN 0-19-506630-8, 1994.
Emanuel, K. and Raymond, D. J. (Eds.): The Representation of Cumulus Convection in Numerical Models of the Atmosphere, American Meteorological Society, 246 pp., https://doi.org/10.1175/0065-9401-24.46.1, 1993.
Emanuel, K. A.: The Finite-Amplitude Nature of Tropical Cyclogenesis, J.
Atmos. Sci., 46, 3431–3456,
https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2, 1989.
Emanuel, K. A.: A Scheme for Representing Cumulus Convection in Large-Scale
Models, J. Atmos. Sci., 48, 2313–2329,
https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2, 1991.
Emanuel, K. A.: The Behavior of a Simple Hurricane Model Using a Convective
Scheme Based on Subcloud-Layer Entropy Equilibrium, J. Atmos. Sci., 52,
3960–3968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2, 1995.
Emanuel, K. A. and Živković-Rothman, M.: Development and Evaluation
of a Convection Scheme for Use in Climate Models, J. Atmos. Sci., 56,
1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2, 1999.
Evans, J. P. and Westra, S.: Investigating the Mechanisms of Diurnal
Rainfall Variability Using a Regional Climate Model, J. Climate, 25,
7232–7247, https://doi.org/10.1175/JCLI-D-11-00616.1, 2012.
Evans, J. P., Ekström, M., and Ji, F.: Evaluating the performance of a
WRF physics ensemble over South-East Australia, Clim. Dynam., 39,
1241–1258, https://doi.org/10.1007/s00382-011-1244-5, 2012.
Feingold, G.: Modeling of the first indirect effect: Analysis of measurement
requirements, Geophys. Res. Lett., 30, 19, https://doi.org/10.1029/2003GL017967,
2003.
Feingold, G. and Koren, I.: A model of coupled oscillators applied to the aerosol–cloud–precipitation system, Nonlin. Processes Geophys., 20, 1011–1021, https://doi.org/10.5194/npg-20-1011-2013, 2013.
Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D.
J., Tanelli, S., and Parodi, A.: Analysis and hindcast simulations of an
extreme rainfall event in the Mediterranean area: The Genoa 2011 case,
Atmos. Res., 138, 13–29, https://doi.org/10.1016/j.atmosres.2013.10.007,
2014.
Fletcher, J. K. and Bretherton, C. S.: Evaluating Boundary Layer–Based Mass
Flux Closures Using Cloud-Resolving Model Simulations of Deep Convection, J.
Atmos. Sci., 67, 2212–2225, https://doi.org/10.1175/2010JAS3328.1, 2010.
Folkins, I., Mitovski, T., and Pierce, J. R.: A simple way to improve the
diurnal cycle in convective rainfall over land in climate models, J.
Geophys. Res.-Atmos., 119, 2113–2130, https://doi.org/10.1002/2013JD020149,
2014.
Fonseca, R. M., Zhang, T., and Yong, K.-T.: Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model, Geosci. Model Dev., 8, 2915–2928, https://doi.org/10.5194/gmd-8-2915-2015, 2015.
Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Silva Dias, P. L., Silva Dias, M. A. F., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda, A. L., Santos e Silva, C. M., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., Silva, F. B., Santos, F. C., Pereira, G., Camponogara, G., Ferrada, G. A., Campos Velho, H. F., Menezes, I., Freire, J. L., Alonso, M. F., Gácita, M. S., Zarzur, M., Fonseca, R. M., Lima, R. S., Siqueira, R. A., Braz, R., Tomita, S., Oliveira, V., and Martins, L. D.: The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas, Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, 2017.
Freitas, S. R., Grell, G. A., Molod, A., Thompson, M. A., Putman, W. M.,
Silva, C. M. S. e, and Souza, E. P.: Assessing the Grell-Freitas Convection
Parameterization in the NASA GEOS Modeling System, J. Adv. Model Earth Sy.,
10, 1266–1289, https://doi.org/10.1029/2017MS001251, 2018.
Freitas, S. R., Grell, G. A., and Li, H.: The Grell–Freitas (GF) convection parameterization: recent developments, extensions, and applications, Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021, 2021.
Frenkel, Y., Majda, A. J., and Khouider, B.: Using the Stochastic Multicloud
Model to Improve Tropical Convective Parameterization: A Paradigm Example,
J. Atmos. Sci., 69, 1080–1105, https://doi.org/10.1175/JAS-D-11-0148.1,
2012.
Fritsch, J. M. and Chappell, C. F.: Numerical Prediction of Convectively
Driven Mesoscale Pressure Systems. Part I: Convective Parameterization, J.
Atmos. Sci., 37, 1722–1733,
https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2, 1980.
Gallus, W. and Segal, M.: Impact of improved initialization of mesoscale
features on convective system rainfall in 10-km Eta simulations, Weather
Forecast., 16, 680–696, https://doi.org/10.1175/1520-0434(2001)016<0680:IOIIOM>2.0.CO;2, 2001.
Gao, S., Lu, C., Liu, Y., Mei, F., Wang, J., Zhu, L., and Yan, S.:
Contrasting Scale Dependence of Entrainment-Mixing Mechanisms in
Stratocumulus Clouds, Geophys. Res. Lett., 47, e2020GL086970,
https://doi.org/10.1029/2020GL086970, 2020.
Gao, X.-J., Shi, Y., and Giorgi, F.: Comparison of convective
parameterizations in RegCM4 experiments over China with CLM as the land
surface model, Atmos. Ocean. Sc. Lett., 9, 246–254,
https://doi.org/10.1080/16742834.2016.1172938, 2016.
Gao, Y., Leung, L. R., Zhao, C., and Hagos, S.: Sensitivity of U.S. summer
precipitation to model resolution and convective parameterizations across
gray zone resolutions, J. Geophys. Res.-Atmos., 122, 2714–2733,
https://doi.org/10.1002/2016JD025896, 2017.
García-Morales, M. B. and Dubus, L.: Forecasting precipitation for
hydroelectric power management: how to exploit GCM's seasonal ensemble
forecasts, Int. J. Climatol., 27, 1691–1705,
https://doi.org/10.1002/joc.1608, 2007.
García-Ortega, E., Lorenzana, J., Merino, A.,
Fernández-González, S., López, L., and Sánchez, J. L.:
Performance of multi-physics ensembles in convective precipitation events
over northeastern Spain, Atmos. Res., 190, 55–67,
https://doi.org/10.1016/j.atmosres.2017.02.009, 2017.
Gebhardt, C., Theis, S. E., Paulat, M., and Ben Bouallègue, Z.:
Uncertainties in COSMO-DE precipitation forecasts introduced by model
perturbations and variation of lateral boundaries, Atmos. Res., 100,
168–177, https://doi.org/10.1016/j.atmosres.2010.12.008, 2011.
Geerts, B., Parsons, D., Ziegler, C. L., Weckwerth, T. M., Biggerstaff, M.
I., Clark, R. D., Coniglio, M. C., Demoz, B. B., Ferrare, R. A., Gallus, W.
A., Haghi, K., Hanesiak, J. M., Klein, P. M., Knupp, K. R., Kosiba, K.,
McFarquhar, G. M., Moore, J. A., Nehrir, A. R., Parker, M. D., Pinto, J. O.,
Rauber, R. M., Schumacher, R. S., Turner, D. D., Wang, Q., Wang, X., Wang,
Z., and Wurman, J.: The 2015 Plains Elevated Convection at Night Field
Project, B. Am. Meteorol. Soc., 98, 767–786,
https://doi.org/10.1175/BAMS-D-15-00257.1, 2017.
Geleyn, J.-F.: On a Simple, Parameter-Free Partition between Moistening and
Precipitation in the Kuo Scheme, Mon. Weather Rev., 113, 405–407,
https://doi.org/10.1175/1520-0493(1985)113<0405:OASPFP>2.0.CO;2, 1985.
Genio, A. D. D., Kovari, W., Yao, M.-S., and Jonas, J.: Cumulus Microphysics
and Climate Sensitivity, J. Climate, 18, 2376–2387,
https://doi.org/10.1175/JCLI3413.1, 2005.
Gentine, P., Betts, A. K., Lintner, B. R., Findell, K. L., van Heerwaarden, C.
C., Tzella, A., and D'Andrea, F.: A Probabilistic Bulk Model of Coupled
Mixed Layer and Convection. Part I: Clear-Sky Case, J. Atmos. Sci., 70,
1543–1556, https://doi.org/10.1175/JAS-D-12-0145.1, 2013a.
Gentine, P., Betts, A. K., Lintner, B. R., Findell, K. L., van Heerwaarden, C.
C., and D'Andrea, F.: A Probabilistic Bulk Model of Coupled Mixed Layer
and Convection. Part II: Shallow Convection Case, J. Atmos., Sci., 70,
1557–1576, https://doi.org/10.1175/JAS-D-12-0146.1, 2013b.
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.: Could Machine Learning Break the Convection Parameterization Deadlock?, Geophys. Res. Lett., 45, 5742–5751, https://doi.org/10.1029/2018GL078202, 2018.
Gerard, L.: An integrated package for subgrid convection, clouds and
precipitation compatible with meso-gamma scales, Q. J. Roy. Meteor. Soc.,
133, 711–730, https://doi.org/10.1002/qj.58, 2007.
Gerard, L.: Bulk mass-flux perturbation formulation for a unified approach of deep convection at high resolution, Mon. Weather Rev., 143, 4038–4063, https://doi.org/10.1175/MWR-D-15-0030.1, 2015.
Gerard, L. and Geleyn, J.-F.: Evolution of a subgrid deep convection
parametrization in a limited-area model with increasing resolution, Q. J.
Roy. Meteor. Soc., 131, 2293–2312, https://doi.org/10.1256/qj.04.72, 2005.
Gerard, L., Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C., Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng, C.-H., Neggers, R. a. J., Siebesma, A. P., and Stevens, B.: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land, Q. J. Roy. Meteor. Soc., 128, 1075–1093, https://doi.org/10.1256/003590002320373210, 2002.
Gerard, L., Piriou, J.-M., Brožková, R., Geleyn, J.-F., and Banciu,
D.: Cloud and Precipitation Parameterization in a Meso-Gamma-Scale
Operational Weather Prediction Model, Mon. Weather Rev., 137, 3960–3977,
https://doi.org/10.1175/2009MWR2750.1, 2009.
Gillespie, D. T.: An Exact Method for Numerically Simulating the Stochastic
Coalescence Process in a Cloud, J. Atmos. Sci., 32, 1977–1989,
https://doi.org/10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2, 1975.
Gillespie, D. T.: Exact stochastic simulation of coupled chemical reactions,
J. Phys. Chem., 81, 2340–2361, https://doi.org/10.1021/j100540a008, 1977.
Giorgi, F. and Lionello, P.: Climate change projections for the
Mediterranean region, Global Planet.Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-Based Model for
Boundary Layer Clouds. Part I: Method and Model Description, J. Atmos. Sci.,
59, 3540–3551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2, 2002a.
Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-Based Model for
Boundary Layer Clouds. Part II: Model Results, J. Atmos. Sci., 59,
3552–3571, https://doi.org/10.1175/1520-0469(2002)059<3552:APBMFB>2.0.CO;2, 2002b.
Gottwald, G. A., Peters, K., and Davies, L.: A data-driven method for the
stochastic parametrisation of subgrid-scale tropical convective area
fraction, J. Roy. Meteor. Soc., 142, 349–359,
https://doi.org/10.1002/qj.2655, 2016.
Grabowski, W. W.: Coupling Cloud Processes with the Large-Scale Dynamics
Using the Cloud-Resolving Convection Parameterization (CRCP), J. Atmos.
Sci., 58, 978–997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2, 2001.
Grabowski, W. W.: Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology, J. Atmos. Sci., 72, 2446–2464, https://doi.org/10.1175/JAS-D-14-0307.1, 2015.
Grabowski, W. W.: Towards Global Large Eddy Simulation:
Super-Parameterization Revisited, J. Meteorol. Soc. Jpn., 94, 327–344,
https://doi.org/10.2151/jmsj.2016-017, 2016.
Grabowski, W. W.: Can the Impact of Aerosols on Deep Convection be Isolated from Meteorological Effects in Atmospheric Observations?, J. Atmos. Sci., 75, 3347–3363, https://doi.org/10.1175/JAS-D-18-0105.1, 2018.
Grabowski, W. W. and Pawlowska, H.: Entrainment and Mixing in Clouds: The
Paluch Mixing Diagram Revisited, J. Appl. Meteorol. Clim., 32, 1767–1773,
https://doi.org/10.1175/1520-0450(1993)032<1767:EAMICT>2.0.CO;2, 1993.
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: a Cloud Resolving
Convection Parameterization for modeling the tropical convecting atmosphere,
Physica D: Nonlinear Phenomena, 133, 171–178,
https://doi.org/10.1016/S0167-2789(99)00104-9, 1999.
Grandpeix, J.-Y. and Lafore, J.-P.: A Density Current Parameterization
Coupled with Emanuel's Convection Scheme. Part I: The Models, J. Atmos.
Sci., 67, 881–897, https://doi.org/10.1175/2009JAS3044.1, 2010.
Grandpeix, J.-Y., Phillips, V., and Tailleux, R.: Improved mixing
representation in Emanuel's convection scheme, Q. J. Roy. Meteor. Soc., 130,
3207–3222, https://doi.org/10.1256/qj.03.144, 2004.
Grant, A. L. M.: Cloud-base fluxes in the cumulus-capped boundary layer, Q.
J. Roy. Meteor. Soc., 127, 407–421, https://doi.org/10.1002/qj.49712757209,
2001.
Grant, A. L. M. and Brown, A. R.: A similarity hypothesis for
shallow-cumulus transports, Q. J. Roy. Meteor. Soc., 125, 1913–1936,
https://doi.org/10.1002/qj.49712555802, 1999.
Grant, A. L. M. and Lock, A. P.: The turbulent kinetic energy budget for
shallow cumulus convection, Q. J. Roy. Meteor. Soc., 130, 401–422,
https://doi.org/10.1256/qj.03.50, 2004.
Gray, M. E. B.: Characteristics of Numerically Simulated Mesoscale
Convective Systems and Their Application to Parameterization, J. Atmos.
Sci., 57, 3953–3970, https://doi.org/10.1175/1520-0469(2001)058<3953:CONSMC>2.0.CO;2, 2000.
Gregory, D.: Estimation of entrainment rate in simple models of convective
clouds, Q. J. Roy. Meteor. Soc., 127, 53–72,
https://doi.org/10.1002/qj.49712757104, 2001.
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with
Representation of Cloud Ensemble Characteristics and Stability-Dependent
Closure, Mon. Weather Rev., 118, 1483–1506,
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990.
Gregory, D., Morcrette, J.-J., Jakob, C., Beljaars, A. C. M., and Stockdale,
T.: Revision of convection, radiation and cloud schemes in the ECMWF
integrated forecasting system, Q. J. Roy. Meteor. Soc., 126, 1685–1710,
https://doi.org/10.1002/qj.49712656607, 2000.
Grell, A. G., Dudhia, J., and Stauffer, D.: A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5), University Corporation for Atmospheric Research, No. NCAR/TN-398+STR, https://doi.org/10.5065/D60Z716B, 1994.
Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus
Parameterizations, Mon. Weather Rev., 121, 764–787,
https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 38-1–38–4,
https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Kuo, Y.-H., and Pasch, R. J.: Semiprognostic Tests of Cumulus
Parameterization Schemes in the Middle Latitudes, Mon. Weather Rev., 119,
5–31, https://doi.org/10.1175/1520-0493(1991)119<0005:STOCPS>2.0.CO;2, 1991.
Grenier, H. and Bretherton, C. S.: A Moist PBL Parameterization for
Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine
Boundary Layers, Mon. Weather Rev., 129, 357–377,
https://doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2, 2001.
Groenemeijer, P. and Craig, G. C.: Ensemble forecasting with a stochastic convective parametrization based on equilibrium statistics, Atmos. Chem. Phys., 12, 4555–4565, https://doi.org/10.5194/acp-12-4555-2012, 2012.
Guérémy, J. F.: A continuous buoyancy based convection scheme:
one-and three-dimensional validation, Tellus A, 63, 687–706,
https://doi.org/10.1111/j.1600-0870.2011.00521.x, 2011.
Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau,
J.-P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler,
M., Piriou, J.-M., Tailleux, R., and Tomasini, M.: Modelling the diurnal
cycle of deep precipitating convection over land with cloud-resolving models
and single-column models, Q. J. Roy. Meteor. Soc., 130, 3139–3172,
https://doi.org/10.1256/qj.03.145, 2004.
Guo, H., Golaz, J.-C., Donner, L. J., Ginoux, P., and Hemler, R. S.:
Multivariate Probability Density Functions with Dynamics in the GFDL
Atmospheric General Circulation Model: Global Tests, J. Climate, 27,
2087–2108, https://doi.org/10.1175/JCLI-D-13-00347.1, 2014.
Guo, H., Golaz, J.-C., Donner, L. J., Wyman, B., Zhao, M., and Ginoux, P.:
CLUBB as a unified cloud parameterization: Opportunities and challenges,
Geophys. Res. Lett., 42, 4540–4547, https://doi.org/10.1002/2015GL063672,
2015a.
Guo, X., Lu, C., Zhao, T., Zhang, G. J., and Liu, Y.: An Observational Study
of Entrainment Rate in Deep Convection, Atmosphere-Basel, 6, 1362–1376,
https://doi.org/10.3390/atmos6091362, 2015b.
Gustafson, W. I., Vogelmann, A. M., Li, Z., Cheng, X., Dumas, K. K., Endo,
S., Johnson, K. L., Krishna, B., Fairless, T., and Xiao, H.: The Large-Eddy
Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic
Simulation and Observation (LASSO) Activity for Continental Shallow
Convection, B. Am. Meteorol. Soc., 101, E462–E479,
https://doi.org/10.1175/BAMS-D-19-0065.1, 2020.
Hack, J. J.: Parameterization of moist convection in the National Center for
Atmospheric Research community climate model (CCM2), J. Geophys.
Res.-Atmos., 99, 5551–5568, https://doi.org/10.1029/93JD03478, 1994.
Hack, J. J., Schubert, W. H., and Dias, P. L. S.: A Spectral Cumulus
Parameterization for Use in Numerical Models of the Tropical Atmosphere,
Mon. Weather Rev., 112, 704–716, 1984.
Hagos, S., Feng, Z., Plant, R. S., Houze, R. A., and Xiao, H.: A Stochastic
Framework for Modeling the Population Dynamics of Convective Clouds, J. Adv.
Model. Earth Sy., 10, 448–465, https://doi.org/10.1002/2017MS001214, 2018.
Han, J. and Bretherton, C. S.: TKE-Based Moist Eddy-Diffusivity Mass-Flux
(EDMF) Parameterization for Vertical Turbulent Mixing, Weather Forecast.,
34, 869–886, https://doi.org/10.1175/WAF-D-18-0146.1, 2019.
Han, J. and Pan, H.-L.: Revision of Convection and Vertical Diffusion
Schemes in the NCEP Global Forecast System, Weather Forecast., 26, 520–533,
https://doi.org/10.1175/WAF-D-10-05038.1, 2011.
Han, J., Witek, M. L., Teixeira, J., Sun, R., Pan, H.-L., Fletcher, J. K.,
and Bretherton, C. S.: Implementation in the NCEP GFS of a Hybrid
Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization with
Dissipative Heating and Modified Stable Boundary Layer Mixing, Weather
Forecast., 31, 341–352, https://doi.org/10.1175/WAF-D-15-0053.1, 2016a.
Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada, V., and Yang, F.:
Updates in the NCEP GFS Cumulus Convection Schemes with Scale and Aerosol
Awareness, Weather Forecast., 32, 2005–2017,
https://doi.org/10.1175/WAF-D-17-0046.1, 2017.
Han, J.-Y., Hong, S.-Y., Lim, K.-S. S., and Han, J.: Sensitivity of a
Cumulus Parameterization Scheme to Precipitation Production Representation
and Its Impact on a Heavy Rain Event over Korea, Mon. Weather Rev., 144,
2125–2135, https://doi.org/10.1175/MWR-D-15-0255.1, 2016b.
Han, J.-Y., Kim, S.-Y., Choi, I.-J., and Jin, E. K.: Effects of the
Convective Triggering Process in a Cumulus Parameterization Scheme on the
Diurnal Variation of Precipitation over East Asia, Atmosphere-Basel, 10, 28,
https://doi.org/10.3390/atmos10010028, 2019.
Han, J.-Y., Hong, S.-Y., and Kwon, Y. C.: The Performance of a Revised
Simplified Arakawa–Schubert (SAS) Convection Scheme in the Medium-Range
Forecasts of the Korean Integrated Model (KIM), Weather Forecast., 35,
1113–1128, https://doi.org/10.1175/WAF-D-19-0219.1, 2020.
Hannah, W. M. and Maloney, E. D.: The Role of Moisture–Convection Feedbacks
in Simulating the Madden–Julian Oscillation, J. Climate, 24, 2754–2770,
https://doi.org/10.1175/2011JCLI3803.1, 2011.
Hara, M., Yoshikane, T., Takahashi, H. G., Kimura, F., Noda, A., and
Tokioka, T.: Assessment of the Diurnal Cycle of Precipitation over the
Maritime Continent Simulated by a 20 km Mesh GCM Using TRMM PR Data, J.
Meteorol. Soc. Jpn., 87A, 413–424, https://doi.org/10.2151/jmsj.87A.413,
2009.
Hararuk, O., Xia, J., and Luo, Y.: Evaluation and improvement of a global
land model against soil carbon data using a Bayesian Markov chain Monte
Carlo method, J. Geophys. Res.-Biogeo., 119, 403–417,
https://doi.org/10.1002/2013JG002535, 2014.
Heus, T. and Jonker, H. J. J.: Subsiding Shells around Shallow Cumulus Clouds, J. Atmos. Sci., 65, 1003–1018, https://doi.org/10.1175/2007JAS2322.1, 2008.
Heus, T., van Dijk, G., Jonker, H. J. J., and Akker, H. E. A. V. den: Mixing
in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking, J. Atmos.
Sci., 65, 2581–2597, https://doi.org/10.1175/2008JAS2572.1, 2008.
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice Cloud Particle Size
Distributions and Pressure-Dependent Terminal Velocities from In Situ
Observations at Temperatures from 0∘ to −86 ∘C, J.
Atmos. Sci., 70, 4123–4154, https://doi.org/10.1175/JAS-D-12-0124.1, 2013.
Hirons, L. C., Inness, P., Vitart, F., and Bechtold, P.: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO, Q. J. Roy. Meteor. Soc., 139675, 1417–1426, https://doi.org/10.1002/qj.2060, 2013.
Hirota, N., Takayabu, Y. N., Watanabe, M., Kimoto, M., and Chikira, M.: Role
of Convective Entrainment in Spatial Distributions of and Temporal
Variations in Precipitation over Tropical Oceans, J. Climate, 27,
8707–8723, https://doi.org/10.1175/JCLI-D-13-00701.1, 2014.
Hohenegger, C. and Bretherton, C. S.: Simulating deep convection with a shallow convection scheme, Atmos. Chem. Phys., 11, 10389–10406, https://doi.org/10.5194/acp-11-10389-2011, 2011.
Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J.
W., Warren, D. A., Parsons, R., and Affleck, D.: Decreasing fire season
precipitation increased recent western US forest wildfire activity, P. Natl.
Acad. Sci. USA, 115, E8349–E8357, https://doi.org/10.1073/pnas.1802316115,
2018.
Holloway, C. E., Woolnough, S. J., and Lister, G. M. S.: Precipitation
distributions for explicit versus parametrized convection in a large-domain
high-resolution tropical case study, Q. J. Roy. Meteor. Soc., 138,
1692–1708, https://doi.org/10.1002/qj.1903, 2012.
Holloway, C. E., Woolnough, S. J., and Lister, G. M. S.: The Effects of
Explicit versus Parameterized Convection on the MJO in a Large-Domain
High-Resolution Tropical Case Study. Part I: Characterization of Large-Scale
Organization and Propagation, J. ATmos. Sci., 70, 1342–1369,
https://doi.org/10.1175/JAS-D-12-0227.1, 2013.
Holtslag, A. A. M.: Modelling of atmospheric boundary layers, Royal
Netherlands Academy of Arts and Sciences, 85, 110, 1998.
Hong, S.-Y. and Pan, H.-L.: Nonlocal Boundary Layer Vertical Diffusion in a
Medium-Range Forecast Model, Mon. Weather Rev., 124, 2322–2339,
https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2, 1996.
Hong, S.-Y. and Pan, H.-L.: Convective Trigger Function for a Mass-Flux
Cumulus Parameterization Scheme, Mon. Weather Rev., 126, 2599–2620,
https://doi.org/10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2, 1998.
Hong, S.-Y., Park, H., Cheong, H.-B., Kim, J.-E. E., Koo, M.-S., Jang, J.,
Ham, S., Hwang, S.-O., Park, B.-K., Chang, E.-C., and Li, H.: The
Global/Regional Integrated Model system (GRIMs), Asia-Pac. J. Atmos. Sci.,
49, 219–243, https://doi.org/10.1007/s13143-013-0023-0, 2013.
Honnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers,
R., Plant, R. S., Shin, H. H., Tomassini, L., and Zhou, B.: The Atmospheric
Boundary Layer and the “Gray Zone” of Turbulence: A Critical Review, J.
Geophys. Res.-Atmos., 125, e2019JD030317,
https://doi.org/10.1029/2019JD030317, 2020.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation
Measurement Mission, B. Am. Meteorol. Soc., 95, 701–722,
https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Houghton, H. G. and Cramer, H. E.: a Theory of Entrainment in Convective
Currents, J. Atmos. Sci., 8, 95–102,
https://doi.org/10.1175/1520-0469(1951)008<0095:ATOEIC>2.0.CO;2, 1951.
Hourdin, F., Couvreux, F., and Menut, L.: Parameterization of the Dry
Convective Boundary Layer Based on a Mass Flux Representation of Thermals,
J. Atmos. Sci., 59, 1105–1123,
https://doi.org/10.1175/1520-0469(2002)059<1105:POTDCB>2.0.CO;2, 2002.
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F.,
Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L.,
Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the atmospheric
component of the IPSL climate model with revisited parameterizations for
clouds and convection, Clim. Dynam., 40, 2193–2222,
https://doi.org/10.1007/s00382-012-1343-y, 2013.
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan,
Q., Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C.,
Tomassini, L., Watanabe, M., and Williamson, D.: The Art and Science of
Climate Model Tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R.,
Kidd, C., Nelkin, E. J., and Xie, P.: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm Theoretical Basis Document (ATBD), 4, 26, 2015.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., Tan, J.: GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06, edited by: Savtchenko, A., Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (last access: 20 November 2020), 2019.
IPCC: Climate Change 2014: synthesis report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, 151, 2014.
Jackson, C., Sen, M. K., and Stoffa, P. L.: An Efficient Stochastic Bayesian
Approach to Optimal Parameter and Uncertainty Estimation for Climate Model
Predictions, J. Climate, 17, 2828–2841,
https://doi.org/10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2, 2004.
Jakob, C.: Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportunities, and strategies, B. Am. Meterol. Soc., 91, 869–876, https://doi.org/10.1175/2009BAMS2898.1, 2010.
Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y., and Bowman, K. P.: Error
Reduction and Convergence in Climate Prediction, J. Climate, 21, 6698–6709,
https://doi.org/10.1175/2008JCLI2112.1, 2008.
Jakob, C. and Siebesma, A. P.: A New Subcloud Model for Mass-Flux Convection
Schemes: Influence on Triggering, Updraft Properties, and Model Climate,
Mon. Weather Rev., 131, 2765–2778,
https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2, 2003.
Jam, A., Hourdin, F., Rio, C., and Couvreux, F.: Resolved Versus
Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical
Scheme for Cumulus Clouds, Boundary-Layer Meteorol, Bound.-Lay. Meteorol.,
147, 421–441, https://doi.org/10.1007/s10546-012-9789-3, 2013.
James, R. P. and Markowski, P. M.: A Numerical Investigation of the Effects
of Dry Air Aloft on Deep Convection, Mon. Weather Rev., 138, 140–161,
https://doi.org/10.1175/2009MWR3018.1, 2010.
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jankov, I. and Gallus, W. A.: Some contrasts between good and bad forecasts
of warm season MCS rainfall, Journal of Hydrology, Mon. Weather Rev., 288,
122–152, https://doi.org/10.1016/j.jhydrol.2003.11.013, 2004.
Jankov, I., Gallus, W. A., Segal, M., Shaw, B., and Koch, S. E.: The Impact
of Different WRF Model Physical Parameterizations and Their Interactions on
Warm Season MCS Rainfall, Weather Forecast., 20, 1048–1060,
https://doi.org/10.1175/WAF888.1, 2005.
Jensen, J. B., Austin, P. H., Baker, M. B., and Blyth, A. M.: Turbulent
Mixing, Spectral Evolution and Dynamics in a Warm Cumulus Cloud, J. Atmos.
Sci., 42, 173–192, https://doi.org/10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2, 1985.
Jensen, M. P. and Del Genio, A. D.: Factors Limiting Convective Cloud-Top
Height at the ARM Nauru Island Climate Research Facility, J. Climate, 19,
2105–2117, https://doi.org/10.1175/JCLI3722.1, 2006.
Jeyaratnam, J., Luo, Z. J., Giangrande, S. E., Wang, D., and Masunaga, H.: A
Satellite-Based Estimate of Convective Vertical Velocity and Convective Mass
Flux: Global Survey and Comparison With Radar Wind Profiler Observations,
Geophys. Res. Lett., 48, e2020GL090675,
https://doi.org/10.1029/2020GL090675, 2021.
Jiang, H., Feingold, G., and Sorooshian, A.: Effect of Aerosol on the
Susceptibility and Efficiency of Precipitation in Warm Trade Cumulus Clouds,
J. Atmos. Sci., 67, 3525–3540, https://doi.org/10.1175/2010JAS3484.1, 2010.
Johnson, R. H.: The Role of Convective-Scale Precipitation Downdrafts in
Cumulus and Synoptic-Scale Interactions, J. Atmos. Sci., 33, 1890–1910,
https://doi.org/10.1175/1520-0469(1976)033<1890:TROCSP>2.0.CO;2, 1976.
Johnson, R. H.: Diagnosis of Convective and Mesoscale Motions During Phase
IH of Gate, J. Atmos. Sci., 37, 733–753,
https://doi.org/10.1175/1520-0469(1980)037<0733:DOCAMM>2.0.CO;2, 1980.
Jonker, H. J. J., Verzijlbergh, R. A., Heus, T., and Siebesma, A. P.: The Influence of the Sub-Cloud Moisture Field on Cloud Size Distributions and the Consequences for Entrainment, Extended Abstracts, 17th Symp. on Boundary Layers and Turbulence, 23 May 2006, SanDiego, CA, 2006.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH:: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol., 5,
487–503, 2004.
Jung, J.-H. and Arakawa, A.: Modeling the moist-convective atmosphere with a
Quasi-3-D Multiscale Modeling Framework (Q3D MMF), J. Adv. Model. Earth Sy.,
6, 185–205, https://doi.org/10.1002/2013MS000295, 2014.
Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, J.
Appl. Meteorol. Clim., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining
Plume Model and Its Application in Convective Parameterization, J. Atmos.
Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990.
Kain, J. S. and Fritsch, J. M.: The role of the convective “trigger
function” in numerical forecasts of mesoscale convective systems, Meteorol.
Atmos. Phys., 49, 93–106, https://doi.org/10.1007/BF01025402, 1992.
Kain, J. S. and Fritsch, J. M.: Convective Parameterization for Mesoscale
Models: The Kain-Fritsch Scheme, in: The Representation of Cumulus
Convection in Numerical Models, Meteorological Monographs, American
Meteorological Society, 246 pp., https://doi.org/10.1175/0065-9401-24.46.1, 1993.
Kain, J. S., Weiss, S. J., Levit, J. J., Baldwin, M. E., and Bright, D. R.:
Examination of Convection-Allowing Configurations of the WRF Model for the
Prediction of Severe Convective Weather: The SPC/NSSL Spring Program 2004,
Weather Forecast., 21, 167–181, https://doi.org/10.1175/WAF906.1, 2006.
Karlický, J., Huszár, P., Nováková, T., Belda, M., Švábik, F., Ďoubalová, J., and Halenka, T.: The “urban meteorology island”: a multi-model ensemble analysis, Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020, 2020.
Kawecki, S., Henebry, G. M., and Steiner, A. L.: Effects of Urban Plume Aerosols on a Mesoscale Convective System, J. Atmos. Sci., 73, 4641–4660, https://doi.org/10.1175/JAS-D-16-0084.1, 2016.
Keane, R. J., Craig, G. C., Keil, C., and Zängl, G.: The Plant–Craig
Stochastic Convection Scheme in ICON and Its Scale Adaptivity, J. Atmos.
Sci., 71, 3404–3415, https://doi.org/10.1175/JAS-D-13-0331.1, 2014.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of
Rainfall in a Very High-Resolution Regional Climate Model, J. Climate, 25,
5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012.
Kessler, E.: On the Distribution and Continuity of Water Substance in
Atmospheric Circulations, in: On the Distribution and Continuity of Water
Substance in Atmospheric Circulations, Meteorological Monographs, vol. 10,
American Meteorological Society, https://doi.org/10.1007/978-1-935704-36-2_1, 1969.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. Roy. Meteor. Soc., 131,
2639–2663, https://doi.org/10.1256/qj.04.62, 2005.
Khairoutdinov, M. and Randall, D.: High-Resolution Simulation of
Shallow-to-Deep Convection Transition over Land, J. Atmos. Sci., 63,
3421–3436, https://doi.org/10.1175/JAS3810.1, 2006.
Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the
Atmospheric General Circulation Using a Cloud-Resolving Model as a
Superparameterization of Physical Processes, J. Atmos. Sci., 62, 2136–2154,
https://doi.org/10.1175/JAS3453.1, 2005.
Khairoutdinov, M. F. and Randall, D. A.: Cloud Resolving Modeling of the ARM
Summer 1997 IOP: Model Formulation, Results, Uncertainties, and
Sensitivities, J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2, 2003.
Khouider, B.: A coarse grained stochastic multi-type particle interacting
model for tropical convection: Nearest neighbour interactions, Comm. Math.
Sci., 12, 1379–1407, https://doi.org/10.4310/CMS.2014.V12.N8.A1, 2014.
Khouider, B. and Majda, A.: Multicloud Models for Organized Tropical
Convection: Enhanced Congestus Heating, J. Atmos. Sci., 65, 895–914,
https://doi.org/10.1175/2007JAS2408.1, 2008.
Khouider, B. and Majda, A. J.: A Simple Multicloud Parameterization for
Convectively Coupled Tropical Waves. Part I: Linear Analysis, J. Atmos.
Sci., 63, 1308–1323, https://doi.org/10.1175/JAS3677.1, 2006.
Khouider, B. and Moncrieff, M. W.: Organized Convection Parameterization for
the ITCZ, J. Atmos. Sci., 72, 3073–3096,
https://doi.org/10.1175/JAS-D-15-0006.1, 2015.
Khouider, B., Majda, A. J., and Katsoulakis, M. A.: Coarse-grained
stochastic models for tropical convection and climate, P. Natl. Acad. Sci.
USA, 100, 11941–11946, https://doi.org/10.1073/pnas.1634951100, 2003.
Khouider, B., Biello, J., and Majda, A. J.: A stochastic multicloud model
for tropical convection, Comm. Math. Sci., 8, 187–216, 2010.
Kim, D. and Kang, I.-S.: A bulk mass flux convection scheme for climate
model: description and moisture sensitivity, Clim. Dynam., 38, 411–429,
https://doi.org/10.1007/s00382-010-0972-2, 2012.
Kim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W., and Kang, I.-S.:
A Systematic Relationship between Intraseasonal Variability and Mean State
Bias in AGCM Simulations, J. Climate, 24, 5506–5520,
https://doi.org/10.1175/2011JCLI4177.1, 2011.
Kim, D., Sobel, A. H., Del Genio, A. D., Chen, Y., Camargo, S. J., Yao,
M.-S., Kelley, M., and Nazarenko, L.: The Tropical Subseasonal Variability
Simulated in the NASA GISS General Circulation Model, J. Climate, 25,
4641–4659, https://doi.org/10.1175/JCLI-D-11-00447.1, 2012.
Kim, D., Del Genio, A. D., and Yao, M.-S.: Moist convection scheme in Model E2, arXiv preprint arXiv:1312.7496, 2013.
Kirshbaum, D. J. and Grant, A. L. M.: Invigoration of cumulus cloud fields
by mesoscale ascent, Q. J. Roy. Meteor. Soc., 138, 2136–2150,
https://doi.org/10.1002/qj.1954, 2012.
Kirshbaum, D. J. and Lamer, K.: Climatological Sensitivities of
Shallow-Cumulus Bulk Entrainment in Continental and Oceanic Locations, J.
Atmos. Sci., 78, 2429–2443, https://doi.org/10.1175/JAS-D-20-0377.1, 2021.
Klein, S. A. and Hartmann, D. L.: The Seasonal Cycle of Low Stratiform
Clouds, J. Climate, 6, 1587–1606,
https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993.
Klingaman, N. P. and Woolnough, S. J.: Using a case-study approach to
improve the Madden–Julian oscillation in the Hadley Centre model, Q. J.
Roy. Meteor. Soc., 140, 2491–2505, https://doi.org/10.1002/qj.2314, 2014.
Klocke, D., Pincus, R., and Quaas, J.: On Constraining Estimates of Climate
Sensitivity with Present-Day Observations through Model Weighting, J.
Climate, 24, 6092–6099, https://doi.org/10.1175/2011JCLI4193.1, 2011.
Knievel, J. C., Ahijevych, D. A., and Manning, K. W.: Using Temporal Modes
of Rainfall to Evaluate the Performance of a Numerical Weather Prediction
Model, Mon. Weather Rev., 132, 2995–3009,
https://doi.org/10.1175/MWR2828.1, 2004.
Köhler, M.: Improved prediction of boundary layer clouds, ECMWF
Newsletter, 104, 18–22, 2005.
Köhler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry
convective and stratocumulus-topped boundary layer in the ECMWF model, Q. J.
Roy. Meteor. Soc.,, 137, 43–57, https://doi.org/10.1002/qj.713, 2011.
Kooperman, G. J., Pritchard, M. S., O'Brien, T. A., and Timmermans, B. W.:
Rainfall From Resolved Rather Than Parameterized Processes Better Represents
the Present-Day and Climate Change Response of Moderate Rates in the
Community Atmosphere Model, J. Adv. Model. Earth Sy., 10, 971–988,
https://doi.org/10.1002/2017MS001188, 2018.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol invigoration and restructuring of Atlantic convective clouds,
Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL023187, 2005.
Kreitzberg, C. W. and Perkey, D. J.: Release of Potential Instability: Part
I. A Sequential Plume Model within a Hydrostatic Primitive Equation Model,
J. Atmos. Sci., 33, 456–475,
https://doi.org/10.1175/1520-0469(1976)033<0456:ROPIPI>2.0.CO;2, 1976.
Krishnamurthy, V. and Stan, C.: Simulation of the South American climate by
a coupled model with super-parameterized convection, Clim. Dynam., 44,
2369–2382, https://doi.org/10.1007/s00382-015-2476-6, 2015.
Krishnamurti, T. N., Ramanathan, Y., Pan, H.-L., Pasch, R. J., and Molinari,
J.: Cumulus Parameterization and Rainfall Rates I, Mon. Weather Rev., 108,
465–472, https://doi.org/10.1175/1520-0493(1980)108<0465:CPARRI>2.0.CO;2, 1980.
Krishnamurti, T. N., Low-Nam, S., and Pasch, R.: Cumulus Parameterization
and Rainfall Rates II, Mon. Weather Rev., 111, 815–828,
https://doi.org/10.1175/1520-0493(1983)111<0815:CPARRI>2.0.CO;2, 1983.
Krueger, S. K.: Numerical Simulation of Tropical Cumulus Clouds and Their
Interaction with the Subcloud Layer, J. Atmos. Sci., 45, 2221–2250,
https://doi.org/10.1175/1520-0469(1988)045<2221:NSOTCC>2.0.CO;2, 1988.
Kuang, Z.: Modeling the Interaction between Cumulus Convection and Linear
Gravity Waves Using a Limited-Domain Cloud System–Resolving Model, J.
Atmos. Sci., 65, 576–591, https://doi.org/10.1175/2007JAS2399.1, 2008.
Kuang, Z. and Bretherton, C. S.: A Mass-Flux Scheme View of a
High-Resolution Simulation of a Transition from Shallow to Deep Cumulus
Convection, J. Atmos. Sci., 63, 1895–1909,
https://doi.org/10.1175/JAS3723.1, 2006.
Kucera, P. A., Ebert, E. E., Turk, F. J., Levizzani, V., Kirschbaum, D.,
Tapiador, F. J., Loew, A., and Borsche, M.: Precipitation from Space:
Advancing Earth System Science, B. Am. Meteorol. Soc., 94, 365–375,
https://doi.org/10.1175/BAMS-D-11-00171.1, 2013.
Kuell, V., Gassmann, A., and Bott, A.: Towards a new hybrid cumulus
parametrization scheme for use in non-hydrostatic weather prediction models,
Q. J. Roy. Meteor. Soc., 133, 479–490, https://doi.org/10.1002/qj.28, 2007.
Kumar, B., Götzfried, P., Suresh, N., Schumacher, J., and Shaw, R. A.:
Scale Dependence of Cloud Microphysical Response to Turbulent Entrainment
and Mixing, J. Adv. Model. Earth Sy.,10, 2777–2785,
https://doi.org/10.1029/2018MS001487, 2018.
Kumar, D. and Dimri, A. P.: Sensitivity of convective and land surface
parameterization in the simulation of contrasting monsoons over CORDEX-South
Asia domain using RegCM-4.4.5.5, Theor. Appl. Climatol., 139, 297–322,
https://doi.org/10.1007/s00704-019-02976-9, 2020.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical
Rainfall Measuring Mission (TRMM) Sensor Package, J. Atmos. Ocean. Tech.,
15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998.
Kuo, H. L.: On the Controlling Influences of Eddy Diffusion on Thermal
Convection, J. Atmos. Sci., 19, 236–243,
https://doi.org/10.1175/1520-0469(1962)019<0236:OTCIOE>2.0.CO;2, 1962.
Kuo, H. L.: On Formation and Intensification of Tropical Cyclones Through
Latent Heat Release by Cumulus Convection, J. Atmos. Sci., 22, 40–63,
https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2, 1965.
Kuo, H. L.: Further Studies of the Parameterization of the Influence of
Cumulus Convection on Large-Scale Flow, J. Atmos. Sci., 31, 1232–1240,
https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2, 1974.
Kuo, Y.-H. and Anthes, R. A.: Semiprognostic Tests of Kuo–Type Cumulus
Parameterization Schemes in an Extratropical Convective System, Mon. Weather Rev., 112, 1498–1509, https://doi.org/10.1175/1520-0493(1984)112<1498:STOKCP>2.0.CO;2, 1984.
Kurihara, Y.: A Scheme of Moist Convective Adjustment, Mon. Weather Rev., 101, 547–553, https://doi.org/10.1175/1520-0493(1973)101<0547:ASOMCA>2.3.CO;2, 1973.
Kurowski, M. J., Thrastarson, H. T., Suselj, K., and Teixeira, J.: Towards unifying the planetary boundary layer and shallow convection in CAM5 with the eddy-diffusivity/mass-flux approach, Atmosphere-Basel, 10, 484, https://doi.org/10.3390/atmos10090484, 2019.
Kwon, Y. C. and Hong, S.-Y.: A Mass-Flux Cumulus Parameterization Scheme
across Gray-Zone Resolutions, Mon. Weather Rev., 145, 583–598,
https://doi.org/10.1175/MWR-D-16-0034.1, 2017.
Lamontagne, R. G. and Telford, J. W.: Cloud Top Mixing in Small Cumuli.,
Journal of Atmospheric Sciences, J. Atmos. Sci., 40, 2148–2156,
https://doi.org/10.1175/1520-0469(1983)040<2148:CTMISC>2.0.CO;2, 1983.
Lappen, C.-L. and Randall, D. A.: Toward a Unified Parameterization of the
Boundary Layer and Moist Convection. Part I: A New Type of Mass-Flux Model,
J. Atmos. Sci., 58, 2021–2036,
https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2, 2001a.
Lappen, C.-L. and Randall, D. A.: Toward a Unified Parameterization of the
Boundary Layer and Moist Convection. Part II: Lateral Mass Exchanges and
Subplume-Scale Fluxes, J. Atmos. Sci., 58, 2037–2051,
https://doi.org/10.1175/1520-0469(2001)058<2037:TAUPOT>2.0.CO;2, 2001b.
Larson, V. E.: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere, arXiv preprint arXiv:1711.03675, 2020.
Larson, V. E. and Schanen, D. P.: The Subgrid Importance Latin Hypercube Sampler (SILHS): a multivariate subcolumn generator, Geosci. Model Dev., 6, 1813–1829, https://doi.org/10.5194/gmd-6-1813-2013, 2013.
Larson, V. E., Golaz, J.-C., and Cotton, W. R.: Small-Scale and Mesoscale
Variability in Cloudy Boundary Layers: Joint Probability Density Functions,
J. Atmos. Sci., 59, 3519–3539,
https://doi.org/10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2, 2002.
Larson, V. E., Golaz, J.-C., Jiang, H., and Cotton, W. R.: Supplying Local
Microphysics Parameterizations with Information about Subgrid Variability:
Latin Hypercube Sampling, J. Atmos. Sci., 62, 4010–4026,
https://doi.org/10.1175/JAS3624.1, 2005.
Larson, V. E., Schanen, D. P., Wang, M., Ovchinnikov, M., and Ghan, S.: PDF
Parameterization of Boundary Layer Clouds in Models with Horizontal Grid
Spacings from 2 to 16 km, Mon. Weather Rev., 140, 285–306,
https://doi.org/10.1175/MWR-D-10-05059.1, 2012.
Le Trent, H. and Li, Z.-X.: Sensitivity of an atmospheric general
circulation model to prescribed SST changes: feedback effects associated
with the simulation of cloud optical properties, Clim. Dynam., 5, 175–187,
https://doi.org/10.1007/BF00251808, 1991.
Leary, C. A. and Houze, R. A.: The Contribution of Mesoscale Motions to the
Mass and Heat Fluxes of an Intense Tropical Convective System, J. Atmos.
Sci., 37, 784–796, https://doi.org/10.1175/1520-0469(1980)037<0784:TCOMMT>2.0.CO;2, 1980.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Held, I. M., Lau, N.-C.,
Ploshay, J. J., Kumar, A., Kim, H.-K., and Schemm, J.-K. E.: An Analysis of
the Warm-Season Diurnal Cycle over the Continental United States and
Northern Mexico in General Circulation Models, J. Hydormeteorol., 8,
344–366, https://doi.org/10.1175/JHM581.1, 2007a.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Held, I. M., Kumar, A., Bell, T.
L., Schemm, J.-K. E., Lau, N.-C., Ploshay, J. J., Kim, H.-K., and Yoo,
S.-H.: Sensitivity to Horizontal Resolution in the AGCM Simulations of Warm
Season Diurnal Cycle of Precipitation over the United States and Northern
Mexico, J. Climate, 20, 1862–1881, https://doi.org/10.1175/JCLI4090.1,
2007b.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Schemm, J.-K. E., Pan, H.-L.,
Han, J., and Yoo, S.-H.: Role of convection triggers in the simulation of
the diurnal cycle of precipitation over the United States Great Plains in a
general circulation model, J. Geophys. Res.-Atmos., 113, D02111,
https://doi.org/10.1029/2007JD008984, 2008.
Lee, Y. H., Park, S. K., and Chang, D.-E.: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast, Ann. Geophys., 24, 3185–3189, https://doi.org/10.5194/angeo-24-3185-2006, 2006.
LeMone, M. A. and Pennell, W. T.: The Relationship of Trade Wind Cumulus
Distribution to Subcloud Layer Fluxes and Structure, Mon. Weather Rev., 104,
524–539, https://doi.org/10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2, 1976.
Levizzani, V. and Cattani, E.: Satellite Remote Sensing of Precipitation and
the Terrestrial Water Cycle in a Changing Climate, Remote Sens.-Basel, 11,
2301, https://doi.org/10.3390/rs11192301, 2019.
Lewellen, W. S. and Yoh, S.: Binormal Model of Ensemble Partial Cloudiness,
J. Atmos. Sci., 50, 1228–1237,
https://doi.org/10.1175/1520-0469(1993)050<1228:BMOEPC>2.0.CO;2, 1993.
Li, L., Wang, B., Yuqing, W., and Hui, W.: Improvements in climate
simulation with modifications to the Tiedtke convective parameterization in
the grid-point atmospheric model of IAP LASG (GAMIL), Adv. Atmos. Sci., 24,
323–335, https://doi.org/10.1007/s00376-007-0323-3, 2007.
Li, S., Zhang, S., Liu, Z., Lu, L., Zhu, J., Zhang, X., Wu, X., Zhao, M.,
Vecchi, G. A., Zhang, R.-H., and Lin, X.: Estimating Convection Parameters
in the GFDL CM2.1 Model Using Ensemble Data Assimilation, J. Adv. Model.
Earth Sy., 10, 989–1010, https://doi.org/10.1002/2017MS001222, 2018.
Liang, F., Cheng, Y., and Lin, G.: Simulated Stochastic Approximation
Annealing for Global Optimization With a Square-Root Cooling Schedule, J.
Am. Stat. Assoc., 109, 847–863, https://doi.org/10.1080/01621459.2013.872993,
2014.
Lim, K.-S. S., Hong, S.-Y., Yoon, J.-H., and Han, J.: Simulation of the
Summer Monsoon Rainfall over East Asia Using the NCEP GFS Cumulus
Parameterization at Different Horizontal Resolutions, Weather Forecast., 29,
1143–1154, https://doi.org/10.1175/WAF-D-13-00143.1, 2014.
Lin, J. W.-B. and Neelin, J. D.: Influence of a stochastic moist convective
parameterization on tropical climate variability, Geophys. Res. Lett., 27,
3691–3694, https://doi.org/10.1029/2000GL011964, 2000.
Lin, J. W.-B. and Neelin, J. D.: Considerations for Stochastic Convective
Parameterization, J. Atmos. Sci., 59, 959–975,
https://doi.org/10.1175/1520-0469(2002)059<0959:CFSCP>2.0.CO;2, 2002.
Lin, J. W.-B. and Neelin, J. D.: Toward stochastic deep convective
parameterization in general circulation models, Geophys. Res. Lett., 30, 1162,
https://doi.org/10.1029/2002GL016203, 2003.
Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R.,
Lin, W., Wheeler, M. C., Schubert, S. D., Genio, A. D., Donner, L. J.,
Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P. J., Roeckner, E., and
Scinocca, J. F.: Tropical Intraseasonal Variability in 14 IPCC AR4 Climate
Models. Part I: Convective Signals, J. Climate, 19, 2665–2690,
https://doi.org/10.1175/JCLI3735.1, 2006.
Lin, J.-L., Lee, M.-I., Kim, D., Kang, I.-S., and Frierson, D. M. W.: The
Impacts of Convective Parameterization and Moisture Triggering on
AGCM-Simulated Convectively Coupled Equatorial Waves, J. Climate, 21,
883–909, https://doi.org/10.1175/2007JCLI1790.1, 2008.
Lin, J.-L., Qian, T., Shinoda, T., and Li, S.: Is the Tropical Atmosphere in
Convective Quasi-Equilibrium?, J. Climate, 28, 4357–4372,
https://doi.org/10.1175/JCLI-D-14-00681.1, 2015.
Lindzen, R. S.: Some remarks on cumulus parameterization, Pure Appl.
Geophys., 126, 123–135, https://doi.org/10.1007/BF00876918, 1988.
Lindzen, R. S., Chou, M.-D., and Hou, A. Y.: Does the Earth Have an Adaptive
Infrared Iris?, B. Am. Meteorol. Soc., 82, 417–432,
https://doi.org/10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2, 2001.
Liu, C., Fedorovich, E., Huang, J., Hu, X.-M., Wang, Y., and Lee, X.: Impact
of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric
Convective Boundary Layer: A Large-Eddy Simulation Study, J. Atmos. Sci.,
76, 785–799, https://doi.org/10.1175/JAS-D-18-0107.1, 2019.
Lohmann, U.: Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM, Atmos. Chem. Phys., 8, 2115–2131, https://doi.org/10.5194/acp-8-2115-2008, 2008.
Lord, S. J., Chao, W. C., and Arakawa, A.: Interaction of a Cumulus Cloud
Ensemble with the Large-Scale Environment. Part IV: The Discrete Model, J.
Atmos. Sci., 39, 104–113,
https://doi.org/10.1175/1520-0469(1982)039<0104:IOACCE>2.0.CO;2, 1982.
Loriaux, J. M., Lenderink, G., Roode, S. R. D., and Siebesma, A. P.:
Understanding Convective Extreme Precipitation Scaling Using Observations
and an Entraining Plume Model, J. Atmos. Sci., 70, 3641–3655,
https://doi.org/10.1175/JAS-D-12-0317.1, 2013.
Lotka, A. J.: Contribution to the Theory of Periodic Reactions, J. Phys.
Chem., 14, 271-274, https://doi.org/10.1021/j150111a004, 1910.
Lotka, A. J.: Analytical Note on Certain Rhythmic Relations in Organic
Systems, P. Natl. Acad. Sci. USA, 6, 410–415,
https://doi.org/10.1073/pnas.6.7.410, 1920.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol, 17, 187–202, https://doi.org/10.1007/BF00117978,
1979.
Lu, B. and Ren, H.-L.: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs, Dynam. Atmos. Oceans, 76, 127–140, https://doi.org/10.1016/j.dynatmoce.2016.10.005, 2016.
Lu, C., Liu, Y., and Niu, S.: Examination of turbulent entrainment-mixing
mechanisms using a combined approach, J. Geophys. Res.-Atmos., 116, D20207,
https://doi.org/10.1029/2011JD015944, 2011.
Lu, C., Liu, Y., Yum, S. S., Niu, S., and Endo, S.: A new approach for
estimating entrainment rate in cumulus clouds, Geophys. Res. Lett., 39, L04802,
https://doi.org/10.1029/2011GL050546, 2012.
Lu, C., Liu, Y., Niu, S., and Endo, S.: Scale dependence of
entrainment-mixing mechanisms in cumulus clouds, J. Geophys. Res.-Atmos.,
119, 13877–13890, https://doi.org/10.1002/2014JD022265, 2014.
Lu, C., Sun, C., Liu, Y., Zhang, G. J., Lin, Y., Gao, W., Niu, S., Yin, Y.,
Qiu, Y., and Jin, L.: Observational Relationship Between Entrainment Rate
and Environmental Relative Humidity and Implications for Convection
Parameterization, Geophys. Res. Lett., 45, 13495–13504,
https://doi.org/10.1029/2018GL080264, 2018.
Luo, Z. J., Liu, G. Y., and Stephens, G. L.: Use of A-Train data to estimate
convective buoyancy and entrainment rate, Geophys. Res. Lett., 37, L09804,
https://doi.org/10.1029/2010GL042904, 2010.
Ma, L.-M. and Tan, Z.-M.: Improving the behavior of the cumulus
parameterization for tropical cyclone prediction: Convection trigger,
Atmospheric Research, Atmos. Res., 92, 190–211,
https://doi.org/10.1016/j.atmosres.2008.09.022, 2009.
Mahoney, K. M.: The representation of cumulus convection in high-resolution simulations of the 2013 Colorado Front Range flood, Mon. Weather Rev., 144, 4265–4278, 2016.
Majda, A. J. and Khouider, B.: Stochastic and mesoscopic models for tropical
convection, P. Natl. Acad. Sci. USA, 99, 1123–1128,
https://doi.org/10.1073/pnas.032663199, 2002.
Majda, A. J., Timofeyev, I., and Eijnden, E. V.: Models for stochastic climate prediction, P. Natl. Acad. Sci. USA, 96, 14687–14691, https://doi.org/10.1073/pnas.96.26.14687, 1999.
Majda, A. J., Timofeyev, I., and Eijnden, E. V.: A mathematical framework for stochastic climate models, Commun. Pur. Appl. Math., 54, 891–974, https://doi.org/10.1002/cpa.1014, 2001.
Majda, A. J., Timofeyev, I., and Vanden-Eijnden, E.: Systematic Strategies for Stochastic Mode Reduction in Climate, J. Atmos. Sci., 60, 1705–1722, https://doi.org/10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2, 2003.
Malinowski, S. P. and Pawlowska-Mankiewicz, H.: On Estimating the
Entraininent Level in Cumulus Clouds, J. Atmos. Sci., 46, 2463–2465,
https://doi.org/10.1175/1520-0469(1989)046<2463:OETELI>2.0.CO;2, 1989.
Malkus, J. S.: Recent developments in studies of penetrative convection and an application to hurricane cumulonimbus towers, Cumulus Dynamics: Proceedings First Conference on Cumulus Convection, 19–22 May 1959, Portsmouth, N.H., edited by: Anderson, C. E., Pergamon Press, London, New York, 65–84, 1960.
Manabe, S., Smagorinsky, J., and Strickler, R. F.: Simulated Climatology of a General Circulation Model with Hydrologic Cycle, Mon. Weather Rev., 93, 769–798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2, 1965.
Mapes, B. and Neale, R.: Parameterizing Convective Organization to Escape
the Entrainment Dilemma, J. Adv. Model. Earth Sy., 3, M06004,
https://doi.org/10.1029/2011MS000042, 2011.
Mapes, B. E.: Equilibrium Vs. Activation Control of Large-Scale Variations
of Tropical Deep Convection, in: The Physics and Parameterization of Moist
Atmospheric Convection, edited by: Smith, R. K., Springer Netherlands,
Dordrecht, 321–358,
https://doi.org/10.1007/978-94-015-8828-7_13, 1997.
Mapes, B. E.: Convective Inhibition, Subgrid-Scale Triggering Energy, and
Stratiform Instability in a Toy Tropical Wave Model, J. Atmos. Sci., 57,
1515–1535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2, 2000.
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta,
M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz,
D., Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a
global model, J. Adv. Model. Earth Sy., 4, M00A01,
https://doi.org/10.1029/2012MS000154, 2012.
Mbienda, A. J. K., Tchawoua, C., Vondou, D. A., Choumbou, P., Sadem, C. K.,
and Dey, S.: Sensitivity experiments of RegCM4 simulations to different
convective schemes over Central Africa, Int. J. Climatol., 37, 328–342,
https://doi.org/10.1002/joc.4707, 2017.
McCaa, J. R. and Bretherton, C. S.: A New Parameterization for Shallow
Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped
Boundary Layers. Part II: Regional Simulations of Marine Boundary Layer
Clouds, Mon. Weather Rev., 132, 883–896,
https://doi.org/10.1175/1520-0493(2004)132<0883:ANPFSC>2.0.CO;2, 2004.
McFarlane, N.: Parameterizations: representing key processes in climate
models without resolving them, WIRES CLim. Change, 2, 482–497,
https://doi.org/10.1002/wcc.122, 2011.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37,
https://doi.org/10.1177/0956247807076960, 2007.
McLaughlin, J. F., Hellmann, J. J., Boggs, C. L., and Ehrlich, P. R.:
Climate change hastens population extinctions, P. Natl. Acad. Sci. USA, 99,
6070–6074, https://doi.org/10.1073/pnas.052131199, 2002.
Mellor, G. L.: The Gaussian Cloud Model Relations, J. Atmos. Sci., 34,
356–358, https://doi.org/10.1175/15200469(1977)034<0356:TGCMR> 2.0.CO;2, 1977.
Mironov, D. V.: Turbulence in the Lower Troposphere: Second-Order Closure and Mass–Flux Modelling Frameworks, in Interdisciplinary Aspects of Turbulence, Lect. Notes Phys., Springer, Berlin, Heidelberg, 161–221, https://doi.org/10.1007/978-3-540-78961-1_5, 2009.
Miyakoda, K., Smagorinsky, J., Strickler, R. F., and Hembree, G. D.: Experimental predictions with a nine-level hemispheric model, Mon. Weather Rev., 97, 1–76, https://doi.org/10.1175/1520-0493(1969)097<0001:EEPWAN>2.3.CO;2, 1969.
Möbis, B. and Stevens, B.: Factors controlling the position of the
Intertropical Convergence Zone on an aquaplanet, J. Adv. Model. Earth Sy., 4, M00A04,
https://doi.org/10.1029/2012MS000199, 2012.
Mohandas, S. and Ashrit, R.: Sensitivity of different convective
parameterization schemes on tropical cyclone prediction using a mesoscale
model, Nat. Hazards, 73, 213–235,
https://doi.org/10.1007/s11069-013-0824-6, 2014.
Molinari, J.: A General Form of Kuo's Cumulus Parameterization, Mon. Weather Rev., 113, 1411–1416, https://doi.org/10.1175/1520-0493(1985)113<1411:AGFOKC>2.0.CO;2, 1985.
Molinari, J. and Corsetti, T.: Incorporation of Cloud-Scale and Mesoscale
Downdrafts into a Cumulus Parameterization: Results of One- and
Three-Dimensional Integrations, Mon. Weather Rev., 113, 485–501,
https://doi.org/10.1175/1520-0493(1985)113<0485:IOCSAM>2.0.CO;2, 1985.
Moncrieff, M. W. and Liu, C.: Representing convective organization in
prediction models by a hybrid strategy, J. Atmos. Sci., 63, 3404–3420,
https://doi.org/10.1175/JAS3812.1, 2006.
Moncrieff, M. W., Liu, C., and Bogenschutz, P.: Simulation, Modeling, and
Dynamically Based Parameterization of Organized Tropical Convection for
Global Climate Models, J. Atmos. Sci., 74, 1363–1380,
https://doi.org/10.1175/JAS-D-16-0166.1, 2017.
Moorthi, S. and Suarez, M. J.: Relaxed Arakawa-Schubert. A Parameterization
of Moist Convection for General Circulation Models, Mon. Weather Rev., 120,
978–1002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2, 1992.
Morrison, H.: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions, J. Atmos. Sci., 73, 1441–1454, https://doi.org/10.1175/JAS-D-15-0040.1, 2016a.
Morrison, H.: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations, J. Atmos. Sci., 73, 1455–1480, https://doi.org/10.1175/JAS-D-15-0041.1, 2016.
Morrison, H. and Grabowski, W. W.: Response of Tropical Deep Convection to Localized Heating Perturbations: Implications for Aerosol-Induced Convective Invigoration, J. Atmos. Sci., 70, 3533–555, https://doi.org/10.1175/JAS-D-13-027.1, 2013.
Morton, B. R.: Modeling fire plumes, Symposium (International) on
Combustion, 10, 973–982, https://doi.org/10.1016/S0082-0784(65)80240-5,
1965.
Morton, B. R., Taylor, G. I., and Turner, J. S.: Turbulent gravitational
convection from maintained and instantaneous sources, P. Roy. Soc. Lond. A
Mat., 234, 1–23, https://doi.org/10.1098/rspa.1956.0011, 1956.
Mukhopadhyay, P., Taraphdar, S., Goswami, B. N., and Krishnakumar, K.:
Indian Summer Monsoon Precipitation Climatology in a High-Resolution
Regional Climate Model: Impacts of Convective Parameterization on Systematic
Biases, Weather Forecast., 25, 369–387,
https://doi.org/10.1175/2009WAF2222320.1, 2010.
Nam, C. C. W., Quaas, J., Neggers, R., Drian, C. S.-L., and Isotta, F.:
Evaluation of boundary layer cloud parameterizations in the ECHAM5 general
circulation model using CALIPSO and CloudSat satellite data, J. Adv. Model.
Earth Sy., 6, 300–314, https://doi.org/10.1002/2013MS000277, 2014.
National Academies of Sciences, Engineering and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, The National Academies Press, Washington, D.C., https://doi.org/10.17226/24938, 2018.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D65D8PWK (last access: 22 November 2020), 2015, updated daily.
Naumann, A. K., Seifert, A., and Mellado, J. P.: A refined statistical cloud closure using double-Gaussian probability density functions, Geosci. Model Dev., 6, 1641–1657, https://doi.org/10.5194/gmd-6-1641-2013, 2013.
Neale, R. B., Richter, J. H., and Jochum, M.: The Impact of Convection on
ENSO: From a Delayed Oscillator to a Series of Events, J. Climate, 21,
5904–5924, https://doi.org/10.1175/2008JCLI2244.1, 2008.
Neggers, R.: Humidity-convection feedbacks in a mass flux scheme based on resolved size densities, ECMWF Workshop on Parametrization of Clouds and Precipitation, 10, https://www.ecmwf.int/node/14800 (last access: 5 September 2021), 2012.
Neggers, R. A. J.: A Dual Mass Flux Framework for Boundary Layer Convection.
Part II: Clouds, J. Atmos. Sci., 66, 1489–1506,
https://doi.org/10.1175/2008JAS2636.1, 2009.
Neggers, R. A. J.: Exploring bin-macrophysics models for moist convective
transport and clouds, J. Adv. Model. Earth Sy., 7, 2079–2104,
https://doi.org/10.1002/2015MS000502, 2015.
Neggers, R. A. J. and Griewank, P. J.: A Binomial Stochastic Framework for
Efficiently Modeling Discrete Statistics of Convective Populations, J. Adv.
Model. Earth Sy., 13, e2020MS002229, https://doi.org/10.1029/2020MS002229,
2021.
Neggers, R. A. J. and Siebesma, A. P.: Constraining a System of Interacting
Parameterizations through Multiple-Parameter Evaluation: Tracing a
Compensating Error between Cloud Vertical Structure and Cloud Overlap, J.
Climate, 26, 6698–6715, https://doi.org/10.1175/JCLI-D-12-00779.1, 2013.
Neggers, R. A. J., Siebesma, A. P., and Jonker, H. J. J.: A Multiparcel
Model for Shallow Cumulus Convection, J. Atmos. Sci., 59, 1655–1668,
https://doi.org/10.1175/1520-0469(2002)059<1655:AMMFSC>2.0.CO;2, 2002.
Neggers, R. A. J., Jonker, H. J. J., and Siebesma, A. P.: Size Statistics of
Cumulus Cloud Populations in Large-Eddy Simulations, J. Atmos. Sci., 60,
1060–1074, https://doi.org/10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2, 2003.
Neggers, R. A. J., Siebesma, A. P., Lenderink, G., and Holtslag, A. A. M.:
An Evaluation of Mass Flux Closures for Diurnal Cycles of Shallow Cumulus,
Mon. Weather Rev., 132, 2525–2538, https://doi.org/10.1175/MWR2776.1, 2004.
Neggers, R. A. J., Stevens, B., and Neelin, J. D.: Variance scaling in
shallow-cumulus-topped mixed layers, Q. J. Roy. Meteor. Soc., 133,
1629–1641, https://doi.org/10.1002/qj.105, 2007.
Neggers, R. A. J., Köhler, M., and Beljaars, A. C. M.: A Dual Mass Flux
Framework for Boundary Layer Convection. Part I: Transport, J. Atmos. Sci.,
66, 1465–1487, https://doi.org/10.1175/2008JAS2635.1, 2009.
Neggers, R. A. J., Siebesma, A. P., and Heus, T.: Continuous Single-Column
Model Evaluation at a Permanent Meteorological Supersite, B. Am. Meteorol.
Soc., 93, 1389–1400, https://doi.org/10.1175/BAMS-D-11-00162.1, 2012.
Neggers, R. A. J., Griewank, P. J., and Heus, T.: Power-Law Scaling in the
Internal Variability of Cumulus Cloud Size Distributions due to Subsampling
and Spatial Organization, J. Atmos. Sci., 76, 1489–1503,
https://doi.org/10.1175/JAS-D-18-0194.1, 2019.
Nie, J. and Kuang, Z.: Responses of Shallow Cumulus Convection to
Large-Scale Temperature and Moisture Perturbations: A Comparison of
Large-Eddy Simulations and a Convective Parameterization Based on
Stochastically Entraining Parcels, J. Atmos. Sci., 69, 1936–1956,
https://doi.org/10.1175/JAS-D-11-0279.1, 2012.
Nitta, T.: Observational Determination of Cloud Mass Flux Distributions, J.
Atmos. Sci., 32, 73–91, https://doi.org/10.1175/1520-0469(1975)032<0073:ODOCMF>2.0.CO;2, 1975.
Niziol, T. A., Snyder, W. R., and Waldstreicher, J. S.: Winter Weather
Forecasting throughout the Eastern United States. Part IV: Lake Effect Snow,
Weather Forecast., 10, 61–77,
https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2, 1995.
Nober, F. J. and Graf, H. F.: A new convective cloud field model based on principles of self-organisation, Atmos. Chem. Phys., 5, 2749–2759, https://doi.org/10.5194/acp-5-2749-2005, 2005.
Nober, F. J., Graf, H.-F., and Rosenfeld, D.: Sensitivity of the global
circulation to the suppression of precipitation by anthropogenic aerosols,
Global Planet. Change, 37, 57–80,
https://doi.org/10.1016/S0921-8181(02)00191-1, 2003.
Nordeng, T.-E.: Extended versions of the convective parametrization scheme
at ECMWF and their impact on the mean and transient activity of the model in
the tropics, Research Department Technical Memorandum, no. 206, 1994.
O'Gorman, P. A. and Dwyer, J. G.: Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events, J. Adv. Model Earth Sy., 10, 2548–2563, https://doi.org/10.1029/2018MS001351, 2018.
Okamoto, K. I., Ushio, T., Iguchi, T., Takahashi, N., and Iwanami, K.: The
global satellite mapping of precipitation (GSMaP) project, Aqua (AMSR-E),
3414–3416, https://doi.org/10.1109/IGARSS.2005.1526575, 2005.
Olson, J., Kenyon, J., Angevine, W. A., Brown, J. M., Pagowski, M., and Sušelj, K. (Eds.): A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW, NOAA Technical Memorandum OAR GSD, 61, https://doi.org/10.25923/N9WM-BE49, 2019.
Ooyama, K.: A dynamical model for the study of tropical cyclone
development., Geofis. Int., 4, 187–198, 1964.
Ooyama, K.: A Theory on Parameterization of Cumulus Convection, J. Meteorol.
Soc. Jpn., 49A, 744–756,
https://doi.org/10.2151/jmsj1965.49A.0_744, 1971.
Oueslati, B. and Bellon, G.: Convective Entrainment and Large-Scale
Organization of Tropical Precipitation: Sensitivity of the CNRM-CM5
Hierarchy of Models, J. Climate, 26, 2931–2946,
https://doi.org/10.1175/JCLI-D-12-00314.1, 2013.
Paluch, I. R.: The Entrainment Mechanism in Colorado Cumuli, J. Atmos. Sci.,
36, 2467–2478, https://doi.org/10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2, 1979.
Pan, D.-M. and Randall, D. D. A.: A cumulus parameterization with a
prognostic closure, Q. J. Roy. Meteor. Soc., 124, 949–981,
https://doi.org/10.1002/qj.49712454714, 1998.
Pan, H.-L. and Wu, W.-S.: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model, National Centers for Environmental Prediction (U.S.), Office note (National Centers for Environmental Prediction (U.S.)), 409, https://repository.library.noaa.gov/view/noaa/11429 (last access: 5 September 2021), 1995.
Panosetti, D., Böing, S., Schlemmer, L., and Schmidli, J.: Idealized Large-Eddy and Convection-Resolving Simulations of Moist Convection over Mountainous Terrain, J. Atmos. Sci., 73, 4021–4041, https://doi.org/10.1175/JAS-D-15-0341.1, 2016.
Park, S.: A Unified Convection Scheme (UNICON). Part I: Formulation, J.
Atmos. Sci., 71, 3902–3930, https://doi.org/10.1175/JAS-D-13-0233.1, 2014a.
Park, S.: A Unified Convection Scheme (UNICON). Part II: Simulation, J.
Atmos. Sci., 71, 3931–3973, https://doi.org/10.1175/JAS-D-13-0234.1, 2014b.
Park, S. and Bretherton, C. S.: The University of Washington Shallow
Convection and Moist Turbulence Schemes and Their Impact on Climate
Simulations with the Community Atmosphere Model, J. Climate, 22, 3449–3469,
https://doi.org/10.1175/2008JCLI2557.1, 2009.
Park, S., Baek, E.-H., Kim, B.-M., and Kim, S.-J.: Impact of detrained
cumulus on climate simulated by the Community Atmosphere Model Version 5
with a unified convection scheme, J. Adv. Model. Earth Sy., 9, 1399–1411,
https://doi.org/10.1002/2016MS000877, 2017.
Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A.: Impact of
regional climate change on human health, Nature, 438, 310–317,
https://doi.org/10.1038/nature04188, 2005.
Peng, J., Li, Z., Zhang, H., Liu, J., and Cribb, M.: Systematic Changes in Cloud Radiative Forcing with Aerosol Loading for Deep Clouds in the Tropics, J. Atmos. Sci., 73, 231–249, https://doi.org/10.1175/JAS-D-15-0080.1, 2016.
Peng, M. S., Ridout, J. A., and Hogan, T. F.: Recent Modifications of the
Emanuel Convective Scheme in the Navy Operational Global Atmospheric
Prediction System, Mon. Weather Rev., 132, 1254–1268,
https://doi.org/10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2, 2004.
Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.: A Parameterization
of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather
Prediction, Bound.-Lay. Meteorol., 132, 83,
https://doi.org/10.1007/s10546-009-9388-0, 2009.
Perraud, E., Couvreux, F., Malardel, S., Lac, C., Masson, V., and Thouron,
O.: Evaluation of Statistical Distributions for the Parametrization of
Subgrid Boundary-Layer Clouds, Bound.-Lay. Meteorol., 140, 263–294,
https://doi.org/10.1007/s10546-011-9607-3, 2011.
Peters, J. M.: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts, J. Atmos. Sci., t3, 4531–4551, https://doi.org/10.1175/JAS-D-16-0016.1, 2016.
Peters, K., Jakob, C., Davies, L., Khouider, B., and Majda, A. J.:
Stochastic Behavior of Tropical Convection in Observations and a Multicloud
Model, J. Atmos. Sci., 70, 3556–3575,
https://doi.org/10.1175/JAS-D-13-031.1, 2013.
Peters, K., Crueger, T., Jakob, C., and Möbis, B.: Improved
MJO-simulation in ECHAM6.3 by coupling a Stochastic Multicloud Model to the
convection scheme, J. Adv. Model. Earth Sy., 9, 193–219,
https://doi.org/10.1002/2016MS000809, 2017.
Petersen, A. C., Beets, C., Dop, H. van, Duynkerke, P. G., and Siebesma, A.
P.: Mass-Flux Characteristics of Reactive Scalars in the Convective Boundary
Layer, J. Atmos. Sci., 56, 37–56,
https://doi.org/10.1175/1520-0469(1999)056<0037:MFCORS>2.0.CO;2, 1999.
Pezzi, L. P., Cavalcanti, I. F. A., and Mendonça, A. M.: A sensitivity
study using two different convection schemes over south america, Revista
Brasileira de Meteorologia, 23, 170–189,
https://doi.org/10.1590/S0102-77862008000200006, 2008.
Pham-Duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C., and
Crétaux, J.-F.: The Lake Chad hydrology under current climate change,
Sci. Rep.-UK, 10, 5498, https://doi.org/10.1038/s41598-020-62417-w, 2020.
Piriou, J.-M., Redelsperger, J.-L., Geleyn, J.-F., Lafore, J.-P., and
Guichard, F.: An Approach for Convective Parameterization with Memory:
Separating Microphysics and Transport in Grid-Scale Equations, J. Atmos.
Sci., 64, 4127–4139, https://doi.org/10.1175/2007JAS2144.1, 2007.
Plant, R. S.: A review of the theoretical basis for bulk mass flux convective parameterization, Atmos. Chem. Phys., 10, 3529–3544, https://doi.org/10.5194/acp-10-3529-2010, 2010.
Plant, R. S. and Craig, G. C.: A Stochastic Parameterization for Deep
Convection Based on Equilibrium Statistics, J. Atmos. Sci., 65, 87–105,
https://doi.org/10.1175/2007JAS2263.1, 2008.
Plant, R. S. and Yano, J.-I.: Parameterization of Atmospheric Convection:
(In 2 Volumes) Volume 1: Theoretical Background and FormulationVolume 2:
Current Issues and New Theories, Imperial College Press,
https://doi.org/10.1142/p1005, 2015.
Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler,
K., and Georgievski, G.: Added value of convection permitting seasonal
simulations, Clim. Dynam., 41, 2655–2677,
https://doi.org/10.1007/s00382-013-1744-6, 2013.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Lipzig, N. P. M. van, and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361,
https://doi.org/10.1002/2014RG000475, 2015.
Qian, L., Young, G. S., and Frank, W. M.: A Convective Wake Parameterization
Scheme for Use in General Circulation Models, Mon. Weather Rev., 126,
456–469, https://doi.org/10.1175/1520-0493(1998)126<0456:ACWPSF>2.0.CO;2, 1998.
Qin, Y., Lin, Y., Xu, S., Ma, H.-Y., and Xie, S.: A Diagnostic PDF Cloud
Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model
(CAM5), J. Adv. Model. Earth Sy., 10, 320–341,
https://doi.org/10.1002/2017MS001095, 2018.
Raga, G. B., Jensen, J. B., and Baker, M. B.: Characteristics of Cumulus
Band Clouds off the Coast of Hawaii, J. Atmos. Sci., 47, 338–356,
https://doi.org/10.1175/1520-0469(1990)047<0338:COCBCO>2.0.CO;2, 1990.
Raju, P. V. S., Bhatla, R., Almazroui, M., and Assiri, M.: Performance of
convection schemes on the simulation of summer monsoon features over the
South Asia CORDEX domain using RegCM-4.3, Int. J. Climatol., 35, 4695–4706,
https://doi.org/10.1002/joc.4317, 2015.
Ramanathan, V. and Collins, W.: Thermodynamic regulation of ocean warming by
cirrus clouds deduced from observations of the 1987 El Niño, Nature,
351, 27–32, https://doi.org/10.1038/351027a0, 1991.
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking the
Cloud Parameterization Deadlock, B. Am. Meteorol. Soc., 84, 1547–1564,
https://doi.org/10.1175/BAMS-84-11-1547, 2003.
Randall, D. A. and Pan, D.-M.: Implementation of the Arakawa-Schubert
Cumulus Parameterization with a Prognostic Closure, in: The Representation
of Cumulus Convection in Numerical Models, edited by: Emanuel, K. A. and
Raymond, D. J., American Meteorological Society, Boston, MA, 137–144,
https://doi.org/10.1007/978-1-935704-13-3_11, 1993.
Randall, D. A., Shao, Q., and Moeng, C.-H.: A Second-Order Bulk
Boundary-Layer Model, J. Atmos. Sci., 49, 1903–1923,
https://doi.org/10.1175/1520-0469(1992)049<1903:ASOBBL>2.0.CO;2, 1992.
Randall, D. A., Srinivasan, J., Nanjundiah, R. A., and Mukhopadhyay, P.
(Eds.): Current Trends in the Representation of Physical Processes in
Weather and Climate Models, Springer Singapore,
https://doi.org/10.1007/978-981-13-3396-5, 2019.
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018.
Rauber, R. M., Stevens, B., Ochs, H. T., Knight, C., Albrecht, B. A.,
Blythe, A. M., Fairall, C. W., Jensen, J. B., Lasher-Trapp, S. G.,
Mayol-Bracero, O. L., Vali, G., Anderson, J. R., Baker, B. A., Bandy, A. R.,
Brunet, E., Brenguier, J. L., Brewer, W. A., Brown, P. R. A., Chuang, P.,
Cotton, W. R., Girolamo, L. D., Geerts, B., Gerber, H., Göke, S., Gomes,
L., Heikes, B. G., Hudson, J. G., Kollias, P., Lawson, R. P., Krueger, S.
K., Lenschow, D. H., Nuijens, L., O'Sullivan, D. W., Rilling, R. A., Rogers,
D. C., Siebesma, A. P., Snodgrass, F., Stith, J. L., Thornton, D. C.,
Tucker, S., Twohy, C. H., and Zuidema, P.: Rain in shallow cumulus over the
ocean: The RICO campaign, B. Am. Meteorol. Soc., 88, 1912–1928,
https://doi.org/10.1175/BAMS-88-12-1912, 2007.
Raymond, D. J.: Regulation of Moist Convection over the West Pacific Warm
Pool, J. Atmos. Sci., 52, 3945–3959,
https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2, 1995.
Raymond, D. J. and Blyth, A. M.: A Stochastic Mixing Model for
Nonprecipitating Cumulus Clouds, J. Atmos. Sci., 43, 2708–2718,
https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2, 1986.
Raymond, D. J. and Emanuel, K. A.: The Kuo Cumulus Parameterization, in: The
Representation of Cumulus Convection in Numerical Models, edited by:
Emanuel, K. A. and Raymond, D. J., American Meteorological Society, Boston,
MA, 145–147, https://doi.org/10.1007/978-1-935704-13-3_12,
1993.
Rennó, N. O., Emanuel, K. A., and Stone, P. H.: Radiative-convective
model with an explicit hydrologic cycle: 1. Formulation and sensitivity to
model parameters, J. Geophys. Res.-Atmos., 99, 14429–14441,
https://doi.org/10.1029/94JD00020, 1994.
Reuter, G. W. and Yau, M. K.: Mixing Mechanisms in Cumulus Congestus Clouds.
Part II: Numerical Simulations, J. Atmos. Sci., 44, 798–827,
https://doi.org/10.1175/1520-0469(1987)044<0798:MMICCC>2.0.CO;2, 1987.
Rio, C. and Hourdin, F.: A Thermal Plume Model for the Convective Boundary
Layer: Representation of Cumulus Clouds, J. Atmos. Sci., 65, 407–425,
https://doi.org/10.1175/2007JAS2256.1, 2008.
Rio, C., Hourdin, F., Grandpeix, J.-Y., and Lafore, J.-P.: Shifting the
diurnal cycle of parameterized deep convection over land, Geophys. Res.
Lett., 36, L07809, https://doi.org/10.1029/2008GL036779, 2009.
Rio, C., Hourdin, F., Couvreux, F., and Jam, A.: Resolved Versus
Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of
Mixing Rates for Mass-Flux Schemes, Bound.-Lay. Meteorol., 135, 469–483,
https://doi.org/10.1007/s10546-010-9478-z, 2010.
Rio, C., Grandpeix, J.-Y., Hourdin, F., Guichard, F., Couvreux, F., Lafore,
J.-P., Fridlind, A., Mrowiec, A., Roehrig, R., Rochetin, N., Lefebvre,
M.-P., and Idelkadi, A.: Control of deep convection by sub-cloud lifting
processes: the ALP closure in the LMDZ5B general circulation model, Clim.
Dynam., 40, 2271–2292, https://doi.org/10.1007/s00382-012-1506-x, 2013.
Rio, C., Del Genio, A. D., and Hourdin, F.: Ongoing Breakthroughs in
Convective Parameterization, Curr. Clim. Change Rep., 5, 95–111,
https://doi.org/10.1007/s40641-019-00127-w, 2019.
Rocha, R. P. D. and Caetano, E.: The role of convective parameterization in
the simulation of a cyclone over the South Atlantic, Atmosfera. 23, 1–23,
2010.
Rochetin, N., Couvreux, F., Grandpeix, J.-Y., and Rio, C.: Deep Convection
Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic
Triggering Formulation, J. Atmos. Sci., 71, 496–514,
https://doi.org/10.1175/JAS-D-12-0336.1, 2014a.
Rochetin, N., Grandpeix, J.-Y., Rio, C., and Couvreux, F.: Deep Convection
Triggering by Boundary Layer Thermals. Part II: Stochastic Triggering
Parameterization for the LMDZ GCM, J. Atmos. Sci., 71, 515–538,
https://doi.org/10.1175/JAS-D-12-0337.1, 2014b.
Romps, D. M.: A Direct Measure of Entrainment, J. Atmos. Sci., 67,
1908–1927, https://doi.org/10.1175/2010JAS3371.1, 2010.
Romps, D. M.: The Stochastic Parcel Model: A deterministic parameterization
of stochastically entraining convection, J. Adv. Model. Earth Sy., 8,
319–344, https://doi.org/10.1002/2015MS000537, 2016.
Romps, D. M. and Kuang, Z.: Do Undiluted Convective Plumes Exist in the
Upper Tropical Troposphere?, J. Atmos. Sci., 67, 468–484,
https://doi.org/10.1175/2009JAS3184.1, 2010a.
Romps, D. M. and Kuang, Z.: Nature versus Nurture in Shallow Convection, J.
Atmos. Sci., 67, 1655–1666, https://doi.org/10.1175/2009JAS3307.1, 2010b.
Rosa, D. and Collins, W. D.: A case study of subdaily simulated and observed
continental convective precipitation: CMIP5 and multiscale global climate
models comparison, Geophys. Res. Lett., 40, 5999–6003,
https://doi.org/10.1002/2013GL057987, 2013.
Rosenfeld, D., Lohmann, U., Raga, G., O'Dowd, C., Kulmala, M., Sandro, F.,
Reissell, A., and Andreae, M.: Flood or drought: How do aerosols affect
precipitation?, Science, 321, 1309–1313, 2008.
Rougier, J., Sexton, D. M. H., Murphy, J. M., and Stainforth, D.: Analyzing
the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from
Different but Related Experiments, J. Climate, 22, 3540–3557,
https://doi.org/10.1175/2008JCLI2533.1, 2009.
Ruiz, J. J., Pulido, M., and Miyoshi, T.: Estimating Model Parameters with
Ensemble-Based Data Assimilation: A Review, J. Meteorol. Soc. Jpn., 91,
79–99, https://doi.org/10.2151/jmsj.2013-201, 2013.
Sakradzija, M. and Klocke, D.: Physically Constrained Stochastic Shallow
Convection in Realistic Kilometer-Scale Simulations, J. Adv. Model. Earth
Sy., 10, 2755–2776, https://doi.org/10.1029/2018MS001358, 2018.
Sakradzija, M., Seifert, A., and Heus, T.: Fluctuations in a quasi-stationary shallow cumulus cloud ensemble, Nonlin. Processes Geophys., 22, 65–85, https://doi.org/10.5194/npg-22-65-2015, 2015.
Sakradzija, M., Seifert, A., and Dipankar, A.: A stochastic scale-aware
parameterization of shallow cumulus convection across the convective gray
zone, J. Adv. Model. Earth Sy., 8, 786–812,
https://doi.org/10.1002/2016MS000634, 2016.
Sanderson, B. M., Piani, C., Ingram, W. J., Stone, D. A., and Allen, M. R.:
Towards constraining climate sensitivity by linear analysis of feedback
patterns in thousands of perturbed-physics GCM simulations, Clim. Dynam.,
30, 175–190, https://doi.org/10.1007/s00382-007-0280-7, 2008.
Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., and Wang, Y.: Diurnal Cycle
of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model,
J. Climate, 22, 4809–4826, https://doi.org/10.1175/2009JCLI2890.1, 2009.
Schlemmer, L. and Hohenegger, C.: The Formation of Wider and Deeper Clouds
as a Result of Cold-Pool Dynamics, J. Atmos. Sci., 71, 2842–2858,
https://doi.org/10.1175/JAS-D-13-0170.1, 2014.
Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.-C., Hannay, C., Molod, A., Neale, R. B., and Saha, S.: Practice and philosophy of climate model tuning across six US modeling centers, Geosci. Model Dev., 10, 3207–3223, https://doi.org/10.5194/gmd-10-3207-2017, 2017.
Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth System Modeling
2.0: A Blueprint for Models That Learn From Observations and Targeted
High-Resolution Simulations, Geophys. Res. Lett., 44, 12396–12417,
https://doi.org/10.1002/2017GL076101, 2017.
Shin, J. and Park, S.: A Stochastic Unified Convection Scheme (UNICON). Part
I: Formulation and Single-Column Simulation for Shallow Convection, J.
Atmos. Sci., 77, 583–610, https://doi.org/10.1175/JAS-D-19-0117.1, 2020.
Shutts, G.: A kinetic energy backscatter algorithm for use in ensemble
prediction systems, Q. J. Roy. Meteor. Soc., 131, 3079–3102,
https://doi.org/10.1256/qj.04.106, 2005.
Siebesma, A. P.: Shallow Cumulus Convection, in: Buoyant Convection in
Geophysical Flows, edited by: Plate, E. J., Fedorovich, E. E., Viegas, D.
X., and Wyngaard, J. C., Springer Netherlands, Dordrecht, 441–486,
https://doi.org/10.1007/978-94-011-5058-3_19, 1998.
Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of Parametric Assumptions
for Shallow Cumulus Convection, J. Atmos. Sci., 52, 650–666,
https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2, 1995.
Siebesma, A. P. and Holtslag, A. A. M.: Model Impacts of Entrainment and
Detrainment Rates in Shallow Cumulus Convection, J. Atmos. Sci., 53,
2354–2364, https://doi.org/10.1175/1520-0469(1996)053<2354:MIOEAD>2.0.CO;2, 1996.
Siebesma, A. P. and Teixeira, J.: An Advection-Diffusion scheme for the convective boundary layer: description and 1d-results, 14th Symp. on Boundary Layers and Turbulence, 9 August 2000, Aspen, CO, 133–136, 2000.
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A Large Eddy Simulation
Intercomparison Study of Shallow Cumulus Convection, J. Atmos. Sci., 60,
1201–1219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003.
Siebesma, A. P., Soares, P. M. M., and Teixeira, J.: A Combined
Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer, J.
Atmos. Sci., 64, 1230–1248, https://doi.org/10.1175/JAS3888.1, 2007.
Simpson, J.: On Cumulus Entrainment and One-Dimensional Models, J. Atmos.
Sci., 28, 449–455, https://doi.org/10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2, 1971.
Simpson, J. and Wiggert, V.: Modes of Precipitating Cumulus Towers, Mon. Weather Rev., 97, 471–489, https://doi.org/10.1175/1520-850493(1969)097<0471:MOPCT>2.3.CO;2, 1969.
Singh, M. S., Warren, R. A., and Jakob, C.: A Steady-State Model for the
Relationship Between Humidity, Instability, and Precipitation in the
Tropics, J. Adv. Model. Earth Sy.,11, 3973–3994,
https://doi.org/10.1029/2019MS001686, 2019.
Skofronick-Jackson, G., Kulie, M., Milani, L., Munchak, S. J., Wood, N. B.,
and Levizzani, V.: Satellite Estimation of Falling Snow: A Global
Precipitation Measurement (GPM) Core Observatory Perspective, J. Appl.
Meteorol. Clim., 58, 1429–1448, https://doi.org/10.1175/JAMC-D-18-0124.1,
2019.
Slingo, J., Blackburn, M., Betts, A., Brugge, R., Hodges, K., Hoskins, B.,
Miller, M., Steenman-Clark, L., and Thuburn, J.: Mean climate and transience
in the tropics of the UGAMP GCM: Sensitivity to convective parametrization,
Q. J. Roy. Meteor. Soc., 120, 881–922,
https://doi.org/10.1002/qj.49712051807, 1994.
Smagorinsky, J.: On the inclusion of moist adiabatic processes in numerical
prediction models, Ber. Dtsch. Wetterdienstes, 38, 82–90, 1956.
Smith, L. A.: What might we learn from climate forecasts?, P. Natl. Acad.
Sci. USA, 99, 2487–2492, https://doi.org/10.1073/pnas.012580599, 2002.
Smith, R. N. B.: A scheme for predicting layer clouds and their water
content in a general circulation model, Q. J. Roy. Meteor. Soc., 116,
435–460, https://doi.org/10.1002/qj.49711649210, 1990.
Soares, P. M. M., Miranda, P. M. A., Siebesma, A. P., and Teixeira, J.: An
eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus
convection, Q. J. Roy. Meteor. Soc., 130, 3365–3383,
https://doi.org/10.1256/qj.03.223, 2004.
Sommeria, G. and Deardorff, J. W.: Subgrid-Scale Condensation in Models of
Nonprecipitating Clouds, J. Atmos. Sci., 34, 344–355,
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2, 1977.
Song, F. and Zhang, G. J.: Improving Trigger Functions for Convective
Parameterization Schemes Using GOAmazon Observations, J. Climate, 30,
8711–8726, https://doi.org/10.1175/JCLI-D-17-0042.1, 2017.
Song, H., Lin, W., Lin, Y., Wolf, A. B., Neggers, R., Donner, L. J., Genio,
A. D. D., and Liu, Y.: Evaluation of Precipitation Simulated by Seven SCMs
against the ARM Observations at the SGP Site, J. Climate, 26, 5467–5492,
https://doi.org/10.1175/JCLI-D-12-00263.1, 2013.
Song, X. and Zhang, G. J.: Convection Parameterization, Tropical Pacific
Double ITCZ, and Upper-Ocean Biases in the NCAR CCSM3. Part I: Climatology
and Atmospheric Feedback, J. Climate, 22, 4299–4315,
https://doi.org/10.1175/2009JCLI2642.1, 2009.
Song, X. and Zhang, G. J.: Microphysics parameterization for convective
clouds in a global climate model: Description and single-column model tests,
J. Geophys. Res.-Atmos., 116, D02201, https://doi.org/10.1029/2010JD014833, 2011.
Song, X. and Zhang, G. J.: The Roles of Convection Parameterization in the
Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric
Processes, J. Adv. Model. Earth Sy., 10, 842–866,
https://doi.org/10.1002/2017MS001191, 2018.
Song, X., Zhang, G. J., and Li, J.-L. F.: Evaluation of Microphysics
Parameterization for Convective Clouds in the NCAR Community Atmosphere
Model CAM5, J. Climate, 25, 8568–8590,
https://doi.org/10.1175/JCLI-D-11-00563.1, 2012.
Song, Y., Wikle, C. K., Anderson, C. J., and Lack, S. A.: Bayesian
Estimation of Stochastic Parameterizations in a Numerical Weather
Forecasting Model, Mon. Weather Rev., 135, 4045–4059,
https://doi.org/10.1175/2007MWR1928.1, 2007.
Squires, P.: Penetrative Downdraughts in Cumuli, Tellus, 10, 381–389,
https://doi.org/10.1111/j.2153-3490.1958.tb02025.x, 1958.
Squires, P. and Turner, J. S.: An entraining jet model for cumulo-nimbus
updraughts, Tellus, 14, 422–434,
https://doi.org/10.3402/tellusa.v14i4.9569, 1962.
Stechmann, S. N. and Neelin, J. D.: A Stochastic Model for the Transition to
Strong Convection, J. Atmos. Sci., 68, 2955–2970,
https://doi.org/10.1175/JAS-D-11-028.1, 2011.
Stensrud, D. J.: Parameterization Schemes: Keys to Understanding Numerical
Weather Prediction Models, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511812590, 2007.
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res.-Atmos., 115, D24211,
https://doi.org/10.1029/2010JD014532, 2010.
Stephens, G. L., van den Heever, S. C., Haddad, Z. S., Posselt, D. J., Storer, R. L., Grant, L. D., Sy, O. O., Rao, T. N., Tanelli, S., and Peral, E.: A distributed small satellite approach for measuring convective transports in the Earth's atmosphere, IEEE T. Geosci. Remote, 58, 4–13, https://doi.org/10.1109/TGRS.2019.2918090, 2020.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015,
2013.
Stirling, A. J. and Stratton, R. A.: Entrainment processes in the diurnal
cycle of deep convection over land, Q. J. Roy. Meteor. Soc., 138,
1135–1149, https://doi.org/10.1002/qj.1868, 2012.
Stommel, H.: ENTRAINMENT OF AIR INTO A CUMULUS CLOUD: (Paper presented 27
December 1946 at the Annual Meeting, A.M.S., Cambridge, Massachusetts), J.
Atmos. Sci., 4, 91–94, https://doi.org/10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2, 1947.
Storer, R. L., van den Heever, S. C., and Stephens, G. L.: Modeling Aerosol Impacts on Convective Storms in Different Environments, J. Atmos. Sci., 67, 3904–3915, https://doi.org/10.1175/2010JAS3363.1, 2010.
Storer, R. L., Zhang, G. J., and Song, X.: Effects of Convective
Microphysics Parameterization on Large-Scale Cloud Hydrological Cycle and
Radiative Budget in Tropical and Midlatitude Convective Regions, J. Climate,
28, 9277–9297, https://doi.org/10.1175/JCLI-D-15-0064.1, 2015.
Stratton, R. A. and Stirling, A. J.: Improving the diurnal cycle of
convection in GCMs, Q. J. Roy. Meteor. Soc., 138, 1121–1134,
https://doi.org/10.1002/qj.991, 2012.
Sud, Y. C. and Walker, G. K.: Microphysics of Clouds with the Relaxed
Arakawa–Schubert Scheme (McRAS). Part I: Design and Evaluation with GATE
Phase III Data, J. Atmos. Sci., 56, 3196–3220,
https://doi.org/10.1175/1520-0469(1999)056<3196:MOCWTR>2.0.CO;2, 1999.
Suhas, E. and Zhang, G. J.: Evaluation of Trigger Functions for Convective
Parameterization Schemes Using Observations, J. Climate, 27, 7647–7666,
https://doi.org/10.1175/JCLI-D-13-00718.1, 2014.
Sun, J. and Pritchard, M. S.: Effects of explicit convection on global
land-atmosphere coupling in the superparameterized CAM, J. Adv. Model. Earth
Sy., 8, 1248–1269, https://doi.org/10.1002/2016MS000689, 2016.
Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How Often Does It Rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/JCLI3672.1, 2006.
Sundqvist, H.: A parameterization scheme for non-convective condensation
including prediction of cloud water content, Q. J. Roy. Meteor. Soc., 104,
677–690, https://doi.org/10.1002/qj.49710444110, 1978.
Sundqvist, H.: Parameterization of Condensation and Associated Clouds in
Models for Weather Prediction and General Circulation Simulation, in:
Physically-Based Modelling and Simulation of Climate and Climatic Change:
Part 1, edited by: Schlesinger, M. E., Springer Netherlands, Dordrecht,
433–461, https://doi.org/10.1007/978-94-009-3041-4_10, 1988.
Sušelj, K., Teixeira, J., and Matheou, G.: Eddy Diffusivity/Mass Flux
and Shallow Cumulus Boundary Layer: An Updraft PDF Multiple Mass Flux
Scheme, J. Atmos. Sci., 69, 1513–1533,
https://doi.org/10.1175/JAS-D-11-090.1, 2012.
Sušelj, K., Teixeira, J., and Chung, D.: A Unified Model for Moist
Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux
Parameterization, J. Atmos. Sci., 70, 1929–1953,
https://doi.org/10.1175/JAS-D-12-0106.1, 2013.
Sušelj, K., Hogan, T. F., and Teixeira, J.: Implementation of a
Stochastic Eddy-Diffusivity/Mass-Flux Parameterization into the Navy Global
Environmental Model, Weather Forecast., 29, 1374–1390,
https://doi.org/10.1175/WAF-D-14-00043.1, 2014.
Suselj, K., Kurowski, M. J., and Teixeira, J.: A Unified
Eddy-Diffusivity/Mass-Flux Approach for Modeling Atmospheric Convection, J.
Atmos. Sci., 76, 2505–2537, https://doi.org/10.1175/JAS-D-18-0239.1, 2019a.
Suselj, K., Kurowski, M. J., and Teixeira, J.: On the Factors Controlling
the Development of Shallow Convection in Eddy-Diffusivity/Mass-Flux Models,
J. Atmos. Sci., 76, 433–456, https://doi.org/10.1175/JAS-D-18-0121.1,
2019b.
Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., and
Teixeira, J.: An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified
Representation of Subgrid-Scale Turbulence and Convection, J. Adv. Model.
Earth Sy., 10, 770–800, https://doi.org/10.1002/2017MS001162, 2018.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011RG000369, 2012.
Tapiador, F. J., Hou, A. Y., de Castro, M., Checa, R., Cuartero, F., and
Barros, A. P.: Precipitation estimates for hydroelectricity, Energ. Environ.
Sci., 4, 4435–4448, https://doi.org/10.1039/C1EE01745D, 2011.
Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega,
E., Machado, L. A. T., Angelis, C. F., Salio, P., Kidd, C., Huffman, G. J.,
and de Castro, M.: Global precipitation measurement: Methods, datasets and
applications, Atmos. Res., 104–105, 70–97,
https://doi.org/10.1016/j.atmosres.2011.10.021, 2012.
Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E.,
Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H.,
Petersen, W. A., Roca, R., Sánchez, J.-L., Tao, W.-K., and Turk, F. J.:
Global precipitation measurements for validating climate models, Atmos.
Res., 197, 1–20, https://doi.org/10.1016/j.atmosres.2017.06.021, 2017.
Tapiador, F. J., Navarro, A., Jiménez, A., Moreno, R., and
García-Ortega, E.: Discrepancies with satellite observations in the
spatial structure of global precipitation as derived from global climate
models, . J. Roy. Meteor. Soc., 144, 419–435,
https://doi.org/10.1002/qj.3289, 2018.
Tapiador, F. J., Roca, R., Del Genio, A., Dewitte, B., Petersen, W., and
Zhang, F.: Is Precipitation a Good Metric for Model Performance?, B. Am.
Meteorol. Soc., 100, 223–233, https://doi.org/10.1175/BAMS-D-17-0218.1,
2019a.
Tapiador, F. J., Sánchez, J.-L., and García-Ortega, E.: Empirical
values and assumptions in the microphysics of numerical models, Atmos. Res.,
215, 214–238, https://doi.org/10.1016/j.atmosres.2018.09.010, 2019b.
Tawfik, A. B. and Dirmeyer, P. A.: A process-based framework for quantifying
the atmospheric preconditioning of surface-triggered convection, Geophys.
Res. Lett., 41, 173–178, https://doi.org/10.1002/2013GL057984, 2014.
Tawfik, A. B., Lawrence, D. M., and Dirmeyer, P. A.: Representing subgrid
convective initiation in the Community Earth System Model, J. Adv. Model.
Earth Sy., 9, 1740–1758, https://doi.org/10.1002/2016MS000866, 2017.
Taylor, G. R. and Baker, M. B.: Entrainment and Detrainment in Cumulus
Clouds, J. Atmos. Sci., 48, 112–121,
https://doi.org/10.1175/1520-0469(1991)048<0112:EADICC>2.0.CO;2, 1991.
Teixeira, J. and Kim, Y. J.: On a simple parameterization of convective cloud fraction, Asia-Pac. J. Atmos. Sci., 44, 191–199, 2008.
Teixeira, J. and Reynolds, C. A.: Stochastic Nature of Physical
Parameterizations in Ensemble Prediction: A Stochastic Convection Approach,
Mon. Weather Rev., 136, 483–496, https://doi.org/10.1175/2007MWR1870.1,
2008.
Telford, J. W.: Turbulence, entrainment, and mixing in cloud dynamics, Pure
Appl. Geophys., 113, 1067–1084, https://doi.org/10.1007/BF01592975, 1975.
Thayer-Calder, K.: Downdraft impacts on tropical convection, Colorado State University, Publication Number: AAT 3565466, ISBN 9781303152504, 2012.
Thayer-Calder, K. and Randall, D. A.: The Role of Convective Moistening in
the Madden–Julian Oscillation, J. Atmos. Sci., 66, 3297–3312,
https://doi.org/10.1175/2009JAS3081.1, 2009.
Thayer-Calder, K., Gettelman, A., Craig, C., Goldhaber, S., Bogenschutz, P. A., Chen, C.-C., Morrison, H., Höft, J., Raut, E., Griffin, B. M., Weber, J. K., Larson, V. E., Wyant, M. C., Wang, M., Guo, Z., and Ghan, S. J.: A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model, Geosci. Model Dev., 8, 3801–3821, https://doi.org/10.5194/gmd-8-3801-2015, 2015.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization
in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Tokioka, T., Yamazaki, K., Kitoh, A., and Ose, T.: The Equatorial 30-60 day
Oscillation and the Arakawa-Schubert Penetrative Cumulus Parameterization,
J. Meteorol. Soc. Jpn., 66, 883–901,
https://doi.org/10.2151/jmsj1965.66.6_883, 1988.
Tompkins, A., Bechtold, P., Beljaars, A., Benedetti, A., Cheinet, S., Janiskova, M., Köhler, M., Lopez, P., and Morcrette, J.-J.: Moist physical processes in the IFS: Progress and Plans, Technical memorandum, https://doi.org/10.21957/dhtvdwsk, 2004.
Tompkins, A. M.: A Prognostic Parameterization for the Subgrid-Scale
Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to
Diagnose Cloud Cover, J. Atmos. Sci., 59, 1917–1942,
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2, 2002.
Tompkins, A. M. and Berner, J.: A stochastic convective approach to account
for model uncertainty due to unresolved humidity variability, J. Geophys.
Res.-Atmos., 113, D18101, https://doi.org/10.1029/2007JD009284, 2008.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, 2011.
Troen, I. B. and Mahrt, L.: A simple model of the atmospheric boundary
layer; sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37,
129–148, https://doi.org/10.1007/BF00122760, 1986.
Turner, J. S.: The “starting plume” in neutral surroundings, J. Fluid Mech.,
13, 356–368, https://doi.org/10.1017/S0022112062000762, 1962.
Ushio, T. and Kachi, M.: Kalman Filtering Applications for Global Satellite
Mapping of Precipitation (GSMaP), in: Satellite Rainfall Applications for
Surface Hydrology, edited by: Gebremichael, M. and Hossain, F., Springer
Netherlands, Dordrecht, 105–123,
https://doi.org/10.1007/978-90-481-2915-7_7, 2010.
Vaidya, S. S. and Singh, S. S.: Thermodynamic Adjustment Parameters in the
Betts–Miller Scheme of Convection, Weather Forecast., 12, 819–825,
https://doi.org/10.1175/1520-0434(1997)012<0819:TAPITB>2.0.CO;2, 1997.
Vaidya, S. S. and Singh, S. S.: Applying the Betts–Miller–Janjić Scheme of
Convection in Prediction of the Indian Monsoon, Weather Forecast., 15,
349–356, https://doi.org/10.1175/1520-0434(2000)015<0349:ATBMJS>2.0.CO;2, 2000.
van den Heever, S. C. and Cotton, W. R.: Urban Aerosol Impacts on Downwind Convective Storms, J. Appl. Meteorol. Clim., 46, 828–850, https://doi.org/10.1175/JAM2492.1, 2007.
van den Heever, S. C., Stephens, G. L., and Wood, N. B.: Aerosol Indirect Effects on Tropical Convection Characteristics under Conditions of Radiative–Convective Equilibrium, J. Atmos. Sci., 68, 699–718, https://doi.org/10.1175/2010JAS3603.1, 2011.
van Laar, T. W.: Spatial patterns in shallow cumulus cloud populations over a heterogeneous surface, text.thesis.doctoral, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/10221 (last access: 19 September 2021), 2019.
Vogelmann, A. M., McFarquhar, G. M., Ogren, J. A., Turner, D. D., Comstock,
J. M., Feingold, G., Long, C. N., Jonsson, H. H., Bucholtz, A., Collins, D.
R., Diskin, G. S., Gerber, H., Lawson, R. P., Woods, R. K., Andrews, E.,
Yang, H.-J., Chiu, J. C., Hartsock, D., Hubbe, J. M., Lo, C., Marshak, A.,
Monroe, J. W., McFarlane, S. A., Schmid, B., Tomlinson, J. M., and Toto, T.:
RACORO Extended-Term Aircraft Observations of Boundary Layer Clouds, B. Am.
Meteorol. Soc., 93, 861–878, https://doi.org/10.1175/BAMS-D-11-00189.1,
2012.
Volterra, V.: Variazioni e fluttuazioni del numero d'individui in specie
animali conviventi, Memoria della Reale Accademia Nazionale dei Lincei, 2,
209, 1926.
von Salzen, K. and McFarlane, N. A.: Parameterization of the Bulk Effects of
Lateral and Cloud-Top Entrainment in Transient Shallow Cumulus Clouds,
Atmos. Sci., 59, 1405–1430,
https://doi.org/10.1175/1520-0469(2002)059<1405:POTBEO>2.0.CO;2, 2002.
Wagner, A., Heinzeller, D., Wagner, S., Rummler, T., and Kunstmann, H.:
Explicit Convection and Scale-Aware Cumulus Parameterizations:
High-Resolution Simulations over Areas of Different Topography in Germany,
Mon. Weather Rev., 146, 1925–1944, https://doi.org/10.1175/MWR-D-17-0238.1,
2018.
Wagner, T. J., Turner, D. D., Berg, L. K., and Krueger, S. K.: Ground-Based
Remote Retrievals of Cumulus Entrainment Rates, J. Atmos. Ocean Tech., 30,
1460–1471, https://doi.org/10.1175/JTECH-D-12-00187.1, 2013.
Wagner, T. M. and Graf, H.-F.: An Ensemble Cumulus Convection
Parameterization with Explicit Cloud Treatment, J. Atmos. Sci., 67,
3854–3869, https://doi.org/10.1175/2010JAS3485.1, 2010.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wang, W. and Schlesinger, M. E.: The Dependence on Convection
Parameterization of the Tropical Intraseasonal Oscillation Simulated by the
UIUC 11-Layer Atmospheric GCM, J. Climate, 12, 1423–1457,
https://doi.org/10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2, 1999.
Wang, X. and Zhang, M.: An analysis of parameterization interactions and
sensitivity of single-column model simulations to convection schemes in CAM4
and CAM5, J. Geophys. Res.-Atmos., 118, 8869–8880,
https://doi.org/10.1002/jgrd.50690, 2013.
Wang, X. and Zhang, M.: Vertical velocity in shallow convection for
different plume types, J. Adv. Model. Earth Sy., 6, 478–489,
https://doi.org/10.1002/2014MS000318, 2014.
Wang, Y., Zhou, L., and Hamilton, K.: Effect of Convective
Entrainment/Detrainment on the Simulation of the Tropical Precipitation
Diurnal Cycle, Mon. Weather Rev., 135, 567–585,
https://doi.org/10.1175/MWR3308.1, 2007.
Wang, Y., Zhang, G. J., and Craig, G. C.: Stochastic convective
parameterization improving the simulation of tropical precipitation
variability in the NCAR CAM5, Geophys. Res. Lett., 43, 6612–6619,
https://doi.org/10.1002/2016GL069818, 2016.
Warner, J.: The Microstructure of Cumulus Cloud. Part III. The Nature of the
Updraft, J. Atmos. Sci., 27, 682–688,
https://doi.org/10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;2, 1970.
Watanabe, M., Emori, S., Satoh, M., and Miura, H.: A PDF-based hybrid
prognostic cloud scheme for general circulation models, Clim. Dynam., 33,
795–816, https://doi.org/10.1007/s00382-008-0489-0, 2009.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335,
https://doi.org/10.1175/2010JCLI3679.1, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Wilcox, E. M. and Donner, L. J.: The Frequency of Extreme Rain Events in
Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model,
J. Climate, 20, 53–69, https://doi.org/10.1175/JCLI3987.1, 2007.
Willet, M. R. and Whitall, M. A.: A simple prognostic based convective
entrainment rate for the Unified Model: Description and tests, Met Office
internal) Forecasting Research Technical Reports617, 2017.
Witek, M. L., Teixeira, J., and Matheou, G.: An Integrated TKE-Based Eddy
Diffusivity/Mass Flux Boundary Layer Closure for the Dry Convective Boundary
Layer, J. Atmos. Sci., 68, 1526–1540,
https://doi.org/10.1175/2011JAS3548.1, 2011.
Woetzel, J., Pinner, D., Samandari, H., Engel, H., Krishnan, M., Boland, B.,
and Powis, C.: Climate and risk response: Physical hazars and socioeconomic
impacts, McKinsey Global Institute, 18, 164,
https://doi.org/10.1080/17477891.2018.1540343, 2020.
Wu, C.-M. and Arakawa, A.: A Unified Representation of Deep Moist Convection
in Numerical Modeling of the Atmosphere. Part II, J. Atmos. Sci., 71,
2089–2103, https://doi.org/10.1175/JAS-D-13-0382.1, 2014.
Wu, E., Yang, H., Kleissl, J., Suselj, K., Kurowski, M. J., and Teixeira,
J.: On the Parameterization of Convective Downdrafts for Marine
Stratocumulus Clouds, Mon. Weather Rev., 148, 1931–1950,
https://doi.org/10.1175/MWR-D-19-0292.1, 2020.
Wu, L., Wong, S., Wang, T., and Huffman, G. J.: Moist convection: a key to
tropical wave–moisture interaction in Indian monsoon intraseasonal
oscillation, Clim. Dynam., 51, 3673–3684,
https://doi.org/10.1007/s00382-018-4103-9, 2018.
Wu, T.: A mass-flux cumulus parameterization scheme for large-scale models:
description and test with observations, Clim. Dynam., 38, 725–744,
https://doi.org/10.1007/s00382-011-0995-3, 2012.
Wu, X., Deng, L., Song, X., Vettoretti, G., Peltier, W. R., and Zhang, G.
J.: Impact of a modified convective scheme on the Madden-Julian Oscillation
and El Niño–Southern Oscillation in a coupled climate model, Geophys.
Res. Lett., 34, L16823, https://doi.org/10.1029/2007GL030637, 2007.
Wyant, M. C., Bretherton, C. S., Rand, H. A., and Stevens, D. E.: Numerical
Simulations and a Conceptual Model of the Stratocumulus to Trade Cumulus
Transition, J. Atmos. Sci., 54, 168–192,
https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2, 1997.
Wyngaard, J. C.: Toward Numerical Modeling in the “Terra Incognita”, J.
Atmos. Sci., 61, 1816–1826,
https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004.
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R.:
Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation
Estimates from 1998, J. Hydrometeorol., 18, 1617–1641,
https://doi.org/10.1175/JHM-D-16-0168.1, 2017.
Xie, S. and Zhang, M.: Impact of the convection triggering function on
single-column model simulations, J. Geophys. Res.-Atmos., 105, 14983–14996,
https://doi.org/10.1029/2000JD900170, 2000.
Xu, K.-M. and Randall, D. A.: A Semiempirical Cloudiness Parameterization
for Use in Climate Models, J. Atmos. Sci., 53, 3084–3102,
https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996.
Xu, K.-M., Cederwall, R. T., Donner, L. J., Grabowski, W. W., Guichard, F.,
Johnson, D. E., Khairoutdinov, M., Krueger, S. K., Petch, J. C., Randall, D.
A., Seman, C. J., Tao, W.-K., Wang, D., Xie, S. C., Yio, J. J., and Zhang,
M.-H.: An intercomparison of cloud-resolving models with the atmospheric
radiation measurement summer 1997 intensive observation period data, Q. J.
Roy. Meteor. Soc., 128, 593–624,
https://doi.org/10.1256/003590002321042117, 2002.
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of Bulk Properties of
Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets, J.
Atmos. Sci., 30, 611–627,
https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2, 1973.
Yang, G.-Y. and Slingo, J.: The Diurnal Cycle in the Tropics, Mon. Weather Rev., 129, 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2, 2001.
Yano, J., Bénard, P., Couvreux, F., and Lahellec, A.: NAM–SCA: A Nonhydrostatic Anelastic Model with Segmentally Constant Approximations, Mon. Weather Rev., 138, 1957–1974, https://doi.org/10.1175/2009MWR2997.1, 2010.
Yano, J. I.: Formulation structure of the mass-flux convection parameterization, Dynam. Atmos. Oceans, 67, 1–28, https://doi.org/10.1016/j.dynatmoce.2014.04.002, 2014.
Yano, J.-I. and Baizig, H.: Single SCA-plume dynamics, Dynam. Atmos. Oceans,
58, 62–94, https://doi.org/10.1016/j.dynatmoce.2012.09.001, 2012.
Yano, J.-I. and Plant, R.: Finite departure from convective
quasi-equilibrium: periodic cycle and discharge–recharge mechanism, Q. J.
Roy. Meteor. Soc., 138, 626–637, https://doi.org/10.1002/qj.957, 2012a.
Yano, J.-I. and Plant, R. S.: Convective quasi-equilibrium, Rev. Geophys.,
50, RG4004, https://doi.org/10.1029/2011RG000378, 2012b.
Yano, J.-I., Bister, M., Fuchs, Ž., Gerard, L., Phillips, V. T. J., Barkidija, S., and Piriou, J.-M.: Phenomenology of convection-parameterization closure, Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013, 2013.
Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary
Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke
Cumulus Parameterization Scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
Zhang, D.-L. and Fritsch, J. M.: Numerical Simulation of the Meso-β
Scale Structure and Evolution of the 1977 Johnstown Flood. Part I: Model
Description and Verification, J. Atmos. Sci., 43, 1913–1944,
https://doi.org/10.1175/1520-0469(1986)043<1913:NSOTMS>2.0.CO;2, 1986.
Zhang, G. J.: Convective quasi-equilibrium in midlatitude continental
environment and its effect on convective parameterization, J. Geophys.
Res.-Atmos., 107, ACL 12-1–ACL 12-16, https://doi.org/10.1029/2001JD001005,
2002.
Zhang, G. J.: Convective quasi-equilibrium in the tropical western Pacific:
Comparison with midlatitude continental environment, J. Geophys.
Res.-Atmos., 108, https://doi.org/10.1029/2003JD003520, 2003a.
Zhang, G. J.: Roles of tropospheric and boundary layer forcing in the
diurnal cycle of convection in the U.S. southern great plains, Geophys. Res.
Lett., 30, 2281, https://doi.org/10.1029/2003GL018554, 2003b.
Zhang, G. J.: Effects of entrainment on convective available potential
energy and closure assumptions in convection parameterization, J. Geophys.
Res.-Atmos., 114, D07109, https://doi.org/10.1029/2008JD010976, 2009.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian climate centre
general circulation model, Atmosphere-Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995.
Zhang, G. J. and Mu, M.: Effects of modifications to the Zhang-McFarlane
convection parameterization on the simulation of the tropical precipitation
in the National Center for Atmospheric Research Community Climate Model,
version 3, J. Geophys. Res.-Atmos., 110, D09109,
https://doi.org/10.1029/2004JD005617, 2005a.
Zhang, G. J. and Mu, M.: Simulation of the Madden–Julian Oscillation in the
NCAR CCM3 Using a Revised Zhang–McFarlane Convection Parameterization
Scheme, J. Climate, 18, 4046–4064, https://doi.org/10.1175/JCLI3508.1,
2005b.
Zhang, G. J. and Song, X.: Convection Parameterization, Tropical Pacific
Double ITCZ, and Upper-Ocean Biases in the NCAR CCSM3. Part II: Coupled
Feedback and the Role of Ocean Heat Transport, J. Climate, 23, 800–812,
https://doi.org/10.1175/2009JCLI3109.1, 2010.
Zhang, G. J. and Song, X.: Parameterization of Microphysical Processes in
Convective Clouds in Global Climate Models, Meteor. Mon., 56, 12.1–12.18,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0015.1, 2016.
Zhang, G. J. and Wang, H.: Toward mitigating the double ITCZ problem in NCAR
CCSM3, Geophys. Res. Lett., 33, L06709, https://doi.org/10.1029/2005GL025229, 2006.
Zhang, J., Lohmann, U., and Stier, P.: A microphysical parameterization for
convective clouds in the ECHAM5 climate model: Single-column model results
evaluated at the Oklahoma Atmospheric Radiation Measurement Program site, J.
Geophys. Res.-Atmos., 110, D15S07, https://doi.org/10.1029/2004JD005128, 2005.
Zhang, Z., Tallapragada, V., Kieu, C., Trahan, S., and Wang, W.: HWRF Based
Ensemble Prediction System Using Perturbations from GEFS and Stochastic
Convective Trigger Function, Tropical Cyclone Research and Review, 3,
145–161, https://doi.org/10.6057/2014TCRR03.02, 2014.
Zhao, M.: An Investigation of the Connections among Convection, Clouds, and
Climate Sensitivity in a Global Climate Model, J. Climate, 27, 1845–1862,
https://doi.org/10.1175/JCLI-D-13-00145.1, 2014.
Zhao, M. and Austin, P. H.: Life Cycle of Numerically Simulated Shallow
Cumulus Clouds. Part II: Mixing Dynamics, J. Atmos. Sci., 62, 1291–1310,
https://doi.org/10.1175/JAS3415.1, 2005.
Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen,
J.-H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K., Durachta, J., Fan,
S.-M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M.,
Horowitz, L. W., Krasting, J. P., Langenhorst, A. R., Liang, Z., Lin, P.,
Lin, S.-J., Malyshev, S. L., Mason, E., Milly, P. C. D., Ming, Y., Naik, V.,
Paulot, F., Paynter, D., Phillipps, P., Radhakrishnan, A., Ramaswamy, V.,
Robinson, T., Schwarzkopf, D., Seman, C. J., Shevliakova, E., Shen, Z.,
Shin, H., Silvers, L. G., Wilson, J. R., Winton, M., Wittenberg, A. T.,
Wyman, B., and Xiang, B.: The GFDL Global Atmosphere and Land Model
AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning
Strategies, J. Adv. Model. Earth Sy., 10, 735–769,
https://doi.org/10.1002/2017MS001209, 2018.
Zheng, Y., Alapaty, K., Herwehe, J. A., Del Genio, A. D., and Niyogi, D.:
Improving High-Resolution Weather Forecasts Using the Weather Research and
Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme, Mon. Weather Rev., 144, 833–860, https://doi.org/10.1175/MWR-D-15-0005.1, 2016.
Zheng, Y., Rosenfeld, D., and Li, Z.: Sub-Cloud Turbulence Explains
Cloud-Base Updrafts for Shallow Cumulus Ensembles: First Observational
Evidence, Geophys. Res. Lett., 48, e2020GL091881,
https://doi.org/10.1029/2020GL091881, 2021.
Zhu, H., Hendon, H., and Jakob, C.: Convection in a Parameterized and
Superparameterized Model and Its Role in the Representation of the MJO, J.
Atmos. Sci., 66, 2796–2811, https://doi.org/10.1175/2009JAS3097.1, 2009.
Zimmer, M., Craig, G. C., Keil, C., and Wernli, H.: Classification of
precipitation events with a convective response timescale and their
forecasting characteristics, Geophys. Res. Lett., 38, L05802,
https://doi.org/10.1029/2010GL046199, 2011.
Zou, L., Qian, Y., Zhou, T., and Yang, B.: Parameter Tuning and Calibration
of RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East
Asia Domain, J. Climate, 27, 7687–7701,
https://doi.org/10.1175/JCLI-D-14-00229.1, 2014.
Short summary
The paper provides a comprehensive review of the empirical values and assumptions used in the convection schemes of numerical models. The focus is on the values and assumptions used in the activation of convection (trigger), the transport and microphysics (commonly referred to as the cloud model), and the intensity of convection (closure). Such information can assist satellite missions focused on elucidating convective processes and the evaluation of model output uncertainties.
The paper provides a comprehensive review of the empirical values and assumptions used in the...