Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3447-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3447-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Empirical values and assumptions in the convection schemes of numerical models
Anahí Villalba-Pradas
CORRESPONDING AUTHOR
Earth and Space Sciences (ess) Research
Group, Department of Environmental Sciences, Institute of Environmental
Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n, Toledo 45071, Spain
Francisco J. Tapiador
Earth and Space Sciences (ess) Research
Group, Department of Environmental Sciences, Institute of Environmental
Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n, Toledo 45071, Spain
Related authors
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Kwonil Kim, Wonbae Bang, Eun-Chul Chang, Francisco J. Tapiador, Chia-Lun Tsai, Eunsil Jung, and Gyuwon Lee
Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, https://doi.org/10.5194/acp-21-11955-2021, 2021
Short summary
Short summary
This study analyzes the microphysical characteristics of snow in complex terrain and the nearby ocean according to topography and wind pattern during the ICE-POP 2018 campaign. The observations from collocated vertically pointing radars and disdrometers indicate that the riming in the mountainous region is likely caused by a strong shear and turbulence. The different behaviors of aggregation and riming were found by three different synoptic patterns (air–sea interaction, cold low, and warm low).
Andrés Navarro, Raúl Moreno, and Francisco J. Tapiador
Earth Syst. Dynam., 9, 1045–1062, https://doi.org/10.5194/esd-9-1045-2018, https://doi.org/10.5194/esd-9-1045-2018, 2018
Short summary
Short summary
Earth system models provide simplified accounts of human–Earth interactions. Most current models treat CO2 emissions as a homogeneously distributed forcing. However, this paper presents a new parameterization, POPEM (POpulation Parameterization for Earth Models), that computes anthropogenic CO2 emissions at a grid point scale. A major advantage of this approach is the increased capacity to understand the potential effects of localized pollutant emissions on long-term global climate statistics.
R. Checa-Garcia, A. Tokay, and F. J. Tapiador
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-2339-2014, https://doi.org/10.5194/amtd-7-2339-2014, 2014
Preprint withdrawn
Related subject area
Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
A radiative–convective model computing precipitation with the maximum entropy production hypothesis
Leveraging regional mesh refinement to simulate future climate projections for California using the Simplified Convection-Permitting E3SM Atmosphere Model Version 0
Machine learning parameterization of the multi-scale Kain–Fritsch (MSKF) convection scheme and stable simulation coupled in the Weather Research and Forecasting (WRF) model using WRF–ML v1.0
Impacts of spatial heterogeneity of anthropogenic aerosol emissions in a regionally refined global aerosol–climate model
cfr (v2024.1.26): a Python package for climate field reconstruction
NEWTS1.0: Numerical model of coastal Erosion by Waves and Transgressive Scarps
Evaluation of isoprene emissions from the coupled model SURFEX–MEGANv2.1
A comprehensive Earth system model (AWI-ESM2.1) with interactive icebergs: effects on surface and deep-ocean characteristics
The regional climate–chemistry–ecology coupling model RegCM-Chem (v4.6)–YIBs (v1.0): development and application
Coupling the regional climate model ICON-CLM v2.6.6 into the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
An overview of cloud–radiation denial experiments for the Energy Exascale Earth System Model version 1
The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
Subgrid-scale variability of cloud ice in the ICON-AES 1.3.00
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
The 4DEnVar-based weakly coupled land data assimilation system for E3SM version 2
Continental-scale bias-corrected climate and hydrological projections for Australia
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4.8.0
A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
DCMIP2016: the tropical cyclone test case
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical mixing parameterization on Arctic sea ice and upper ocean properties using the NEMO-SI3 model
Methane dynamics in the Baltic Sea: investigating concentration, flux and isotopic composition patterns using the coupled physical-biogeochemical model BALTSEM-CH4 v1.0
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024, https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Short summary
We developed a regionally refined climate model that allows resolved convection and performed a 20-year projection to the end of the century. The model has a resolution of 3.25 km in California, which allows us to predict climate with unprecedented accuracy, and a resolution of 100 km for the rest of the globe to achieve efficient, self-consistent simulations. The model produces superior results in reproducing climate patterns over California that typical modern climate models cannot resolve.
Xiaohui Zhong, Xing Yu, and Hao Li
Geosci. Model Dev., 17, 3667–3685, https://doi.org/10.5194/gmd-17-3667-2024, https://doi.org/10.5194/gmd-17-3667-2024, 2024
Short summary
Short summary
In order to forecast localized warm-sector rainfall in the south China region, numerical weather prediction models are being run with finer grid spacing. The conventional convection parameterization (CP) performs poorly in the gray zone, necessitating the development of a scale-aware scheme. We propose a machine learning (ML) model to replace the scale-aware CP scheme. Evaluation against the original CP scheme has shown that the ML-based CP scheme can provide accurate and reliable predictions.
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024, https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Short summary
Anthropogenic aerosol emissions are an essential part of global aerosol models. Significant errors can exist from the loss of emission heterogeneity. We introduced an emission treatment that significantly improved aerosol emission heterogeneity in high-resolution model simulations, with improvements in simulated aerosol surface concentrations. The emission treatment will provide a more accurate representation of aerosol emissions and their effects on climate.
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024, https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space and time based on natural archives. It is useful to investigate climate variations and validate climate models, but its implementation and use can be difficult for non-experts. This paper introduces a user-friendly Python package called cfr to make these methods more accessible, thanks to the computational and visualization tools that facilitate efficient and reproducible research on past climates.
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024, https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024, https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep-water masses in the Southern Ocean is enhanced.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
EGUsphere, https://doi.org/10.5194/egusphere-2024-923, https://doi.org/10.5194/egusphere-2024-923, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI version 2.0 including the regional climate model ICON-CLM coupled with the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in the ICON-CLM model makes it more flexible to couple with an external ocean model and an external hydrological discharge model.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110, https://doi.org/10.5194/gmd-17-3099-2024, https://doi.org/10.5194/gmd-17-3099-2024, 2024
Short summary
Short summary
Especially over the midlatitudes, precipitation is mainly formed via the ice phase. In this study we focus on the initial snow formation process in the ICON-AES, the aggregation process. We use a stochastical approach for the aggregation parameterization and investigate the influence in the ICON-AES. Therefore, a distribution function of cloud ice is created, which is evaluated with satellite data. The new approach leads to cloud ice loss and an improvement in the process rate bias.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040, https://doi.org/10.5194/gmd-17-3025-2024, https://doi.org/10.5194/gmd-17-3025-2024, 2024
Short summary
Short summary
Improving climate predictions have profound socio-economic impacts. This study introduces a new weakly coupled land data assimilation (WCLDA) system for a coupled climate model. We demonstrate improved simulation of soil moisture and temperature in many global regions and throughout the soil layers. Furthermore, significant improvements are also found in reproducing the time evolution of the 2012 US Midwest drought. The WCLDA system provides the groundwork for future predictability studies.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-362, https://doi.org/10.5194/egusphere-2024-362, 2024
Short summary
Short summary
In this study, we improve an existing climate model to account for human water usage across domestic, industrial, and agriculture purposes. With the new capabilities, the model is now better equipped for studying questions related to water scarcity in both present and future conditions under climate change. Despite the advancements, there remains important limitations in our modelling framework which requires further work.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024, https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-36, https://doi.org/10.5194/gmd-2024-36, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-49, https://doi.org/10.5194/gmd-2024-49, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We study the parameters involved in the turbulent kinetic energy mixed layer penetration scheme of the NEMO model in Arctic sea ice-covered regions. This evaluation reveals the impact of these parameters on mixed layer depth, sea surface temperature and salinity, and ocean stratification. Our findings also demonstrate considerable impacts on sea ice thickness and sea ice concentration, emphasizing the importance of accurate ocean mixing representation in understanding Arctic climate dynamics.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-211, https://doi.org/10.5194/gmd-2023-211, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Methane (CH4) cycling in the Baltic Sea is studied through model simulations, allowing a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source, and two main sinks: CH4 oxidation in the water (87 % of the sinks) and outgassing to the atmosphere (13 % of the sinks). This study addresses CH4 emissions from coastal seas and is a first step towards understanding the relative importance of open water outgassing compared to local coastal hotspots.
Cited articles
Albrecht, B. A., Betts, A. K., Schubert, W. H., and Cox, S. K.: Model of the
Thermodynamic Structure of the Trade-Wind Boundary Layer: Part I.
Theoretical Formulation and Sensitivity Tests, J. Atmos. Sci., 36, 73–89,
https://doi.org/10.1175/1520-0469(1979)036<0073:MOTTSO>2.0.CO;2, 1979.
Alexander, G. D. and Cotton, W. R.: The Use of Cloud-Resolving Simulations
of Mesoscale Convective Systems to Build a Mesoscale Parameterization
Scheme, J. Atmos. Sci., 55, 2137–2161,
https://doi.org/10.1175/1520-0469(1998)055<2137:TUOCRS>2.0.CO;2, 1998.
Allan, R. P. and Soden, B. J.: Atmospheric Warming and the Amplification of
Precipitation Extremes, Science, 321, 1481–1484,
https://doi.org/10.1126/science.1160787,2008.
Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L.,
Dixon, K. W., Donner, L. J., Dunne, K. A., Freidenreich, S. M., Garner, S.
T., and Gudgel, R. G.: The New GFDL Global Atmosphere and Land Model
AM2–LM2: Evaluation with Prescribed SST Simulations, J. Climate, 17,
4641–4673, https://doi.org/10.1175/JCLI-3223.1, 2004.
Añel, J. A., García-Rodríguez, M., and Rodeiro, J.: Current status on the need for improved accessibility to climate models code, Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, 2021.
Angevine, W. M.: An Integrated Turbulence Scheme for Boundary Layers with
Shallow Cumulus Applied to Pollutant Transport, J. Appl. Meteorol., 44,
1436–1452, https://doi.org/10.1175/JAM2284.1, 2005.
Angevine, W. M., Jiang, H., and Mauritsen, T.: Performance of an Eddy
Diffusivity–Mass Flux Scheme for Shallow Cumulus Boundary Layers, Mon.
Weather Rev., 138, 2895–2912, https://doi.org/10.1175/2010MWR3142.1, 2010.
Anthes, R. A.: A Cumulus Parameterization Scheme Utilizing a One-Dimensional
Cloud Model, Mon. Weather Rev., 138, 2895–2912,
https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2, 1977.
Arakawa, A.: Parameterization of cumulus convection, Proceedings of WMO/IUGG
Symposium, Numerical Weather Prediction, Japan Meteorological Agency, IV,8,
1–6, 1969.
Arakawa, A.: The Cumulus Parameterization Problem: Past, Present, and
Future, J. Climate, 17, 2493–2525,
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2, 2004.
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble
with the Large-Scale Environment, Part I., J. Atmos. Sci., 31, 674–701,
https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974.
Arakawa, A. and Wu, C.-M.: A Unified Representation of Deep Moist Convection
in Numerical Modeling of the Atmosphere. Part I, J. Atmos. Sci., 70,
1977–1992, https://doi.org/10.1175/JAS-D-12-0330.1, 2013.
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011.
Asai, T. and Kasahara, A.: A Theoretical Study of the Compensating Downward
Motions Associated with Cumulus Clouds, J. Atmos. Sci., 24, 487–496,
https://doi.org/10.1175/1520-0469(1967)024<0487:ATSOTC>2.0.CO;2, 1967.
Baba, Y.: Spectral cumulus parameterization based on cloud-resolving model,
Clim. Dynam., 52, 309–334, https://doi.org/10.1007/s00382-018-4137-z, 2019.
Baik, J.-J., DeMaria, M., and Raman, S.: Tropical Cyclone Simulations with
the Betts Convective Adjustment Scheme. Part II: Sensitivity Experiments,
Mon. Weather Rev., 118, 529–541,
https://doi.org/10.1175/1520-0493(1990)118<0529:TCSWTB>2.0.CO;2, 1990.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett., 59, 381, https://doi.org/10.1103/PHYSREVLETT.59.381, 1987.
Baldwin, M. E., Kain, J. S., and Kay, M. P.: Properties of the Convection
Scheme in NCEP's Eta Model that Affect Forecast Sounding Interpretation,
Weather Forecast., 17, 1063–1079,
https://doi.org/10.1175/1520-0434(2002)017<1063:POTCSI>2.0.CO;2, 2002.
Barros, D. F., Albernaz, A. L. M., Barros, D. F., and Albernaz, A. L. M.:
Possible impacts of climate change on wetlands and its biota in the
Brazilian Amazon, Braz. J. Biol., 74, 810–820,
https://doi.org/10.1590/1519-6984.04013, 2014.
Bechtold, P. (Ed.): Atmospheric moist convection, Meteorological Training Course
Lecture Series, ECMWF, https://www.ecmwf.int/node/16953 (last access: 10 September 2021), 2019.
Bechtold, P., Pinty, J. P., and Fravalo, C.: A Model of Marine
Boundary-Layer Cloudiness for Mesoscale Applications, J. Atmos. Sci., 49,
1723–1744, https://doi.org/10.1175/1520-0469(1992)049<1723:AMOMBL>2.0.CO;2, 1992.
Bechtold, P., Cuijpers, J. W. M., Mascart, P., and Trouilhet, P.: Modeling
of Trade Wind Cumuli with a Low-Order Turbulence Model: Toward a Unified
Description of Cu and Se Clouds in Meteorological Models, J. Atmos. Sci.,
52, 455–463, https://doi.org/10.1175/1520-0469(1995)052<0455:MOTWCW>2.0.CO;2, 1995.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A
mass-flux convection scheme for regional and global models, Q. J. Roy.
Meteor. Soc., 127, 869–886, https://doi.org/10.1002/qj.49712757309, 2001.
Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A. K., Köhler, M.,
Miller, M., and Redelsperger, J.-L.: The simulation of the diurnal cycle of
convective precipitation over land in a global model, Q. J. Roy. Meteor.
Soc., 130, 3119–3137, https://doi.org/10.1256/qj.03.103, 2004.
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351,
https://doi.org/10.1002/qj.289, 2008.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in
Large-Scale Models, J. Atmos. Sci., 71, 734–753,
https://doi.org/10.1175/JAS-D-13-0163.1, 2014.
Becker, T. and Hohenegger, C.: Estimating Bulk Entrainment for Deep Convection – from Idealized to Realistic Simulations, American Geophysical Union, Fall Meeting 2018, Washington, D.C., abstract #A21K-2864, 21, 2018.
Becker, T., Bechtold, P., and Sandu, I.: Characteristics of convective precipitation over tropical Africa in storm‐resolving global simulations, Q. J. Roy. Meteor. Soc., 147, 4388–4407, https://doi.org/10.1002/qj.4185, 2021.
Bengtsson, L., Körnich, H., Källén, E., and Svensson, G.:
Large-Scale Dynamical Response to Subgrid-Scale Organization Provided by
Cellular Automata, J. Atmos. Sci., 68, 3132–3144,
https://doi.org/10.1175/JAS-D-10-05028.1, 2011.
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J.-F.: A
stochastic parametrization for deep convection using cellular automata, Q.
J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108,
2013.
Bengtsson, L., Bao, J.-W., Pegion, P., Penland, C., Michelson, S., and
Whitaker, J.: A Model Framework for Stochastic Representation of
Uncertainties Associated with Physical Processes in NOAA's Next Generation
Global Prediction System (NGGPS), Mon. Weather Rev., 147, 893–911,
https://doi.org/10.1175/MWR-D-18-0238.1, 2019.
Bengtsson, L., Dias, J., Tulich, S., Gehne, M., and Bao, J.-W.: A Stochastic
Parameterization of Organized Tropical Convection Using Cellular Automata
for Global Forecasts in NOAA's Unified Forecast System, J. Adv. Model Earth
Sy.,
13, e2020MS002260, https://doi.org/10.1029/2020MS002260, 2021.
Berg, L. K., Gustafson, W. I., Kassianov, E. I., and Deng, L.: Evaluation of
a Modified Scheme for Shallow Convection: Implementation of CuP and Case
Studies, Mon. Weather Rev., 141, 134–147,
https://doi.org/10.1175/MWR-D-12-00136.1, 2013.
Betts, A. K.: Parametric Interpretation of Trade-Wind Cumulus Budget
Studies, J. Atmos. Sci., 32, 1934–1945,
https://doi.org/10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2, 1975.
Betts, A. K.: Saturation Point Analysis of Moist Convective Overturning, J.
Atmos. Sci., 39, 1484–1505,
https://doi.org/10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2, 1982.
Betts, A. K.: Mixing Line Analysis of Clouds and Cloudy Boundary Layers, J.
Atmos. Sci., 42, 2751–2763,
https://doi.org/10.1175/1520-0469(1985)042<2751:MLAOCA>2.0.CO;2, 1985.
Betts, A. K.: A new convective adjustment scheme. Part I: Observational and
theoretical basis, Q. J. Roy. Meteor. Soc., 112, 677–691,
https://doi.org/10.1002/qj.49711247307, 1986.
Betts, A. K. and Albrecht, B. A.: Conserved Variable Analysis of the
Convective Boundary Layer Thermodynamic Structure over the Tropical Oceans,
J. Atmos. Sci., 44, 83–99,
https://doi.org/10.1175/1520-0469(1987)044<0083:CVAOTC>2.0.CO;2, 1987.
Betts, A. K. and Jakob, C.: Evaluation of the diurnal cycle of
precipitation, surface thermodynamics, and surface fluxes in the ECMWF model
using LBA data, J. Geophys. Res.-Atmos., 107, LBA 12-1–LBA 12-8,
https://doi.org/10.1029/2001JD000427, 2002.
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II:
Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data
sets, Q. J. Roy. Meteor. Soc., 112, 693–709,
https://doi.org/10.1002/qj.49711247308, 1986.
Bhatla, R., Ghosh, S., Mandal, B., Mall, R. K., and Sharma, K.: Simulation
of Indian summer monsoon onset with different parameterization convection
schemes of RegCM-4.3, Atmos. Res., 176–177, 10–18,
https://doi.org/10.1016/j.atmosres.2016.02.010, 2016.
Bhattacharya, R., Bordoni, S., Suselj, K., and Teixeira, J.:
Parameterization Interactions in Global Aquaplanet Simulations, J. Adv.
Model Earth Sy., 10, 403–420, https://doi.org/10.1002/2017MS000991, 2018.
Blyth, A. M.: Entrainment in Cumulus Clouds, J. Appl. Meteorol. Clim., 32,
626–641, https://doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2, 1993.
Blyth, A. M., Cooper, W. A., and Jensen, J. B.: A Study of the Source of
Entrained Air in Montana Cumuli, J. Atmos. Sci., 45, 3944–3964,
https://doi.org/10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2, 1988.
Boatman, J. F. and Auer, A. H.: The Role of Cloud Top Entrainment in Cumulus
Clouds, J. Atmos. Sci., 40, 1517–1534,
https://doi.org/10.1175/1520-0469(1983)040<1517:TROCTE>2.0.CO;2, 1983.
Bogenschutz, P. A. and Krueger, S. K.: A simplified PDF parameterization of
subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv.
Model Earth Sy., 5, 195–211, https://doi.org/10.1002/jame.20018, 2013.
Bogenschutz, P. A., Krueger, S. K., and Khairoutdinov, M.: Assumed
Probability Density Functions for Shallow and Deep Convection, J. Adv. Model
Earth Sy., 2, 10, https://doi.org/10.3894/JAMES.2010.2.10, 2010.
Böing, S. J.: An object-based model for convective cold pool dynamics, Mathematics of Climate and Weather Forecasting, 2, 43–60, https://doi.org/10.1515/mcwf-2016-0003, 2016.
Böing, S. J., Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.:
Influence of the Subcloud Layer on the Development of a Deep Convective
Ensemble, J. Atmos. Sci., 69, 2682–2698,
https://doi.org/10.1175/JAS-D-11-0317.1, 2012.
Böing, S. J., Jonker, H. J. J., Nawara, W. A., and Siebesma, A. P.: On
the Deceiving Aspects of Mixing Diagrams of Deep Cumulus Convection, J.
Atmos. Sci., 71, 56–68, https://doi.org/10.1175/JAS-D-13-0127.1, 2014.
Bombardi, R. J., Schneider, E. K., Marx, L., Halder, S., Singh, B., Tawfik,
A. B., Dirmeyer, P. A., and Kinter, J. L.: Improvements in the
representation of the Indian summer monsoon in the NCEP climate forecast
system version 2, Clim. Dynam., 45, 2485–2498,
https://doi.org/10.1007/s00382-015-2484-6, 2015.
Bombardi, R. J., Tawfik, A. B., Manganello, J. V., Marx, L., Shin, C.-S.,
Halder, S., Schneider, E. K., Dirmeyer, P. A., and Kinter, J. L.: The heated
condensation framework as a convective trigger in the NCEP Climate Forecast
System version 2, J. Adv. Model Earth Sy., 8, 1310–1329,
https://doi.org/10.1002/2016MS000668, 2016.
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of
tropical cloud feedback uncertainties in climate models, Geophys. Res.
Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005.
Bony, S. and Emanuel, K. A.: A Parameterization of the Cloudiness Associated
with Cumulus Convection; Evaluation Using TOGA COARE Data, J. Atmos. Sci.,
58, 3158–3183, https://doi.org/10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2, 2001.
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus,
R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H.,
Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity,
Nat. Geosci, 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015.
Bony, S., Stevens, B., Ament, F., Bigorre, S., Chazette, P., Crewell, S.,
Delanoë, J., Emanuel, K., Farrell, D., Flamant, C., Gross, S., Hirsch,
L., Karstensen, J., Mayer, B., Nuijens, L., Ruppert, J. H., Sandu, I.,
Siebesma, P., Speich, S., Szczap, F., Totems, J., Vogel, R., Wendisch, M.,
and Wirth, M.: EUREC4A: A Field Campaign to Elucidate the Couplings Between
Clouds, Convection and Circulation, Surv. Geophys., 38, 1529–1568,
https://doi.org/10.1007/s10712-017-9428-0, 2017.
Bougeault, P.: Cloud-Ensemble Relations Based on the Gamma Probability
Distribution for the Higher-Order Models of the Planetary Boundary Layer, J.
Atmos. Sci., 39, 2691–2700,
https://doi.org/10.1175/1520-0469(1982)039<2691:CERBOT>2.0.CO;2, 1982.
Bougeault, P.: A Simple Parameterization of the Large-Scale Effects of
Cumulus Convection, Mon. Weather Rev., 113, 2108–2121,
https://doi.org/10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2, 1985.
Brast, M., Schemann, V., and Neggers, R. A. J.: Investigating the Scale
Adaptivity of a Size-Filtered Mass Flux Parameterization in the Gray Zone of
Shallow Cumulus Convection, J. Atmos. Sci., 75, 1195–1214,
https://doi.org/10.1175/JAS-D-17-0231.1, 2018.
Bretherton, C. S., McCaa, J. R., and Grenier, H.: A New Parameterization for
Shallow Cumulus Convection and Its Application to Marine Subtropical
Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Mon.
Weather Rev., 132, 864–882,
https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2, 2004.
Bright, D. R. and Mullen, S. L.: Short-Range Ensemble Forecasts of
Precipitation during the Southwest Monsoon, Weather Forecast., 17,
1080–1100, https://doi.org/10.1175/1520-0434(2002)017<1080:SREFOP>2.0.CO;2, 2002.
Brisson, E., Van Weverberg, K., Demuzere, M., Devis, A., Saeed, S., Stengel,
M., and van Lipzig, N. P. M.: How well can a convection-permitting climate
model reproduce decadal statistics of precipitation, temperature and cloud
characteristics?, Clim. Dynam., 47, 3043–3061,
https://doi.org/10.1007/s00382-016-3012-z, 2016.
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution Requirements
for the Simulation of Deep Moist Convection, Mon. Weather Rev., 131,
2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003.
Buizza, R., Milleer, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. Roy. Meteor. Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006, 1999.
Burnet, F. and Brenguier, J.-L.: Observational Study of the
Entrainment-Mixing Process in Warm Convective Clouds, J. Atmos. Sci., 64,
1995–2011, https://doi.org/10.1175/JAS3928.1, 2007.
Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J.
B.: The Albedo of Fractal Stratocumulus Clouds, J. Atmos. Sci., 51,
2434–2455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2, 1994.
Chaboureau, J.-P. and Bechtold, P.: A Simple Cloud Parameterization Derived
from Cloud Resolving Model Data: Diagnostic and Prognostic Applications, J.
Atmos. Sci., 59, 2362–2372,
https://doi.org/10.1175/1520-0469(2002)059<2362:ASCPDF>2.0.CO;2, 2002.
Chaboureau, J.-P. and Bechtold, P.: Statistical representation of clouds in
a regional model and the impact on the diurnal cycle of convection during
Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX), J. Geophys.
Res.-Atmos.,
110, D17103, https://doi.org/10.1029/2004JD005645, 2005.
Charney, J. G. and Eliassen, A.: On the Growth of the Hurricane Depression,
J. Atmos. Sci., 21, 68–75,
https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2, 1964.
Chatfield, R. B. and Brost, R. A.: A two-stream model of the vertical
transport of trace species in the convective boundary layer, J. Geophys.
Res.-Atmos., 92, 13263–13276, https://doi.org/10.1029/JD092iD11p13263,
1987.
Cheinet, S.: A Multiple Mass-Flux Parameterization for the Surface-Generated
Convection. Part I: Dry Plumes, J. Atmos. Sci., 60, 2313–2327,
https://doi.org/10.1175/1520-0469(2003)060<2313:AMMPFT>2.0.CO;2, 2003.
Cheinet, S.: A Multiple Mass Flux Parameterization for the Surface-Generated
Convection. Part II: Cloudy Cores, J. Atmos. Sci., 61, 1093–1113,
https://doi.org/10.1175/1520-0469(2004)061<1093:AMMFPF>2.0.CO;2, 2004.
Cheng, A. and Xu, K.-M.: Simulation of shallow cumuli and their transition
to deep convective clouds by cloud-resolving models with different
third-order turbulence closures, Q. J. Roy. Meteor. Soc., 132, 359–382,
https://doi.org/10.1256/qj.05.29, 2006.
Chikira, M.: A Cumulus Parameterization with State-Dependent Entrainment
Rate. Part II: Impact on Climatology in a General Circulation Model, J.
Atmos. Sci., 67, 2194–2211, https://doi.org/10.1175/2010JAS3317.1, 2010.
Chikira, M. and Sugiyama, M.: A Cumulus Parameterization with
State-Dependent Entrainment Rate. Part I: Description and Sensitivity to
Temperature and Humidity Profiles, J. Atmos. Sci., 67, 2171–2193,
https://doi.org/10.1175/2010JAS3316.1, 2010.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar,
R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A.
L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini,
M., Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J.
S., Westoby, M., Wright, I. J., and Zanne, A. E.: Global convergence in the
vulnerability of forests to drought, Nature, 491, 752–755,
https://doi.org/10.1038/nature11688, 2012.
Chopard, B.: Cellular Automata Modeling of Physical Systems, in:
Encyclopedia of Complexity and Systems Science, edited by: Meyers, R. A.,
Encyclopedia of Complexity and Systems Science Springer, New York, NY,
865–892, https://doi.org/10.1007/978-0-387-30440-3_57, 2009.
Cohen, Y., Lopez-Gomez, I., Jaruga, A., He, J., Kaul, C. M., and Schneider,
T.: Unified Entrainment and Detrainment Closures for Extended
Eddy-Diffusivity Mass-Flux Schemes, J. Adv. Model Earth Sy., 12,
e2020MS002162, https://doi.org/10.1029/2020MS002162, 2020.
Colin, M.: Convective memory, and the role of cold pools, Meteorology, Sorbonne Université, HAL Id: tel-02864797, 2018.
Colin, M., Sherwood, S., Geoffroy, O., Bony, S., and Fuchs, D.: Identifying
the Sources of Convective Memory in Cloud-Resolving Simulations, J. Atmos.
Sci., 76, 947–962, https://doi.org/10.1175/JAS-D-18-0036.1, 2019.
Collier, J. C. and Bowman, K. P.: Diurnal cycle of tropical precipitation in
a general circulation model, J. Geophys. Res.-Atmos., 109, D17105,
https://doi.org/10.1029/2004JD004818, 2004.
Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V.,
Villefranque, N., Rio, C., Audouin, O., Salter, J., Bazile, E., Brient, F.,
Favot, F., Honnert, R., Lefebvre, M.-P., Madeleine, J.-B., Rodier, Q., and
Xu, W.: Process-Based Climate Model Development Harnessing Machine Learning:
I. A Calibration Tool for Parameterization Improvement, J. Adv. Model Earth
Sy., 13, e2020MS002217, https://doi.org/10.1029/2020MS002217, 2021.
Cotton, W. and Anthes, R.: Storm and Cloud Dynamics, 1st edn., Academic Press, 1992.
Craig, G. C. and Cohen, B. G.: Fluctuations in an Equilibrium Convective
Ensemble. Part I: Theoretical Formulation, J. Atmos. Sci., 63, 1996–2004,
https://doi.org/10.1175/JAS3709.1, 2006.
Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models,
J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006.
Dai, A. and Trenberth, K. E.: The Diurnal Cycle and Its Depiction in the
Community Climate System Model, J. Climate, 17, 930–951,
https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2, 2004.
D'Andrea, F., Gentine, P., Betts, A. K., and Lintner, B. R.: Triggering Deep
Convection with a Probabilistic Plume Model, J. Atmos. Sci., 71, 3881–3901,
https://doi.org/10.1175/JAS-D-13-0340.1, 2014.
Davies, L., Plant, R. S., and Derbyshire, S. H.: A simple model of
convection with memory, J. Geophys. Res.-Atmos., 114, D17202,
https://doi.org/10.1029/2008JD011653, 2009.
Davies, L., Jakob, C., Cheung, K., Genio, A. D., Hill, A., Hume, T., Keane,
R. J., Komori, T., Larson, V. E., Lin, Y., Liu, X., Nielsen, B. J., Petch,
J., Plant, R. S., Singh, M. S., Shi, X., Song, X., Wang, W., Whitall, M. A.,
Wolf, A., Xie, S., and Zhang, G.: A single-column model ensemble approach
applied to the TWP-ICE experiment, J. Geophys. Res.-Atmos., 118, 6544–6563,
https://doi.org/10.1002/jgrd.50450, 2013a.
Davies, L., Plant, R. S., and Derbyshire, S. H.: Departures from convective
equilibrium with a rapidly varying surface forcing, Q. J. Roy. Meteor. Soc.,
139, 1731–1746, https://doi.org/10.1002/qj.2065, 2013b.
Dawe, J. T. and Austin, P. H.: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES, Atmos. Chem. Phys., 13, 7795–7811, https://doi.org/10.5194/acp-13-7795-2013, 2013.
Deardorff, J. W.: The Counter-Gradient Heat Flux in the Lower Atmosphere and
in the Laboratory, J. Atmos. Sci., 23, 503–506,
https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2, 1966.
Deardorff, J. W., Willis, G. E., and Lilly, D. K.: Laboratory investigation
of non-steady penetrative convection, J. Fliud Mech., 35, 7–31,
https://doi.org/10.1017/S0022112069000942, 1969.
Deguines, N., Brashares, J. S., and Prugh, L. R.: Precipitation alters
interactions in a grassland ecological community, J. Anim. Ecol., 86,
262–272, https://doi.org/10.1111/1365-2656.12614, 2017.
Del Genio, A. D. and Wu, J.: The Role of Entrainment in the Diurnal Cycle of
Continental Convection, J. Climate, 23, 2722–2738,
https://doi.org/10.1175/2009JCLI3340.1, 2010.
Del Genio, A. D., Chen, Y., Kim, D., and Yao, M.-S.: The MJO Transition from
Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM
Simulations, J. Climate, 25, 3755–3770,
https://doi.org/10.1175/JCLI-D-11-00384.1, 2012.
Del Genio, A. D., Wu, J., Wolf, A. B., Chen, Y., Yao, M.-S., and Kim, D.:
Constraints on Cumulus Parameterization from Simulations of Observed MJO
Events, J. Climate, 28, 6419–6442,
https://doi.org/10.1175/JCLI-D-14-00832.1, 2015.
DeMott, C. A., Randall, D. A., and Khairoutdinov, M.: Convective
Precipitation Variability as a Tool for General Circulation Model Analysis,
J. Climate, 20, 91–112, https://doi.org/10.1175/JCLI3991.1, 2007.
Deng, A., Seaman, N. L., and Kain, J. S.: A Shallow-Convection Parameterization for Mesoscale Models. Part I: Submodel Description
and Preliminary Applications, J. Atmos. Sci., 60, 34–56, https://doi.org/10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2, 2003.
Deng, Q., Khouider, B., and Majda, A. J.: The MJO in a Coarse-Resolution GCM
with a Stochastic Multicloud Parameterization, J. Atmos. Sci., 72, 55–74,
https://doi.org/10.1175/JAS-D-14-0120.1, 2015.
Derbyshire, S. H., Maidens, A. V., Milton, S. F., Stratton, R. A., and
Willett, M. R.: Adaptive detrainment in a convective parametrization, Q. J.
Roy. Meteor. Soc., 137, 1856–1871, https://doi.org/10.1002/qj.875, 2011.
de Roode, S. R., Siebesma, A. P., Jonker, H. J. J., and de Voogd, Y.:
Parameterization of the Vertical Velocity Equation for Shallow Cumulus
Clouds, Mon. Weather Rev., 140, 2424–2436,
https://doi.org/10.1175/MWR-D-11-00277.1, 2012.
De Rooy, W. C. and Siebesma, A. P.: A Simple Parameterization for
Detrainment in Shallow Cumulus, Mon. Weather Rev., 136, 560–576,
https://doi.org/10.1175/2007MWR2201.1, 2008.
De Rooy, W. C. and Siebesma, A. P.: Analytical expressions for entrainment
and detrainment in cumulus convection, Q. J. Roy. Meteor. Soc., 136,
1216–1227, https://doi.org/10.1002/qj.640, 2010.
De Rooy, W. C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H.,
Mironov, D., Siebesma, A. P., Teixeira, J., and Yano, J.-I.: Entrainment and
detrainment in cumulus convection: an overview, Q. J. Roy. Meteor. Soc.,
139, 1–19, https://doi.org/10.1002/qj.1959, 2013.
Donner, L. J.: A Cumulus Parameterization Including Mass Fluxes, Vertical
Momentum Dynamics, and Mesoscale Effects, J. Climate, 50, 889–906,
https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2, 1993.
Donner, L. J. and Phillips, V. T.: Boundary layer control on convective
available potential energy: Implications for cumulus parameterization, J.
Geophys. Res.-Atmos., 108, 4701, https://doi.org/10.1029/2003JD003773, 2003.
Donner, L. J., Seman, C. J., Hemler, R. S., and Fan, S.: A Cumulus
Parameterization Including Mass Fluxes, Convective Vertical Velocities, and
Mesoscale Effects: Thermodynamic and Hydrological Aspects in a General
Circulation Model, J. Atmos. Sci., 14, 3444–3463,
https://doi.org/10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2, 2001.
Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao,
M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J.,
Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C.
T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T.
R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L.,
Milly, P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J.,
Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F.,
Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.:
The Dynamical Core, Physical Parameterizations, and Basic Simulation
Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled
Model CM3, J. Climate, 24, 3484–3519,
https://doi.org/10.1175/2011JCLI3955.1, 2011.
Donner, L. J., O'Brien, T. A., Rieger, D., Vogel, B., and Cooke, W. F.: Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?, Atmos. Chem. Phys., 16, 12983–12992, https://doi.org/10.5194/acp-16-12983-2016, 2016.
Dore, M. H. I.: Climate change and changes in global precipitation patterns:
What do we know?, Environ. Int., 31, 1167–1181,
https://doi.org/10.1016/j.envint.2005.03.004, 2005.
Dorrestijn, J., Crommelin, D. T., Biello, J. A., and Böing, S. J.: A
data-driven multi-cloud model for stochastic parametrization of deep
convection, Philos. T. Roy. Soc. A., 371, 20120374,
https://doi.org/10.1098/rsta.2012.0374, 2013a.
Dorrestijn, J., Crommelin, D. T., Siebesma, A. Pier., and Jonker, H. J. J.:
Stochastic parameterization of shallow cumulus convection estimated from
high-resolution model data, Theor. Comp. Fluid Dyn., 27, 133–148,
https://doi.org/10.1007/s00162-012-0281-y, 2013b.
Dorrestijn, J., Crommelin, D. T., Siebesma, A. P., Jonker, H. J. J., and
Jakob, C.: Stochastic Parameterization of Convective Area Fractions with a
Multicloud Model Inferred from Observational Data, J. Atmos. Sci., 72,
854–869, https://doi.org/10.1175/JAS-D-14-0110.1, 2015.
Drueke, S., Kirshbaum, D. J., and Kollias, P.: Evaluation of Shallow-Cumulus
Entrainment Rate Retrievals Using Large-Eddy Simulation, J. Geophys.
Res.-Atmos., 124, 9624–9643, https://doi.org/10.1029/2019JD030889, 2019.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.,
and Mearns, L. O.: Climate Extremes: Observations, Modeling, and Impacts,
Science, 289, 2068–2074, https://doi.org/10.1126/science.289.5487.2068,
2000.
Emanuel, K.: Atmospheric convection, Oxford University Press, 592 pp., ISBN 0-19-506630-8, 1994.
Emanuel, K. and Raymond, D. J. (Eds.): The Representation of Cumulus Convection in Numerical Models of the Atmosphere, American Meteorological Society, 246 pp., https://doi.org/10.1175/0065-9401-24.46.1, 1993.
Emanuel, K. A.: The Finite-Amplitude Nature of Tropical Cyclogenesis, J.
Atmos. Sci., 46, 3431–3456,
https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2, 1989.
Emanuel, K. A.: A Scheme for Representing Cumulus Convection in Large-Scale
Models, J. Atmos. Sci., 48, 2313–2329,
https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2, 1991.
Emanuel, K. A.: The Behavior of a Simple Hurricane Model Using a Convective
Scheme Based on Subcloud-Layer Entropy Equilibrium, J. Atmos. Sci., 52,
3960–3968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2, 1995.
Emanuel, K. A. and Živković-Rothman, M.: Development and Evaluation
of a Convection Scheme for Use in Climate Models, J. Atmos. Sci., 56,
1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2, 1999.
Evans, J. P. and Westra, S.: Investigating the Mechanisms of Diurnal
Rainfall Variability Using a Regional Climate Model, J. Climate, 25,
7232–7247, https://doi.org/10.1175/JCLI-D-11-00616.1, 2012.
Evans, J. P., Ekström, M., and Ji, F.: Evaluating the performance of a
WRF physics ensemble over South-East Australia, Clim. Dynam., 39,
1241–1258, https://doi.org/10.1007/s00382-011-1244-5, 2012.
Feingold, G.: Modeling of the first indirect effect: Analysis of measurement
requirements, Geophys. Res. Lett., 30, 19, https://doi.org/10.1029/2003GL017967,
2003.
Feingold, G. and Koren, I.: A model of coupled oscillators applied to the aerosol–cloud–precipitation system, Nonlin. Processes Geophys., 20, 1011–1021, https://doi.org/10.5194/npg-20-1011-2013, 2013.
Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D.
J., Tanelli, S., and Parodi, A.: Analysis and hindcast simulations of an
extreme rainfall event in the Mediterranean area: The Genoa 2011 case,
Atmos. Res., 138, 13–29, https://doi.org/10.1016/j.atmosres.2013.10.007,
2014.
Fletcher, J. K. and Bretherton, C. S.: Evaluating Boundary Layer–Based Mass
Flux Closures Using Cloud-Resolving Model Simulations of Deep Convection, J.
Atmos. Sci., 67, 2212–2225, https://doi.org/10.1175/2010JAS3328.1, 2010.
Folkins, I., Mitovski, T., and Pierce, J. R.: A simple way to improve the
diurnal cycle in convective rainfall over land in climate models, J.
Geophys. Res.-Atmos., 119, 2113–2130, https://doi.org/10.1002/2013JD020149,
2014.
Fonseca, R. M., Zhang, T., and Yong, K.-T.: Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model, Geosci. Model Dev., 8, 2915–2928, https://doi.org/10.5194/gmd-8-2915-2015, 2015.
Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Silva Dias, P. L., Silva Dias, M. A. F., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda, A. L., Santos e Silva, C. M., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., Silva, F. B., Santos, F. C., Pereira, G., Camponogara, G., Ferrada, G. A., Campos Velho, H. F., Menezes, I., Freire, J. L., Alonso, M. F., Gácita, M. S., Zarzur, M., Fonseca, R. M., Lima, R. S., Siqueira, R. A., Braz, R., Tomita, S., Oliveira, V., and Martins, L. D.: The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas, Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, 2017.
Freitas, S. R., Grell, G. A., Molod, A., Thompson, M. A., Putman, W. M.,
Silva, C. M. S. e, and Souza, E. P.: Assessing the Grell-Freitas Convection
Parameterization in the NASA GEOS Modeling System, J. Adv. Model Earth Sy.,
10, 1266–1289, https://doi.org/10.1029/2017MS001251, 2018.
Freitas, S. R., Grell, G. A., and Li, H.: The Grell–Freitas (GF) convection parameterization: recent developments, extensions, and applications, Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021, 2021.
Frenkel, Y., Majda, A. J., and Khouider, B.: Using the Stochastic Multicloud
Model to Improve Tropical Convective Parameterization: A Paradigm Example,
J. Atmos. Sci., 69, 1080–1105, https://doi.org/10.1175/JAS-D-11-0148.1,
2012.
Fritsch, J. M. and Chappell, C. F.: Numerical Prediction of Convectively
Driven Mesoscale Pressure Systems. Part I: Convective Parameterization, J.
Atmos. Sci., 37, 1722–1733,
https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2, 1980.
Gallus, W. and Segal, M.: Impact of improved initialization of mesoscale
features on convective system rainfall in 10-km Eta simulations, Weather
Forecast., 16, 680–696, https://doi.org/10.1175/1520-0434(2001)016<0680:IOIIOM>2.0.CO;2, 2001.
Gao, S., Lu, C., Liu, Y., Mei, F., Wang, J., Zhu, L., and Yan, S.:
Contrasting Scale Dependence of Entrainment-Mixing Mechanisms in
Stratocumulus Clouds, Geophys. Res. Lett., 47, e2020GL086970,
https://doi.org/10.1029/2020GL086970, 2020.
Gao, X.-J., Shi, Y., and Giorgi, F.: Comparison of convective
parameterizations in RegCM4 experiments over China with CLM as the land
surface model, Atmos. Ocean. Sc. Lett., 9, 246–254,
https://doi.org/10.1080/16742834.2016.1172938, 2016.
Gao, Y., Leung, L. R., Zhao, C., and Hagos, S.: Sensitivity of U.S. summer
precipitation to model resolution and convective parameterizations across
gray zone resolutions, J. Geophys. Res.-Atmos., 122, 2714–2733,
https://doi.org/10.1002/2016JD025896, 2017.
García-Morales, M. B. and Dubus, L.: Forecasting precipitation for
hydroelectric power management: how to exploit GCM's seasonal ensemble
forecasts, Int. J. Climatol., 27, 1691–1705,
https://doi.org/10.1002/joc.1608, 2007.
García-Ortega, E., Lorenzana, J., Merino, A.,
Fernández-González, S., López, L., and Sánchez, J. L.:
Performance of multi-physics ensembles in convective precipitation events
over northeastern Spain, Atmos. Res., 190, 55–67,
https://doi.org/10.1016/j.atmosres.2017.02.009, 2017.
Gebhardt, C., Theis, S. E., Paulat, M., and Ben Bouallègue, Z.:
Uncertainties in COSMO-DE precipitation forecasts introduced by model
perturbations and variation of lateral boundaries, Atmos. Res., 100,
168–177, https://doi.org/10.1016/j.atmosres.2010.12.008, 2011.
Geerts, B., Parsons, D., Ziegler, C. L., Weckwerth, T. M., Biggerstaff, M.
I., Clark, R. D., Coniglio, M. C., Demoz, B. B., Ferrare, R. A., Gallus, W.
A., Haghi, K., Hanesiak, J. M., Klein, P. M., Knupp, K. R., Kosiba, K.,
McFarquhar, G. M., Moore, J. A., Nehrir, A. R., Parker, M. D., Pinto, J. O.,
Rauber, R. M., Schumacher, R. S., Turner, D. D., Wang, Q., Wang, X., Wang,
Z., and Wurman, J.: The 2015 Plains Elevated Convection at Night Field
Project, B. Am. Meteorol. Soc., 98, 767–786,
https://doi.org/10.1175/BAMS-D-15-00257.1, 2017.
Geleyn, J.-F.: On a Simple, Parameter-Free Partition between Moistening and
Precipitation in the Kuo Scheme, Mon. Weather Rev., 113, 405–407,
https://doi.org/10.1175/1520-0493(1985)113<0405:OASPFP>2.0.CO;2, 1985.
Genio, A. D. D., Kovari, W., Yao, M.-S., and Jonas, J.: Cumulus Microphysics
and Climate Sensitivity, J. Climate, 18, 2376–2387,
https://doi.org/10.1175/JCLI3413.1, 2005.
Gentine, P., Betts, A. K., Lintner, B. R., Findell, K. L., van Heerwaarden, C.
C., Tzella, A., and D'Andrea, F.: A Probabilistic Bulk Model of Coupled
Mixed Layer and Convection. Part I: Clear-Sky Case, J. Atmos. Sci., 70,
1543–1556, https://doi.org/10.1175/JAS-D-12-0145.1, 2013a.
Gentine, P., Betts, A. K., Lintner, B. R., Findell, K. L., van Heerwaarden, C.
C., and D'Andrea, F.: A Probabilistic Bulk Model of Coupled Mixed Layer
and Convection. Part II: Shallow Convection Case, J. Atmos., Sci., 70,
1557–1576, https://doi.org/10.1175/JAS-D-12-0146.1, 2013b.
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.: Could Machine Learning Break the Convection Parameterization Deadlock?, Geophys. Res. Lett., 45, 5742–5751, https://doi.org/10.1029/2018GL078202, 2018.
Gerard, L.: An integrated package for subgrid convection, clouds and
precipitation compatible with meso-gamma scales, Q. J. Roy. Meteor. Soc.,
133, 711–730, https://doi.org/10.1002/qj.58, 2007.
Gerard, L.: Bulk mass-flux perturbation formulation for a unified approach of deep convection at high resolution, Mon. Weather Rev., 143, 4038–4063, https://doi.org/10.1175/MWR-D-15-0030.1, 2015.
Gerard, L. and Geleyn, J.-F.: Evolution of a subgrid deep convection
parametrization in a limited-area model with increasing resolution, Q. J.
Roy. Meteor. Soc., 131, 2293–2312, https://doi.org/10.1256/qj.04.72, 2005.
Gerard, L., Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C., Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng, C.-H., Neggers, R. a. J., Siebesma, A. P., and Stevens, B.: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land, Q. J. Roy. Meteor. Soc., 128, 1075–1093, https://doi.org/10.1256/003590002320373210, 2002.
Gerard, L., Piriou, J.-M., Brožková, R., Geleyn, J.-F., and Banciu,
D.: Cloud and Precipitation Parameterization in a Meso-Gamma-Scale
Operational Weather Prediction Model, Mon. Weather Rev., 137, 3960–3977,
https://doi.org/10.1175/2009MWR2750.1, 2009.
Gillespie, D. T.: An Exact Method for Numerically Simulating the Stochastic
Coalescence Process in a Cloud, J. Atmos. Sci., 32, 1977–1989,
https://doi.org/10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2, 1975.
Gillespie, D. T.: Exact stochastic simulation of coupled chemical reactions,
J. Phys. Chem., 81, 2340–2361, https://doi.org/10.1021/j100540a008, 1977.
Giorgi, F. and Lionello, P.: Climate change projections for the
Mediterranean region, Global Planet.Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-Based Model for
Boundary Layer Clouds. Part I: Method and Model Description, J. Atmos. Sci.,
59, 3540–3551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2, 2002a.
Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-Based Model for
Boundary Layer Clouds. Part II: Model Results, J. Atmos. Sci., 59,
3552–3571, https://doi.org/10.1175/1520-0469(2002)059<3552:APBMFB>2.0.CO;2, 2002b.
Gottwald, G. A., Peters, K., and Davies, L.: A data-driven method for the
stochastic parametrisation of subgrid-scale tropical convective area
fraction, J. Roy. Meteor. Soc., 142, 349–359,
https://doi.org/10.1002/qj.2655, 2016.
Grabowski, W. W.: Coupling Cloud Processes with the Large-Scale Dynamics
Using the Cloud-Resolving Convection Parameterization (CRCP), J. Atmos.
Sci., 58, 978–997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2, 2001.
Grabowski, W. W.: Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology, J. Atmos. Sci., 72, 2446–2464, https://doi.org/10.1175/JAS-D-14-0307.1, 2015.
Grabowski, W. W.: Towards Global Large Eddy Simulation:
Super-Parameterization Revisited, J. Meteorol. Soc. Jpn., 94, 327–344,
https://doi.org/10.2151/jmsj.2016-017, 2016.
Grabowski, W. W.: Can the Impact of Aerosols on Deep Convection be Isolated from Meteorological Effects in Atmospheric Observations?, J. Atmos. Sci., 75, 3347–3363, https://doi.org/10.1175/JAS-D-18-0105.1, 2018.
Grabowski, W. W. and Pawlowska, H.: Entrainment and Mixing in Clouds: The
Paluch Mixing Diagram Revisited, J. Appl. Meteorol. Clim., 32, 1767–1773,
https://doi.org/10.1175/1520-0450(1993)032<1767:EAMICT>2.0.CO;2, 1993.
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: a Cloud Resolving
Convection Parameterization for modeling the tropical convecting atmosphere,
Physica D: Nonlinear Phenomena, 133, 171–178,
https://doi.org/10.1016/S0167-2789(99)00104-9, 1999.
Grandpeix, J.-Y. and Lafore, J.-P.: A Density Current Parameterization
Coupled with Emanuel's Convection Scheme. Part I: The Models, J. Atmos.
Sci., 67, 881–897, https://doi.org/10.1175/2009JAS3044.1, 2010.
Grandpeix, J.-Y., Phillips, V., and Tailleux, R.: Improved mixing
representation in Emanuel's convection scheme, Q. J. Roy. Meteor. Soc., 130,
3207–3222, https://doi.org/10.1256/qj.03.144, 2004.
Grant, A. L. M.: Cloud-base fluxes in the cumulus-capped boundary layer, Q.
J. Roy. Meteor. Soc., 127, 407–421, https://doi.org/10.1002/qj.49712757209,
2001.
Grant, A. L. M. and Brown, A. R.: A similarity hypothesis for
shallow-cumulus transports, Q. J. Roy. Meteor. Soc., 125, 1913–1936,
https://doi.org/10.1002/qj.49712555802, 1999.
Grant, A. L. M. and Lock, A. P.: The turbulent kinetic energy budget for
shallow cumulus convection, Q. J. Roy. Meteor. Soc., 130, 401–422,
https://doi.org/10.1256/qj.03.50, 2004.
Gray, M. E. B.: Characteristics of Numerically Simulated Mesoscale
Convective Systems and Their Application to Parameterization, J. Atmos.
Sci., 57, 3953–3970, https://doi.org/10.1175/1520-0469(2001)058<3953:CONSMC>2.0.CO;2, 2000.
Gregory, D.: Estimation of entrainment rate in simple models of convective
clouds, Q. J. Roy. Meteor. Soc., 127, 53–72,
https://doi.org/10.1002/qj.49712757104, 2001.
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with
Representation of Cloud Ensemble Characteristics and Stability-Dependent
Closure, Mon. Weather Rev., 118, 1483–1506,
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990.
Gregory, D., Morcrette, J.-J., Jakob, C., Beljaars, A. C. M., and Stockdale,
T.: Revision of convection, radiation and cloud schemes in the ECMWF
integrated forecasting system, Q. J. Roy. Meteor. Soc., 126, 1685–1710,
https://doi.org/10.1002/qj.49712656607, 2000.
Grell, A. G., Dudhia, J., and Stauffer, D.: A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5), University Corporation for Atmospheric Research, No. NCAR/TN-398+STR, https://doi.org/10.5065/D60Z716B, 1994.
Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus
Parameterizations, Mon. Weather Rev., 121, 764–787,
https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques, Geophys. Res. Lett., 29, 38-1–38–4,
https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Kuo, Y.-H., and Pasch, R. J.: Semiprognostic Tests of Cumulus
Parameterization Schemes in the Middle Latitudes, Mon. Weather Rev., 119,
5–31, https://doi.org/10.1175/1520-0493(1991)119<0005:STOCPS>2.0.CO;2, 1991.
Grenier, H. and Bretherton, C. S.: A Moist PBL Parameterization for
Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine
Boundary Layers, Mon. Weather Rev., 129, 357–377,
https://doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2, 2001.
Groenemeijer, P. and Craig, G. C.: Ensemble forecasting with a stochastic convective parametrization based on equilibrium statistics, Atmos. Chem. Phys., 12, 4555–4565, https://doi.org/10.5194/acp-12-4555-2012, 2012.
Guérémy, J. F.: A continuous buoyancy based convection scheme:
one-and three-dimensional validation, Tellus A, 63, 687–706,
https://doi.org/10.1111/j.1600-0870.2011.00521.x, 2011.
Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau,
J.-P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler,
M., Piriou, J.-M., Tailleux, R., and Tomasini, M.: Modelling the diurnal
cycle of deep precipitating convection over land with cloud-resolving models
and single-column models, Q. J. Roy. Meteor. Soc., 130, 3139–3172,
https://doi.org/10.1256/qj.03.145, 2004.
Guo, H., Golaz, J.-C., Donner, L. J., Ginoux, P., and Hemler, R. S.:
Multivariate Probability Density Functions with Dynamics in the GFDL
Atmospheric General Circulation Model: Global Tests, J. Climate, 27,
2087–2108, https://doi.org/10.1175/JCLI-D-13-00347.1, 2014.
Guo, H., Golaz, J.-C., Donner, L. J., Wyman, B., Zhao, M., and Ginoux, P.:
CLUBB as a unified cloud parameterization: Opportunities and challenges,
Geophys. Res. Lett., 42, 4540–4547, https://doi.org/10.1002/2015GL063672,
2015a.
Guo, X., Lu, C., Zhao, T., Zhang, G. J., and Liu, Y.: An Observational Study
of Entrainment Rate in Deep Convection, Atmosphere-Basel, 6, 1362–1376,
https://doi.org/10.3390/atmos6091362, 2015b.
Gustafson, W. I., Vogelmann, A. M., Li, Z., Cheng, X., Dumas, K. K., Endo,
S., Johnson, K. L., Krishna, B., Fairless, T., and Xiao, H.: The Large-Eddy
Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic
Simulation and Observation (LASSO) Activity for Continental Shallow
Convection, B. Am. Meteorol. Soc., 101, E462–E479,
https://doi.org/10.1175/BAMS-D-19-0065.1, 2020.
Hack, J. J.: Parameterization of moist convection in the National Center for
Atmospheric Research community climate model (CCM2), J. Geophys.
Res.-Atmos., 99, 5551–5568, https://doi.org/10.1029/93JD03478, 1994.
Hack, J. J., Schubert, W. H., and Dias, P. L. S.: A Spectral Cumulus
Parameterization for Use in Numerical Models of the Tropical Atmosphere,
Mon. Weather Rev., 112, 704–716, 1984.
Hagos, S., Feng, Z., Plant, R. S., Houze, R. A., and Xiao, H.: A Stochastic
Framework for Modeling the Population Dynamics of Convective Clouds, J. Adv.
Model. Earth Sy., 10, 448–465, https://doi.org/10.1002/2017MS001214, 2018.
Han, J. and Bretherton, C. S.: TKE-Based Moist Eddy-Diffusivity Mass-Flux
(EDMF) Parameterization for Vertical Turbulent Mixing, Weather Forecast.,
34, 869–886, https://doi.org/10.1175/WAF-D-18-0146.1, 2019.
Han, J. and Pan, H.-L.: Revision of Convection and Vertical Diffusion
Schemes in the NCEP Global Forecast System, Weather Forecast., 26, 520–533,
https://doi.org/10.1175/WAF-D-10-05038.1, 2011.
Han, J., Witek, M. L., Teixeira, J., Sun, R., Pan, H.-L., Fletcher, J. K.,
and Bretherton, C. S.: Implementation in the NCEP GFS of a Hybrid
Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization with
Dissipative Heating and Modified Stable Boundary Layer Mixing, Weather
Forecast., 31, 341–352, https://doi.org/10.1175/WAF-D-15-0053.1, 2016a.
Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada, V., and Yang, F.:
Updates in the NCEP GFS Cumulus Convection Schemes with Scale and Aerosol
Awareness, Weather Forecast., 32, 2005–2017,
https://doi.org/10.1175/WAF-D-17-0046.1, 2017.
Han, J.-Y., Hong, S.-Y., Lim, K.-S. S., and Han, J.: Sensitivity of a
Cumulus Parameterization Scheme to Precipitation Production Representation
and Its Impact on a Heavy Rain Event over Korea, Mon. Weather Rev., 144,
2125–2135, https://doi.org/10.1175/MWR-D-15-0255.1, 2016b.
Han, J.-Y., Kim, S.-Y., Choi, I.-J., and Jin, E. K.: Effects of the
Convective Triggering Process in a Cumulus Parameterization Scheme on the
Diurnal Variation of Precipitation over East Asia, Atmosphere-Basel, 10, 28,
https://doi.org/10.3390/atmos10010028, 2019.
Han, J.-Y., Hong, S.-Y., and Kwon, Y. C.: The Performance of a Revised
Simplified Arakawa–Schubert (SAS) Convection Scheme in the Medium-Range
Forecasts of the Korean Integrated Model (KIM), Weather Forecast., 35,
1113–1128, https://doi.org/10.1175/WAF-D-19-0219.1, 2020.
Hannah, W. M. and Maloney, E. D.: The Role of Moisture–Convection Feedbacks
in Simulating the Madden–Julian Oscillation, J. Climate, 24, 2754–2770,
https://doi.org/10.1175/2011JCLI3803.1, 2011.
Hara, M., Yoshikane, T., Takahashi, H. G., Kimura, F., Noda, A., and
Tokioka, T.: Assessment of the Diurnal Cycle of Precipitation over the
Maritime Continent Simulated by a 20 km Mesh GCM Using TRMM PR Data, J.
Meteorol. Soc. Jpn., 87A, 413–424, https://doi.org/10.2151/jmsj.87A.413,
2009.
Hararuk, O., Xia, J., and Luo, Y.: Evaluation and improvement of a global
land model against soil carbon data using a Bayesian Markov chain Monte
Carlo method, J. Geophys. Res.-Biogeo., 119, 403–417,
https://doi.org/10.1002/2013JG002535, 2014.
Heus, T. and Jonker, H. J. J.: Subsiding Shells around Shallow Cumulus Clouds, J. Atmos. Sci., 65, 1003–1018, https://doi.org/10.1175/2007JAS2322.1, 2008.
Heus, T., van Dijk, G., Jonker, H. J. J., and Akker, H. E. A. V. den: Mixing
in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking, J. Atmos.
Sci., 65, 2581–2597, https://doi.org/10.1175/2008JAS2572.1, 2008.
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice Cloud Particle Size
Distributions and Pressure-Dependent Terminal Velocities from In Situ
Observations at Temperatures from 0∘ to −86 ∘C, J.
Atmos. Sci., 70, 4123–4154, https://doi.org/10.1175/JAS-D-12-0124.1, 2013.
Hirons, L. C., Inness, P., Vitart, F., and Bechtold, P.: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO, Q. J. Roy. Meteor. Soc., 139675, 1417–1426, https://doi.org/10.1002/qj.2060, 2013.
Hirota, N., Takayabu, Y. N., Watanabe, M., Kimoto, M., and Chikira, M.: Role
of Convective Entrainment in Spatial Distributions of and Temporal
Variations in Precipitation over Tropical Oceans, J. Climate, 27,
8707–8723, https://doi.org/10.1175/JCLI-D-13-00701.1, 2014.
Hohenegger, C. and Bretherton, C. S.: Simulating deep convection with a shallow convection scheme, Atmos. Chem. Phys., 11, 10389–10406, https://doi.org/10.5194/acp-11-10389-2011, 2011.
Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J.
W., Warren, D. A., Parsons, R., and Affleck, D.: Decreasing fire season
precipitation increased recent western US forest wildfire activity, P. Natl.
Acad. Sci. USA, 115, E8349–E8357, https://doi.org/10.1073/pnas.1802316115,
2018.
Holloway, C. E., Woolnough, S. J., and Lister, G. M. S.: Precipitation
distributions for explicit versus parametrized convection in a large-domain
high-resolution tropical case study, Q. J. Roy. Meteor. Soc., 138,
1692–1708, https://doi.org/10.1002/qj.1903, 2012.
Holloway, C. E., Woolnough, S. J., and Lister, G. M. S.: The Effects of
Explicit versus Parameterized Convection on the MJO in a Large-Domain
High-Resolution Tropical Case Study. Part I: Characterization of Large-Scale
Organization and Propagation, J. ATmos. Sci., 70, 1342–1369,
https://doi.org/10.1175/JAS-D-12-0227.1, 2013.
Holtslag, A. A. M.: Modelling of atmospheric boundary layers, Royal
Netherlands Academy of Arts and Sciences, 85, 110, 1998.
Hong, S.-Y. and Pan, H.-L.: Nonlocal Boundary Layer Vertical Diffusion in a
Medium-Range Forecast Model, Mon. Weather Rev., 124, 2322–2339,
https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2, 1996.
Hong, S.-Y. and Pan, H.-L.: Convective Trigger Function for a Mass-Flux
Cumulus Parameterization Scheme, Mon. Weather Rev., 126, 2599–2620,
https://doi.org/10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2, 1998.
Hong, S.-Y., Park, H., Cheong, H.-B., Kim, J.-E. E., Koo, M.-S., Jang, J.,
Ham, S., Hwang, S.-O., Park, B.-K., Chang, E.-C., and Li, H.: The
Global/Regional Integrated Model system (GRIMs), Asia-Pac. J. Atmos. Sci.,
49, 219–243, https://doi.org/10.1007/s13143-013-0023-0, 2013.
Honnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers,
R., Plant, R. S., Shin, H. H., Tomassini, L., and Zhou, B.: The Atmospheric
Boundary Layer and the “Gray Zone” of Turbulence: A Critical Review, J.
Geophys. Res.-Atmos., 125, e2019JD030317,
https://doi.org/10.1029/2019JD030317, 2020.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation
Measurement Mission, B. Am. Meteorol. Soc., 95, 701–722,
https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Houghton, H. G. and Cramer, H. E.: a Theory of Entrainment in Convective
Currents, J. Atmos. Sci., 8, 95–102,
https://doi.org/10.1175/1520-0469(1951)008<0095:ATOEIC>2.0.CO;2, 1951.
Hourdin, F., Couvreux, F., and Menut, L.: Parameterization of the Dry
Convective Boundary Layer Based on a Mass Flux Representation of Thermals,
J. Atmos. Sci., 59, 1105–1123,
https://doi.org/10.1175/1520-0469(2002)059<1105:POTDCB>2.0.CO;2, 2002.
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F.,
Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L.,
Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the atmospheric
component of the IPSL climate model with revisited parameterizations for
clouds and convection, Clim. Dynam., 40, 2193–2222,
https://doi.org/10.1007/s00382-012-1343-y, 2013.
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan,
Q., Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C.,
Tomassini, L., Watanabe, M., and Williamson, D.: The Art and Science of
Climate Model Tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R.,
Kidd, C., Nelkin, E. J., and Xie, P.: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm Theoretical Basis Document (ATBD), 4, 26, 2015.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., Tan, J.: GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06, edited by: Savtchenko, A., Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (last access: 20 November 2020), 2019.
IPCC: Climate Change 2014: synthesis report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, 151, 2014.
Jackson, C., Sen, M. K., and Stoffa, P. L.: An Efficient Stochastic Bayesian
Approach to Optimal Parameter and Uncertainty Estimation for Climate Model
Predictions, J. Climate, 17, 2828–2841,
https://doi.org/10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2, 2004.
Jakob, C.: Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportunities, and strategies, B. Am. Meterol. Soc., 91, 869–876, https://doi.org/10.1175/2009BAMS2898.1, 2010.
Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y., and Bowman, K. P.: Error
Reduction and Convergence in Climate Prediction, J. Climate, 21, 6698–6709,
https://doi.org/10.1175/2008JCLI2112.1, 2008.
Jakob, C. and Siebesma, A. P.: A New Subcloud Model for Mass-Flux Convection
Schemes: Influence on Triggering, Updraft Properties, and Model Climate,
Mon. Weather Rev., 131, 2765–2778,
https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2, 2003.
Jam, A., Hourdin, F., Rio, C., and Couvreux, F.: Resolved Versus
Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical
Scheme for Cumulus Clouds, Boundary-Layer Meteorol, Bound.-Lay. Meteorol.,
147, 421–441, https://doi.org/10.1007/s10546-012-9789-3, 2013.
James, R. P. and Markowski, P. M.: A Numerical Investigation of the Effects
of Dry Air Aloft on Deep Convection, Mon. Weather Rev., 138, 140–161,
https://doi.org/10.1175/2009MWR3018.1, 2010.
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jankov, I. and Gallus, W. A.: Some contrasts between good and bad forecasts
of warm season MCS rainfall, Journal of Hydrology, Mon. Weather Rev., 288,
122–152, https://doi.org/10.1016/j.jhydrol.2003.11.013, 2004.
Jankov, I., Gallus, W. A., Segal, M., Shaw, B., and Koch, S. E.: The Impact
of Different WRF Model Physical Parameterizations and Their Interactions on
Warm Season MCS Rainfall, Weather Forecast., 20, 1048–1060,
https://doi.org/10.1175/WAF888.1, 2005.
Jensen, J. B., Austin, P. H., Baker, M. B., and Blyth, A. M.: Turbulent
Mixing, Spectral Evolution and Dynamics in a Warm Cumulus Cloud, J. Atmos.
Sci., 42, 173–192, https://doi.org/10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2, 1985.
Jensen, M. P. and Del Genio, A. D.: Factors Limiting Convective Cloud-Top
Height at the ARM Nauru Island Climate Research Facility, J. Climate, 19,
2105–2117, https://doi.org/10.1175/JCLI3722.1, 2006.
Jeyaratnam, J., Luo, Z. J., Giangrande, S. E., Wang, D., and Masunaga, H.: A
Satellite-Based Estimate of Convective Vertical Velocity and Convective Mass
Flux: Global Survey and Comparison With Radar Wind Profiler Observations,
Geophys. Res. Lett., 48, e2020GL090675,
https://doi.org/10.1029/2020GL090675, 2021.
Jiang, H., Feingold, G., and Sorooshian, A.: Effect of Aerosol on the
Susceptibility and Efficiency of Precipitation in Warm Trade Cumulus Clouds,
J. Atmos. Sci., 67, 3525–3540, https://doi.org/10.1175/2010JAS3484.1, 2010.
Johnson, R. H.: The Role of Convective-Scale Precipitation Downdrafts in
Cumulus and Synoptic-Scale Interactions, J. Atmos. Sci., 33, 1890–1910,
https://doi.org/10.1175/1520-0469(1976)033<1890:TROCSP>2.0.CO;2, 1976.
Johnson, R. H.: Diagnosis of Convective and Mesoscale Motions During Phase
IH of Gate, J. Atmos. Sci., 37, 733–753,
https://doi.org/10.1175/1520-0469(1980)037<0733:DOCAMM>2.0.CO;2, 1980.
Jonker, H. J. J., Verzijlbergh, R. A., Heus, T., and Siebesma, A. P.: The Influence of the Sub-Cloud Moisture Field on Cloud Size Distributions and the Consequences for Entrainment, Extended Abstracts, 17th Symp. on Boundary Layers and Turbulence, 23 May 2006, SanDiego, CA, 2006.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH:: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol., 5,
487–503, 2004.
Jung, J.-H. and Arakawa, A.: Modeling the moist-convective atmosphere with a
Quasi-3-D Multiscale Modeling Framework (Q3D MMF), J. Adv. Model. Earth Sy.,
6, 185–205, https://doi.org/10.1002/2013MS000295, 2014.
Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, J.
Appl. Meteorol. Clim., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining
Plume Model and Its Application in Convective Parameterization, J. Atmos.
Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990.
Kain, J. S. and Fritsch, J. M.: The role of the convective “trigger
function” in numerical forecasts of mesoscale convective systems, Meteorol.
Atmos. Phys., 49, 93–106, https://doi.org/10.1007/BF01025402, 1992.
Kain, J. S. and Fritsch, J. M.: Convective Parameterization for Mesoscale
Models: The Kain-Fritsch Scheme, in: The Representation of Cumulus
Convection in Numerical Models, Meteorological Monographs, American
Meteorological Society, 246 pp., https://doi.org/10.1175/0065-9401-24.46.1, 1993.
Kain, J. S., Weiss, S. J., Levit, J. J., Baldwin, M. E., and Bright, D. R.:
Examination of Convection-Allowing Configurations of the WRF Model for the
Prediction of Severe Convective Weather: The SPC/NSSL Spring Program 2004,
Weather Forecast., 21, 167–181, https://doi.org/10.1175/WAF906.1, 2006.
Karlický, J., Huszár, P., Nováková, T., Belda, M., Švábik, F., Ďoubalová, J., and Halenka, T.: The “urban meteorology island”: a multi-model ensemble analysis, Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020, 2020.
Kawecki, S., Henebry, G. M., and Steiner, A. L.: Effects of Urban Plume Aerosols on a Mesoscale Convective System, J. Atmos. Sci., 73, 4641–4660, https://doi.org/10.1175/JAS-D-16-0084.1, 2016.
Keane, R. J., Craig, G. C., Keil, C., and Zängl, G.: The Plant–Craig
Stochastic Convection Scheme in ICON and Its Scale Adaptivity, J. Atmos.
Sci., 71, 3404–3415, https://doi.org/10.1175/JAS-D-13-0331.1, 2014.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of
Rainfall in a Very High-Resolution Regional Climate Model, J. Climate, 25,
5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012.
Kessler, E.: On the Distribution and Continuity of Water Substance in
Atmospheric Circulations, in: On the Distribution and Continuity of Water
Substance in Atmospheric Circulations, Meteorological Monographs, vol. 10,
American Meteorological Society, https://doi.org/10.1007/978-1-935704-36-2_1, 1969.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. Roy. Meteor. Soc., 131,
2639–2663, https://doi.org/10.1256/qj.04.62, 2005.
Khairoutdinov, M. and Randall, D.: High-Resolution Simulation of
Shallow-to-Deep Convection Transition over Land, J. Atmos. Sci., 63,
3421–3436, https://doi.org/10.1175/JAS3810.1, 2006.
Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the
Atmospheric General Circulation Using a Cloud-Resolving Model as a
Superparameterization of Physical Processes, J. Atmos. Sci., 62, 2136–2154,
https://doi.org/10.1175/JAS3453.1, 2005.
Khairoutdinov, M. F. and Randall, D. A.: Cloud Resolving Modeling of the ARM
Summer 1997 IOP: Model Formulation, Results, Uncertainties, and
Sensitivities, J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2, 2003.
Khouider, B.: A coarse grained stochastic multi-type particle interacting
model for tropical convection: Nearest neighbour interactions, Comm. Math.
Sci., 12, 1379–1407, https://doi.org/10.4310/CMS.2014.V12.N8.A1, 2014.
Khouider, B. and Majda, A.: Multicloud Models for Organized Tropical
Convection: Enhanced Congestus Heating, J. Atmos. Sci., 65, 895–914,
https://doi.org/10.1175/2007JAS2408.1, 2008.
Khouider, B. and Majda, A. J.: A Simple Multicloud Parameterization for
Convectively Coupled Tropical Waves. Part I: Linear Analysis, J. Atmos.
Sci., 63, 1308–1323, https://doi.org/10.1175/JAS3677.1, 2006.
Khouider, B. and Moncrieff, M. W.: Organized Convection Parameterization for
the ITCZ, J. Atmos. Sci., 72, 3073–3096,
https://doi.org/10.1175/JAS-D-15-0006.1, 2015.
Khouider, B., Majda, A. J., and Katsoulakis, M. A.: Coarse-grained
stochastic models for tropical convection and climate, P. Natl. Acad. Sci.
USA, 100, 11941–11946, https://doi.org/10.1073/pnas.1634951100, 2003.
Khouider, B., Biello, J., and Majda, A. J.: A stochastic multicloud model
for tropical convection, Comm. Math. Sci., 8, 187–216, 2010.
Kim, D. and Kang, I.-S.: A bulk mass flux convection scheme for climate
model: description and moisture sensitivity, Clim. Dynam., 38, 411–429,
https://doi.org/10.1007/s00382-010-0972-2, 2012.
Kim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W., and Kang, I.-S.:
A Systematic Relationship between Intraseasonal Variability and Mean State
Bias in AGCM Simulations, J. Climate, 24, 5506–5520,
https://doi.org/10.1175/2011JCLI4177.1, 2011.
Kim, D., Sobel, A. H., Del Genio, A. D., Chen, Y., Camargo, S. J., Yao,
M.-S., Kelley, M., and Nazarenko, L.: The Tropical Subseasonal Variability
Simulated in the NASA GISS General Circulation Model, J. Climate, 25,
4641–4659, https://doi.org/10.1175/JCLI-D-11-00447.1, 2012.
Kim, D., Del Genio, A. D., and Yao, M.-S.: Moist convection scheme in Model E2, arXiv preprint arXiv:1312.7496, 2013.
Kirshbaum, D. J. and Grant, A. L. M.: Invigoration of cumulus cloud fields
by mesoscale ascent, Q. J. Roy. Meteor. Soc., 138, 2136–2150,
https://doi.org/10.1002/qj.1954, 2012.
Kirshbaum, D. J. and Lamer, K.: Climatological Sensitivities of
Shallow-Cumulus Bulk Entrainment in Continental and Oceanic Locations, J.
Atmos. Sci., 78, 2429–2443, https://doi.org/10.1175/JAS-D-20-0377.1, 2021.
Klein, S. A. and Hartmann, D. L.: The Seasonal Cycle of Low Stratiform
Clouds, J. Climate, 6, 1587–1606,
https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993.
Klingaman, N. P. and Woolnough, S. J.: Using a case-study approach to
improve the Madden–Julian oscillation in the Hadley Centre model, Q. J.
Roy. Meteor. Soc., 140, 2491–2505, https://doi.org/10.1002/qj.2314, 2014.
Klocke, D., Pincus, R., and Quaas, J.: On Constraining Estimates of Climate
Sensitivity with Present-Day Observations through Model Weighting, J.
Climate, 24, 6092–6099, https://doi.org/10.1175/2011JCLI4193.1, 2011.
Knievel, J. C., Ahijevych, D. A., and Manning, K. W.: Using Temporal Modes
of Rainfall to Evaluate the Performance of a Numerical Weather Prediction
Model, Mon. Weather Rev., 132, 2995–3009,
https://doi.org/10.1175/MWR2828.1, 2004.
Köhler, M.: Improved prediction of boundary layer clouds, ECMWF
Newsletter, 104, 18–22, 2005.
Köhler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry
convective and stratocumulus-topped boundary layer in the ECMWF model, Q. J.
Roy. Meteor. Soc.,, 137, 43–57, https://doi.org/10.1002/qj.713, 2011.
Kooperman, G. J., Pritchard, M. S., O'Brien, T. A., and Timmermans, B. W.:
Rainfall From Resolved Rather Than Parameterized Processes Better Represents
the Present-Day and Climate Change Response of Moderate Rates in the
Community Atmosphere Model, J. Adv. Model. Earth Sy., 10, 971–988,
https://doi.org/10.1002/2017MS001188, 2018.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol invigoration and restructuring of Atlantic convective clouds,
Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL023187, 2005.
Kreitzberg, C. W. and Perkey, D. J.: Release of Potential Instability: Part
I. A Sequential Plume Model within a Hydrostatic Primitive Equation Model,
J. Atmos. Sci., 33, 456–475,
https://doi.org/10.1175/1520-0469(1976)033<0456:ROPIPI>2.0.CO;2, 1976.
Krishnamurthy, V. and Stan, C.: Simulation of the South American climate by
a coupled model with super-parameterized convection, Clim. Dynam., 44,
2369–2382, https://doi.org/10.1007/s00382-015-2476-6, 2015.
Krishnamurti, T. N., Ramanathan, Y., Pan, H.-L., Pasch, R. J., and Molinari,
J.: Cumulus Parameterization and Rainfall Rates I, Mon. Weather Rev., 108,
465–472, https://doi.org/10.1175/1520-0493(1980)108<0465:CPARRI>2.0.CO;2, 1980.
Krishnamurti, T. N., Low-Nam, S., and Pasch, R.: Cumulus Parameterization
and Rainfall Rates II, Mon. Weather Rev., 111, 815–828,
https://doi.org/10.1175/1520-0493(1983)111<0815:CPARRI>2.0.CO;2, 1983.
Krueger, S. K.: Numerical Simulation of Tropical Cumulus Clouds and Their
Interaction with the Subcloud Layer, J. Atmos. Sci., 45, 2221–2250,
https://doi.org/10.1175/1520-0469(1988)045<2221:NSOTCC>2.0.CO;2, 1988.
Kuang, Z.: Modeling the Interaction between Cumulus Convection and Linear
Gravity Waves Using a Limited-Domain Cloud System–Resolving Model, J.
Atmos. Sci., 65, 576–591, https://doi.org/10.1175/2007JAS2399.1, 2008.
Kuang, Z. and Bretherton, C. S.: A Mass-Flux Scheme View of a
High-Resolution Simulation of a Transition from Shallow to Deep Cumulus
Convection, J. Atmos. Sci., 63, 1895–1909,
https://doi.org/10.1175/JAS3723.1, 2006.
Kucera, P. A., Ebert, E. E., Turk, F. J., Levizzani, V., Kirschbaum, D.,
Tapiador, F. J., Loew, A., and Borsche, M.: Precipitation from Space:
Advancing Earth System Science, B. Am. Meteorol. Soc., 94, 365–375,
https://doi.org/10.1175/BAMS-D-11-00171.1, 2013.
Kuell, V., Gassmann, A., and Bott, A.: Towards a new hybrid cumulus
parametrization scheme for use in non-hydrostatic weather prediction models,
Q. J. Roy. Meteor. Soc., 133, 479–490, https://doi.org/10.1002/qj.28, 2007.
Kumar, B., Götzfried, P., Suresh, N., Schumacher, J., and Shaw, R. A.:
Scale Dependence of Cloud Microphysical Response to Turbulent Entrainment
and Mixing, J. Adv. Model. Earth Sy.,10, 2777–2785,
https://doi.org/10.1029/2018MS001487, 2018.
Kumar, D. and Dimri, A. P.: Sensitivity of convective and land surface
parameterization in the simulation of contrasting monsoons over CORDEX-South
Asia domain using RegCM-4.4.5.5, Theor. Appl. Climatol., 139, 297–322,
https://doi.org/10.1007/s00704-019-02976-9, 2020.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical
Rainfall Measuring Mission (TRMM) Sensor Package, J. Atmos. Ocean. Tech.,
15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998.
Kuo, H. L.: On the Controlling Influences of Eddy Diffusion on Thermal
Convection, J. Atmos. Sci., 19, 236–243,
https://doi.org/10.1175/1520-0469(1962)019<0236:OTCIOE>2.0.CO;2, 1962.
Kuo, H. L.: On Formation and Intensification of Tropical Cyclones Through
Latent Heat Release by Cumulus Convection, J. Atmos. Sci., 22, 40–63,
https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2, 1965.
Kuo, H. L.: Further Studies of the Parameterization of the Influence of
Cumulus Convection on Large-Scale Flow, J. Atmos. Sci., 31, 1232–1240,
https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2, 1974.
Kuo, Y.-H. and Anthes, R. A.: Semiprognostic Tests of Kuo–Type Cumulus
Parameterization Schemes in an Extratropical Convective System, Mon. Weather Rev., 112, 1498–1509, https://doi.org/10.1175/1520-0493(1984)112<1498:STOKCP>2.0.CO;2, 1984.
Kurihara, Y.: A Scheme of Moist Convective Adjustment, Mon. Weather Rev., 101, 547–553, https://doi.org/10.1175/1520-0493(1973)101<0547:ASOMCA>2.3.CO;2, 1973.
Kurowski, M. J., Thrastarson, H. T., Suselj, K., and Teixeira, J.: Towards unifying the planetary boundary layer and shallow convection in CAM5 with the eddy-diffusivity/mass-flux approach, Atmosphere-Basel, 10, 484, https://doi.org/10.3390/atmos10090484, 2019.
Kwon, Y. C. and Hong, S.-Y.: A Mass-Flux Cumulus Parameterization Scheme
across Gray-Zone Resolutions, Mon. Weather Rev., 145, 583–598,
https://doi.org/10.1175/MWR-D-16-0034.1, 2017.
Lamontagne, R. G. and Telford, J. W.: Cloud Top Mixing in Small Cumuli.,
Journal of Atmospheric Sciences, J. Atmos. Sci., 40, 2148–2156,
https://doi.org/10.1175/1520-0469(1983)040<2148:CTMISC>2.0.CO;2, 1983.
Lappen, C.-L. and Randall, D. A.: Toward a Unified Parameterization of the
Boundary Layer and Moist Convection. Part I: A New Type of Mass-Flux Model,
J. Atmos. Sci., 58, 2021–2036,
https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2, 2001a.
Lappen, C.-L. and Randall, D. A.: Toward a Unified Parameterization of the
Boundary Layer and Moist Convection. Part II: Lateral Mass Exchanges and
Subplume-Scale Fluxes, J. Atmos. Sci., 58, 2037–2051,
https://doi.org/10.1175/1520-0469(2001)058<2037:TAUPOT>2.0.CO;2, 2001b.
Larson, V. E.: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere, arXiv preprint arXiv:1711.03675, 2020.
Larson, V. E. and Schanen, D. P.: The Subgrid Importance Latin Hypercube Sampler (SILHS): a multivariate subcolumn generator, Geosci. Model Dev., 6, 1813–1829, https://doi.org/10.5194/gmd-6-1813-2013, 2013.
Larson, V. E., Golaz, J.-C., and Cotton, W. R.: Small-Scale and Mesoscale
Variability in Cloudy Boundary Layers: Joint Probability Density Functions,
J. Atmos. Sci., 59, 3519–3539,
https://doi.org/10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2, 2002.
Larson, V. E., Golaz, J.-C., Jiang, H., and Cotton, W. R.: Supplying Local
Microphysics Parameterizations with Information about Subgrid Variability:
Latin Hypercube Sampling, J. Atmos. Sci., 62, 4010–4026,
https://doi.org/10.1175/JAS3624.1, 2005.
Larson, V. E., Schanen, D. P., Wang, M., Ovchinnikov, M., and Ghan, S.: PDF
Parameterization of Boundary Layer Clouds in Models with Horizontal Grid
Spacings from 2 to 16 km, Mon. Weather Rev., 140, 285–306,
https://doi.org/10.1175/MWR-D-10-05059.1, 2012.
Le Trent, H. and Li, Z.-X.: Sensitivity of an atmospheric general
circulation model to prescribed SST changes: feedback effects associated
with the simulation of cloud optical properties, Clim. Dynam., 5, 175–187,
https://doi.org/10.1007/BF00251808, 1991.
Leary, C. A. and Houze, R. A.: The Contribution of Mesoscale Motions to the
Mass and Heat Fluxes of an Intense Tropical Convective System, J. Atmos.
Sci., 37, 784–796, https://doi.org/10.1175/1520-0469(1980)037<0784:TCOMMT>2.0.CO;2, 1980.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Held, I. M., Lau, N.-C.,
Ploshay, J. J., Kumar, A., Kim, H.-K., and Schemm, J.-K. E.: An Analysis of
the Warm-Season Diurnal Cycle over the Continental United States and
Northern Mexico in General Circulation Models, J. Hydormeteorol., 8,
344–366, https://doi.org/10.1175/JHM581.1, 2007a.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Held, I. M., Kumar, A., Bell, T.
L., Schemm, J.-K. E., Lau, N.-C., Ploshay, J. J., Kim, H.-K., and Yoo,
S.-H.: Sensitivity to Horizontal Resolution in the AGCM Simulations of Warm
Season Diurnal Cycle of Precipitation over the United States and Northern
Mexico, J. Climate, 20, 1862–1881, https://doi.org/10.1175/JCLI4090.1,
2007b.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Schemm, J.-K. E., Pan, H.-L.,
Han, J., and Yoo, S.-H.: Role of convection triggers in the simulation of
the diurnal cycle of precipitation over the United States Great Plains in a
general circulation model, J. Geophys. Res.-Atmos., 113, D02111,
https://doi.org/10.1029/2007JD008984, 2008.
Lee, Y. H., Park, S. K., and Chang, D.-E.: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast, Ann. Geophys., 24, 3185–3189, https://doi.org/10.5194/angeo-24-3185-2006, 2006.
LeMone, M. A. and Pennell, W. T.: The Relationship of Trade Wind Cumulus
Distribution to Subcloud Layer Fluxes and Structure, Mon. Weather Rev., 104,
524–539, https://doi.org/10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2, 1976.
Levizzani, V. and Cattani, E.: Satellite Remote Sensing of Precipitation and
the Terrestrial Water Cycle in a Changing Climate, Remote Sens.-Basel, 11,
2301, https://doi.org/10.3390/rs11192301, 2019.
Lewellen, W. S. and Yoh, S.: Binormal Model of Ensemble Partial Cloudiness,
J. Atmos. Sci., 50, 1228–1237,
https://doi.org/10.1175/1520-0469(1993)050<1228:BMOEPC>2.0.CO;2, 1993.
Li, L., Wang, B., Yuqing, W., and Hui, W.: Improvements in climate
simulation with modifications to the Tiedtke convective parameterization in
the grid-point atmospheric model of IAP LASG (GAMIL), Adv. Atmos. Sci., 24,
323–335, https://doi.org/10.1007/s00376-007-0323-3, 2007.
Li, S., Zhang, S., Liu, Z., Lu, L., Zhu, J., Zhang, X., Wu, X., Zhao, M.,
Vecchi, G. A., Zhang, R.-H., and Lin, X.: Estimating Convection Parameters
in the GFDL CM2.1 Model Using Ensemble Data Assimilation, J. Adv. Model.
Earth Sy., 10, 989–1010, https://doi.org/10.1002/2017MS001222, 2018.
Liang, F., Cheng, Y., and Lin, G.: Simulated Stochastic Approximation
Annealing for Global Optimization With a Square-Root Cooling Schedule, J.
Am. Stat. Assoc., 109, 847–863, https://doi.org/10.1080/01621459.2013.872993,
2014.
Lim, K.-S. S., Hong, S.-Y., Yoon, J.-H., and Han, J.: Simulation of the
Summer Monsoon Rainfall over East Asia Using the NCEP GFS Cumulus
Parameterization at Different Horizontal Resolutions, Weather Forecast., 29,
1143–1154, https://doi.org/10.1175/WAF-D-13-00143.1, 2014.
Lin, J. W.-B. and Neelin, J. D.: Influence of a stochastic moist convective
parameterization on tropical climate variability, Geophys. Res. Lett., 27,
3691–3694, https://doi.org/10.1029/2000GL011964, 2000.
Lin, J. W.-B. and Neelin, J. D.: Considerations for Stochastic Convective
Parameterization, J. Atmos. Sci., 59, 959–975,
https://doi.org/10.1175/1520-0469(2002)059<0959:CFSCP>2.0.CO;2, 2002.
Lin, J. W.-B. and Neelin, J. D.: Toward stochastic deep convective
parameterization in general circulation models, Geophys. Res. Lett., 30, 1162,
https://doi.org/10.1029/2002GL016203, 2003.
Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R.,
Lin, W., Wheeler, M. C., Schubert, S. D., Genio, A. D., Donner, L. J.,
Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P. J., Roeckner, E., and
Scinocca, J. F.: Tropical Intraseasonal Variability in 14 IPCC AR4 Climate
Models. Part I: Convective Signals, J. Climate, 19, 2665–2690,
https://doi.org/10.1175/JCLI3735.1, 2006.
Lin, J.-L., Lee, M.-I., Kim, D., Kang, I.-S., and Frierson, D. M. W.: The
Impacts of Convective Parameterization and Moisture Triggering on
AGCM-Simulated Convectively Coupled Equatorial Waves, J. Climate, 21,
883–909, https://doi.org/10.1175/2007JCLI1790.1, 2008.
Lin, J.-L., Qian, T., Shinoda, T., and Li, S.: Is the Tropical Atmosphere in
Convective Quasi-Equilibrium?, J. Climate, 28, 4357–4372,
https://doi.org/10.1175/JCLI-D-14-00681.1, 2015.
Lindzen, R. S.: Some remarks on cumulus parameterization, Pure Appl.
Geophys., 126, 123–135, https://doi.org/10.1007/BF00876918, 1988.
Lindzen, R. S., Chou, M.-D., and Hou, A. Y.: Does the Earth Have an Adaptive
Infrared Iris?, B. Am. Meteorol. Soc., 82, 417–432,
https://doi.org/10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2, 2001.
Liu, C., Fedorovich, E., Huang, J., Hu, X.-M., Wang, Y., and Lee, X.: Impact
of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric
Convective Boundary Layer: A Large-Eddy Simulation Study, J. Atmos. Sci.,
76, 785–799, https://doi.org/10.1175/JAS-D-18-0107.1, 2019.
Lohmann, U.: Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM, Atmos. Chem. Phys., 8, 2115–2131, https://doi.org/10.5194/acp-8-2115-2008, 2008.
Lord, S. J., Chao, W. C., and Arakawa, A.: Interaction of a Cumulus Cloud
Ensemble with the Large-Scale Environment. Part IV: The Discrete Model, J.
Atmos. Sci., 39, 104–113,
https://doi.org/10.1175/1520-0469(1982)039<0104:IOACCE>2.0.CO;2, 1982.
Loriaux, J. M., Lenderink, G., Roode, S. R. D., and Siebesma, A. P.:
Understanding Convective Extreme Precipitation Scaling Using Observations
and an Entraining Plume Model, J. Atmos. Sci., 70, 3641–3655,
https://doi.org/10.1175/JAS-D-12-0317.1, 2013.
Lotka, A. J.: Contribution to the Theory of Periodic Reactions, J. Phys.
Chem., 14, 271-274, https://doi.org/10.1021/j150111a004, 1910.
Lotka, A. J.: Analytical Note on Certain Rhythmic Relations in Organic
Systems, P. Natl. Acad. Sci. USA, 6, 410–415,
https://doi.org/10.1073/pnas.6.7.410, 1920.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol, 17, 187–202, https://doi.org/10.1007/BF00117978,
1979.
Lu, B. and Ren, H.-L.: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs, Dynam. Atmos. Oceans, 76, 127–140, https://doi.org/10.1016/j.dynatmoce.2016.10.005, 2016.
Lu, C., Liu, Y., and Niu, S.: Examination of turbulent entrainment-mixing
mechanisms using a combined approach, J. Geophys. Res.-Atmos., 116, D20207,
https://doi.org/10.1029/2011JD015944, 2011.
Lu, C., Liu, Y., Yum, S. S., Niu, S., and Endo, S.: A new approach for
estimating entrainment rate in cumulus clouds, Geophys. Res. Lett., 39, L04802,
https://doi.org/10.1029/2011GL050546, 2012.
Lu, C., Liu, Y., Niu, S., and Endo, S.: Scale dependence of
entrainment-mixing mechanisms in cumulus clouds, J. Geophys. Res.-Atmos.,
119, 13877–13890, https://doi.org/10.1002/2014JD022265, 2014.
Lu, C., Sun, C., Liu, Y., Zhang, G. J., Lin, Y., Gao, W., Niu, S., Yin, Y.,
Qiu, Y., and Jin, L.: Observational Relationship Between Entrainment Rate
and Environmental Relative Humidity and Implications for Convection
Parameterization, Geophys. Res. Lett., 45, 13495–13504,
https://doi.org/10.1029/2018GL080264, 2018.
Luo, Z. J., Liu, G. Y., and Stephens, G. L.: Use of A-Train data to estimate
convective buoyancy and entrainment rate, Geophys. Res. Lett., 37, L09804,
https://doi.org/10.1029/2010GL042904, 2010.
Ma, L.-M. and Tan, Z.-M.: Improving the behavior of the cumulus
parameterization for tropical cyclone prediction: Convection trigger,
Atmospheric Research, Atmos. Res., 92, 190–211,
https://doi.org/10.1016/j.atmosres.2008.09.022, 2009.
Mahoney, K. M.: The representation of cumulus convection in high-resolution simulations of the 2013 Colorado Front Range flood, Mon. Weather Rev., 144, 4265–4278, 2016.
Majda, A. J. and Khouider, B.: Stochastic and mesoscopic models for tropical
convection, P. Natl. Acad. Sci. USA, 99, 1123–1128,
https://doi.org/10.1073/pnas.032663199, 2002.
Majda, A. J., Timofeyev, I., and Eijnden, E. V.: Models for stochastic climate prediction, P. Natl. Acad. Sci. USA, 96, 14687–14691, https://doi.org/10.1073/pnas.96.26.14687, 1999.
Majda, A. J., Timofeyev, I., and Eijnden, E. V.: A mathematical framework for stochastic climate models, Commun. Pur. Appl. Math., 54, 891–974, https://doi.org/10.1002/cpa.1014, 2001.
Majda, A. J., Timofeyev, I., and Vanden-Eijnden, E.: Systematic Strategies for Stochastic Mode Reduction in Climate, J. Atmos. Sci., 60, 1705–1722, https://doi.org/10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2, 2003.
Malinowski, S. P. and Pawlowska-Mankiewicz, H.: On Estimating the
Entraininent Level in Cumulus Clouds, J. Atmos. Sci., 46, 2463–2465,
https://doi.org/10.1175/1520-0469(1989)046<2463:OETELI>2.0.CO;2, 1989.
Malkus, J. S.: Recent developments in studies of penetrative convection and an application to hurricane cumulonimbus towers, Cumulus Dynamics: Proceedings First Conference on Cumulus Convection, 19–22 May 1959, Portsmouth, N.H., edited by: Anderson, C. E., Pergamon Press, London, New York, 65–84, 1960.
Manabe, S., Smagorinsky, J., and Strickler, R. F.: Simulated Climatology of a General Circulation Model with Hydrologic Cycle, Mon. Weather Rev., 93, 769–798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2, 1965.
Mapes, B. and Neale, R.: Parameterizing Convective Organization to Escape
the Entrainment Dilemma, J. Adv. Model. Earth Sy., 3, M06004,
https://doi.org/10.1029/2011MS000042, 2011.
Mapes, B. E.: Equilibrium Vs. Activation Control of Large-Scale Variations
of Tropical Deep Convection, in: The Physics and Parameterization of Moist
Atmospheric Convection, edited by: Smith, R. K., Springer Netherlands,
Dordrecht, 321–358,
https://doi.org/10.1007/978-94-015-8828-7_13, 1997.
Mapes, B. E.: Convective Inhibition, Subgrid-Scale Triggering Energy, and
Stratiform Instability in a Toy Tropical Wave Model, J. Atmos. Sci., 57,
1515–1535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2, 2000.
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta,
M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz,
D., Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a
global model, J. Adv. Model. Earth Sy., 4, M00A01,
https://doi.org/10.1029/2012MS000154, 2012.
Mbienda, A. J. K., Tchawoua, C., Vondou, D. A., Choumbou, P., Sadem, C. K.,
and Dey, S.: Sensitivity experiments of RegCM4 simulations to different
convective schemes over Central Africa, Int. J. Climatol., 37, 328–342,
https://doi.org/10.1002/joc.4707, 2017.
McCaa, J. R. and Bretherton, C. S.: A New Parameterization for Shallow
Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped
Boundary Layers. Part II: Regional Simulations of Marine Boundary Layer
Clouds, Mon. Weather Rev., 132, 883–896,
https://doi.org/10.1175/1520-0493(2004)132<0883:ANPFSC>2.0.CO;2, 2004.
McFarlane, N.: Parameterizations: representing key processes in climate
models without resolving them, WIRES CLim. Change, 2, 482–497,
https://doi.org/10.1002/wcc.122, 2011.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37,
https://doi.org/10.1177/0956247807076960, 2007.
McLaughlin, J. F., Hellmann, J. J., Boggs, C. L., and Ehrlich, P. R.:
Climate change hastens population extinctions, P. Natl. Acad. Sci. USA, 99,
6070–6074, https://doi.org/10.1073/pnas.052131199, 2002.
Mellor, G. L.: The Gaussian Cloud Model Relations, J. Atmos. Sci., 34,
356–358, https://doi.org/10.1175/15200469(1977)034<0356:TGCMR> 2.0.CO;2, 1977.
Mironov, D. V.: Turbulence in the Lower Troposphere: Second-Order Closure and Mass–Flux Modelling Frameworks, in Interdisciplinary Aspects of Turbulence, Lect. Notes Phys., Springer, Berlin, Heidelberg, 161–221, https://doi.org/10.1007/978-3-540-78961-1_5, 2009.
Miyakoda, K., Smagorinsky, J., Strickler, R. F., and Hembree, G. D.: Experimental predictions with a nine-level hemispheric model, Mon. Weather Rev., 97, 1–76, https://doi.org/10.1175/1520-0493(1969)097<0001:EEPWAN>2.3.CO;2, 1969.
Möbis, B. and Stevens, B.: Factors controlling the position of the
Intertropical Convergence Zone on an aquaplanet, J. Adv. Model. Earth Sy., 4, M00A04,
https://doi.org/10.1029/2012MS000199, 2012.
Mohandas, S. and Ashrit, R.: Sensitivity of different convective
parameterization schemes on tropical cyclone prediction using a mesoscale
model, Nat. Hazards, 73, 213–235,
https://doi.org/10.1007/s11069-013-0824-6, 2014.
Molinari, J.: A General Form of Kuo's Cumulus Parameterization, Mon. Weather Rev., 113, 1411–1416, https://doi.org/10.1175/1520-0493(1985)113<1411:AGFOKC>2.0.CO;2, 1985.
Molinari, J. and Corsetti, T.: Incorporation of Cloud-Scale and Mesoscale
Downdrafts into a Cumulus Parameterization: Results of One- and
Three-Dimensional Integrations, Mon. Weather Rev., 113, 485–501,
https://doi.org/10.1175/1520-0493(1985)113<0485:IOCSAM>2.0.CO;2, 1985.
Moncrieff, M. W. and Liu, C.: Representing convective organization in
prediction models by a hybrid strategy, J. Atmos. Sci., 63, 3404–3420,
https://doi.org/10.1175/JAS3812.1, 2006.
Moncrieff, M. W., Liu, C., and Bogenschutz, P.: Simulation, Modeling, and
Dynamically Based Parameterization of Organized Tropical Convection for
Global Climate Models, J. Atmos. Sci., 74, 1363–1380,
https://doi.org/10.1175/JAS-D-16-0166.1, 2017.
Moorthi, S. and Suarez, M. J.: Relaxed Arakawa-Schubert. A Parameterization
of Moist Convection for General Circulation Models, Mon. Weather Rev., 120,
978–1002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2, 1992.
Morrison, H.: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions, J. Atmos. Sci., 73, 1441–1454, https://doi.org/10.1175/JAS-D-15-0040.1, 2016a.
Morrison, H.: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations, J. Atmos. Sci., 73, 1455–1480, https://doi.org/10.1175/JAS-D-15-0041.1, 2016.
Morrison, H. and Grabowski, W. W.: Response of Tropical Deep Convection to Localized Heating Perturbations: Implications for Aerosol-Induced Convective Invigoration, J. Atmos. Sci., 70, 3533–555, https://doi.org/10.1175/JAS-D-13-027.1, 2013.
Morton, B. R.: Modeling fire plumes, Symposium (International) on
Combustion, 10, 973–982, https://doi.org/10.1016/S0082-0784(65)80240-5,
1965.
Morton, B. R., Taylor, G. I., and Turner, J. S.: Turbulent gravitational
convection from maintained and instantaneous sources, P. Roy. Soc. Lond. A
Mat., 234, 1–23, https://doi.org/10.1098/rspa.1956.0011, 1956.
Mukhopadhyay, P., Taraphdar, S., Goswami, B. N., and Krishnakumar, K.:
Indian Summer Monsoon Precipitation Climatology in a High-Resolution
Regional Climate Model: Impacts of Convective Parameterization on Systematic
Biases, Weather Forecast., 25, 369–387,
https://doi.org/10.1175/2009WAF2222320.1, 2010.
Nam, C. C. W., Quaas, J., Neggers, R., Drian, C. S.-L., and Isotta, F.:
Evaluation of boundary layer cloud parameterizations in the ECHAM5 general
circulation model using CALIPSO and CloudSat satellite data, J. Adv. Model.
Earth Sy., 6, 300–314, https://doi.org/10.1002/2013MS000277, 2014.
National Academies of Sciences, Engineering and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, The National Academies Press, Washington, D.C., https://doi.org/10.17226/24938, 2018.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D65D8PWK (last access: 22 November 2020), 2015, updated daily.
Naumann, A. K., Seifert, A., and Mellado, J. P.: A refined statistical cloud closure using double-Gaussian probability density functions, Geosci. Model Dev., 6, 1641–1657, https://doi.org/10.5194/gmd-6-1641-2013, 2013.
Neale, R. B., Richter, J. H., and Jochum, M.: The Impact of Convection on
ENSO: From a Delayed Oscillator to a Series of Events, J. Climate, 21,
5904–5924, https://doi.org/10.1175/2008JCLI2244.1, 2008.
Neggers, R.: Humidity-convection feedbacks in a mass flux scheme based on resolved size densities, ECMWF Workshop on Parametrization of Clouds and Precipitation, 10, https://www.ecmwf.int/node/14800 (last access: 5 September 2021), 2012.
Neggers, R. A. J.: A Dual Mass Flux Framework for Boundary Layer Convection.
Part II: Clouds, J. Atmos. Sci., 66, 1489–1506,
https://doi.org/10.1175/2008JAS2636.1, 2009.
Neggers, R. A. J.: Exploring bin-macrophysics models for moist convective
transport and clouds, J. Adv. Model. Earth Sy., 7, 2079–2104,
https://doi.org/10.1002/2015MS000502, 2015.
Neggers, R. A. J. and Griewank, P. J.: A Binomial Stochastic Framework for
Efficiently Modeling Discrete Statistics of Convective Populations, J. Adv.
Model. Earth Sy., 13, e2020MS002229, https://doi.org/10.1029/2020MS002229,
2021.
Neggers, R. A. J. and Siebesma, A. P.: Constraining a System of Interacting
Parameterizations through Multiple-Parameter Evaluation: Tracing a
Compensating Error between Cloud Vertical Structure and Cloud Overlap, J.
Climate, 26, 6698–6715, https://doi.org/10.1175/JCLI-D-12-00779.1, 2013.
Neggers, R. A. J., Siebesma, A. P., and Jonker, H. J. J.: A Multiparcel
Model for Shallow Cumulus Convection, J. Atmos. Sci., 59, 1655–1668,
https://doi.org/10.1175/1520-0469(2002)059<1655:AMMFSC>2.0.CO;2, 2002.
Neggers, R. A. J., Jonker, H. J. J., and Siebesma, A. P.: Size Statistics of
Cumulus Cloud Populations in Large-Eddy Simulations, J. Atmos. Sci., 60,
1060–1074, https://doi.org/10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2, 2003.
Neggers, R. A. J., Siebesma, A. P., Lenderink, G., and Holtslag, A. A. M.:
An Evaluation of Mass Flux Closures for Diurnal Cycles of Shallow Cumulus,
Mon. Weather Rev., 132, 2525–2538, https://doi.org/10.1175/MWR2776.1, 2004.
Neggers, R. A. J., Stevens, B., and Neelin, J. D.: Variance scaling in
shallow-cumulus-topped mixed layers, Q. J. Roy. Meteor. Soc., 133,
1629–1641, https://doi.org/10.1002/qj.105, 2007.
Neggers, R. A. J., Köhler, M., and Beljaars, A. C. M.: A Dual Mass Flux
Framework for Boundary Layer Convection. Part I: Transport, J. Atmos. Sci.,
66, 1465–1487, https://doi.org/10.1175/2008JAS2635.1, 2009.
Neggers, R. A. J., Siebesma, A. P., and Heus, T.: Continuous Single-Column
Model Evaluation at a Permanent Meteorological Supersite, B. Am. Meteorol.
Soc., 93, 1389–1400, https://doi.org/10.1175/BAMS-D-11-00162.1, 2012.
Neggers, R. A. J., Griewank, P. J., and Heus, T.: Power-Law Scaling in the
Internal Variability of Cumulus Cloud Size Distributions due to Subsampling
and Spatial Organization, J. Atmos. Sci., 76, 1489–1503,
https://doi.org/10.1175/JAS-D-18-0194.1, 2019.
Nie, J. and Kuang, Z.: Responses of Shallow Cumulus Convection to
Large-Scale Temperature and Moisture Perturbations: A Comparison of
Large-Eddy Simulations and a Convective Parameterization Based on
Stochastically Entraining Parcels, J. Atmos. Sci., 69, 1936–1956,
https://doi.org/10.1175/JAS-D-11-0279.1, 2012.
Nitta, T.: Observational Determination of Cloud Mass Flux Distributions, J.
Atmos. Sci., 32, 73–91, https://doi.org/10.1175/1520-0469(1975)032<0073:ODOCMF>2.0.CO;2, 1975.
Niziol, T. A., Snyder, W. R., and Waldstreicher, J. S.: Winter Weather
Forecasting throughout the Eastern United States. Part IV: Lake Effect Snow,
Weather Forecast., 10, 61–77,
https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2, 1995.
Nober, F. J. and Graf, H. F.: A new convective cloud field model based on principles of self-organisation, Atmos. Chem. Phys., 5, 2749–2759, https://doi.org/10.5194/acp-5-2749-2005, 2005.
Nober, F. J., Graf, H.-F., and Rosenfeld, D.: Sensitivity of the global
circulation to the suppression of precipitation by anthropogenic aerosols,
Global Planet. Change, 37, 57–80,
https://doi.org/10.1016/S0921-8181(02)00191-1, 2003.
Nordeng, T.-E.: Extended versions of the convective parametrization scheme
at ECMWF and their impact on the mean and transient activity of the model in
the tropics, Research Department Technical Memorandum, no. 206, 1994.
O'Gorman, P. A. and Dwyer, J. G.: Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events, J. Adv. Model Earth Sy., 10, 2548–2563, https://doi.org/10.1029/2018MS001351, 2018.
Okamoto, K. I., Ushio, T., Iguchi, T., Takahashi, N., and Iwanami, K.: The
global satellite mapping of precipitation (GSMaP) project, Aqua (AMSR-E),
3414–3416, https://doi.org/10.1109/IGARSS.2005.1526575, 2005.
Olson, J., Kenyon, J., Angevine, W. A., Brown, J. M., Pagowski, M., and Sušelj, K. (Eds.): A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW, NOAA Technical Memorandum OAR GSD, 61, https://doi.org/10.25923/N9WM-BE49, 2019.
Ooyama, K.: A dynamical model for the study of tropical cyclone
development., Geofis. Int., 4, 187–198, 1964.
Ooyama, K.: A Theory on Parameterization of Cumulus Convection, J. Meteorol.
Soc. Jpn., 49A, 744–756,
https://doi.org/10.2151/jmsj1965.49A.0_744, 1971.
Oueslati, B. and Bellon, G.: Convective Entrainment and Large-Scale
Organization of Tropical Precipitation: Sensitivity of the CNRM-CM5
Hierarchy of Models, J. Climate, 26, 2931–2946,
https://doi.org/10.1175/JCLI-D-12-00314.1, 2013.
Paluch, I. R.: The Entrainment Mechanism in Colorado Cumuli, J. Atmos. Sci.,
36, 2467–2478, https://doi.org/10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2, 1979.
Pan, D.-M. and Randall, D. D. A.: A cumulus parameterization with a
prognostic closure, Q. J. Roy. Meteor. Soc., 124, 949–981,
https://doi.org/10.1002/qj.49712454714, 1998.
Pan, H.-L. and Wu, W.-S.: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model, National Centers for Environmental Prediction (U.S.), Office note (National Centers for Environmental Prediction (U.S.)), 409, https://repository.library.noaa.gov/view/noaa/11429 (last access: 5 September 2021), 1995.
Panosetti, D., Böing, S., Schlemmer, L., and Schmidli, J.: Idealized Large-Eddy and Convection-Resolving Simulations of Moist Convection over Mountainous Terrain, J. Atmos. Sci., 73, 4021–4041, https://doi.org/10.1175/JAS-D-15-0341.1, 2016.
Park, S.: A Unified Convection Scheme (UNICON). Part I: Formulation, J.
Atmos. Sci., 71, 3902–3930, https://doi.org/10.1175/JAS-D-13-0233.1, 2014a.
Park, S.: A Unified Convection Scheme (UNICON). Part II: Simulation, J.
Atmos. Sci., 71, 3931–3973, https://doi.org/10.1175/JAS-D-13-0234.1, 2014b.
Park, S. and Bretherton, C. S.: The University of Washington Shallow
Convection and Moist Turbulence Schemes and Their Impact on Climate
Simulations with the Community Atmosphere Model, J. Climate, 22, 3449–3469,
https://doi.org/10.1175/2008JCLI2557.1, 2009.
Park, S., Baek, E.-H., Kim, B.-M., and Kim, S.-J.: Impact of detrained
cumulus on climate simulated by the Community Atmosphere Model Version 5
with a unified convection scheme, J. Adv. Model. Earth Sy., 9, 1399–1411,
https://doi.org/10.1002/2016MS000877, 2017.
Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A.: Impact of
regional climate change on human health, Nature, 438, 310–317,
https://doi.org/10.1038/nature04188, 2005.
Peng, J., Li, Z., Zhang, H., Liu, J., and Cribb, M.: Systematic Changes in Cloud Radiative Forcing with Aerosol Loading for Deep Clouds in the Tropics, J. Atmos. Sci., 73, 231–249, https://doi.org/10.1175/JAS-D-15-0080.1, 2016.
Peng, M. S., Ridout, J. A., and Hogan, T. F.: Recent Modifications of the
Emanuel Convective Scheme in the Navy Operational Global Atmospheric
Prediction System, Mon. Weather Rev., 132, 1254–1268,
https://doi.org/10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2, 2004.
Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.: A Parameterization
of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather
Prediction, Bound.-Lay. Meteorol., 132, 83,
https://doi.org/10.1007/s10546-009-9388-0, 2009.
Perraud, E., Couvreux, F., Malardel, S., Lac, C., Masson, V., and Thouron,
O.: Evaluation of Statistical Distributions for the Parametrization of
Subgrid Boundary-Layer Clouds, Bound.-Lay. Meteorol., 140, 263–294,
https://doi.org/10.1007/s10546-011-9607-3, 2011.
Peters, J. M.: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts, J. Atmos. Sci., t3, 4531–4551, https://doi.org/10.1175/JAS-D-16-0016.1, 2016.
Peters, K., Jakob, C., Davies, L., Khouider, B., and Majda, A. J.:
Stochastic Behavior of Tropical Convection in Observations and a Multicloud
Model, J. Atmos. Sci., 70, 3556–3575,
https://doi.org/10.1175/JAS-D-13-031.1, 2013.
Peters, K., Crueger, T., Jakob, C., and Möbis, B.: Improved
MJO-simulation in ECHAM6.3 by coupling a Stochastic Multicloud Model to the
convection scheme, J. Adv. Model. Earth Sy., 9, 193–219,
https://doi.org/10.1002/2016MS000809, 2017.
Petersen, A. C., Beets, C., Dop, H. van, Duynkerke, P. G., and Siebesma, A.
P.: Mass-Flux Characteristics of Reactive Scalars in the Convective Boundary
Layer, J. Atmos. Sci., 56, 37–56,
https://doi.org/10.1175/1520-0469(1999)056<0037:MFCORS>2.0.CO;2, 1999.
Pezzi, L. P., Cavalcanti, I. F. A., and Mendonça, A. M.: A sensitivity
study using two different convection schemes over south america, Revista
Brasileira de Meteorologia, 23, 170–189,
https://doi.org/10.1590/S0102-77862008000200006, 2008.
Pham-Duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C., and
Crétaux, J.-F.: The Lake Chad hydrology under current climate change,
Sci. Rep.-UK, 10, 5498, https://doi.org/10.1038/s41598-020-62417-w, 2020.
Piriou, J.-M., Redelsperger, J.-L., Geleyn, J.-F., Lafore, J.-P., and
Guichard, F.: An Approach for Convective Parameterization with Memory:
Separating Microphysics and Transport in Grid-Scale Equations, J. Atmos.
Sci., 64, 4127–4139, https://doi.org/10.1175/2007JAS2144.1, 2007.
Plant, R. S.: A review of the theoretical basis for bulk mass flux convective parameterization, Atmos. Chem. Phys., 10, 3529–3544, https://doi.org/10.5194/acp-10-3529-2010, 2010.
Plant, R. S. and Craig, G. C.: A Stochastic Parameterization for Deep
Convection Based on Equilibrium Statistics, J. Atmos. Sci., 65, 87–105,
https://doi.org/10.1175/2007JAS2263.1, 2008.
Plant, R. S. and Yano, J.-I.: Parameterization of Atmospheric Convection:
(In 2 Volumes) Volume 1: Theoretical Background and FormulationVolume 2:
Current Issues and New Theories, Imperial College Press,
https://doi.org/10.1142/p1005, 2015.
Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler,
K., and Georgievski, G.: Added value of convection permitting seasonal
simulations, Clim. Dynam., 41, 2655–2677,
https://doi.org/10.1007/s00382-013-1744-6, 2013.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Lipzig, N. P. M. van, and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361,
https://doi.org/10.1002/2014RG000475, 2015.
Qian, L., Young, G. S., and Frank, W. M.: A Convective Wake Parameterization
Scheme for Use in General Circulation Models, Mon. Weather Rev., 126,
456–469, https://doi.org/10.1175/1520-0493(1998)126<0456:ACWPSF>2.0.CO;2, 1998.
Qin, Y., Lin, Y., Xu, S., Ma, H.-Y., and Xie, S.: A Diagnostic PDF Cloud
Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model
(CAM5), J. Adv. Model. Earth Sy., 10, 320–341,
https://doi.org/10.1002/2017MS001095, 2018.
Raga, G. B., Jensen, J. B., and Baker, M. B.: Characteristics of Cumulus
Band Clouds off the Coast of Hawaii, J. Atmos. Sci., 47, 338–356,
https://doi.org/10.1175/1520-0469(1990)047<0338:COCBCO>2.0.CO;2, 1990.
Raju, P. V. S., Bhatla, R., Almazroui, M., and Assiri, M.: Performance of
convection schemes on the simulation of summer monsoon features over the
South Asia CORDEX domain using RegCM-4.3, Int. J. Climatol., 35, 4695–4706,
https://doi.org/10.1002/joc.4317, 2015.
Ramanathan, V. and Collins, W.: Thermodynamic regulation of ocean warming by
cirrus clouds deduced from observations of the 1987 El Niño, Nature,
351, 27–32, https://doi.org/10.1038/351027a0, 1991.
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking the
Cloud Parameterization Deadlock, B. Am. Meteorol. Soc., 84, 1547–1564,
https://doi.org/10.1175/BAMS-84-11-1547, 2003.
Randall, D. A. and Pan, D.-M.: Implementation of the Arakawa-Schubert
Cumulus Parameterization with a Prognostic Closure, in: The Representation
of Cumulus Convection in Numerical Models, edited by: Emanuel, K. A. and
Raymond, D. J., American Meteorological Society, Boston, MA, 137–144,
https://doi.org/10.1007/978-1-935704-13-3_11, 1993.
Randall, D. A., Shao, Q., and Moeng, C.-H.: A Second-Order Bulk
Boundary-Layer Model, J. Atmos. Sci., 49, 1903–1923,
https://doi.org/10.1175/1520-0469(1992)049<1903:ASOBBL>2.0.CO;2, 1992.
Randall, D. A., Srinivasan, J., Nanjundiah, R. A., and Mukhopadhyay, P.
(Eds.): Current Trends in the Representation of Physical Processes in
Weather and Climate Models, Springer Singapore,
https://doi.org/10.1007/978-981-13-3396-5, 2019.
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018.
Rauber, R. M., Stevens, B., Ochs, H. T., Knight, C., Albrecht, B. A.,
Blythe, A. M., Fairall, C. W., Jensen, J. B., Lasher-Trapp, S. G.,
Mayol-Bracero, O. L., Vali, G., Anderson, J. R., Baker, B. A., Bandy, A. R.,
Brunet, E., Brenguier, J. L., Brewer, W. A., Brown, P. R. A., Chuang, P.,
Cotton, W. R., Girolamo, L. D., Geerts, B., Gerber, H., Göke, S., Gomes,
L., Heikes, B. G., Hudson, J. G., Kollias, P., Lawson, R. P., Krueger, S.
K., Lenschow, D. H., Nuijens, L., O'Sullivan, D. W., Rilling, R. A., Rogers,
D. C., Siebesma, A. P., Snodgrass, F., Stith, J. L., Thornton, D. C.,
Tucker, S., Twohy, C. H., and Zuidema, P.: Rain in shallow cumulus over the
ocean: The RICO campaign, B. Am. Meteorol. Soc., 88, 1912–1928,
https://doi.org/10.1175/BAMS-88-12-1912, 2007.
Raymond, D. J.: Regulation of Moist Convection over the West Pacific Warm
Pool, J. Atmos. Sci., 52, 3945–3959,
https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2, 1995.
Raymond, D. J. and Blyth, A. M.: A Stochastic Mixing Model for
Nonprecipitating Cumulus Clouds, J. Atmos. Sci., 43, 2708–2718,
https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2, 1986.
Raymond, D. J. and Emanuel, K. A.: The Kuo Cumulus Parameterization, in: The
Representation of Cumulus Convection in Numerical Models, edited by:
Emanuel, K. A. and Raymond, D. J., American Meteorological Society, Boston,
MA, 145–147, https://doi.org/10.1007/978-1-935704-13-3_12,
1993.
Rennó, N. O., Emanuel, K. A., and Stone, P. H.: Radiative-convective
model with an explicit hydrologic cycle: 1. Formulation and sensitivity to
model parameters, J. Geophys. Res.-Atmos., 99, 14429–14441,
https://doi.org/10.1029/94JD00020, 1994.
Reuter, G. W. and Yau, M. K.: Mixing Mechanisms in Cumulus Congestus Clouds.
Part II: Numerical Simulations, J. Atmos. Sci., 44, 798–827,
https://doi.org/10.1175/1520-0469(1987)044<0798:MMICCC>2.0.CO;2, 1987.
Rio, C. and Hourdin, F.: A Thermal Plume Model for the Convective Boundary
Layer: Representation of Cumulus Clouds, J. Atmos. Sci., 65, 407–425,
https://doi.org/10.1175/2007JAS2256.1, 2008.
Rio, C., Hourdin, F., Grandpeix, J.-Y., and Lafore, J.-P.: Shifting the
diurnal cycle of parameterized deep convection over land, Geophys. Res.
Lett., 36, L07809, https://doi.org/10.1029/2008GL036779, 2009.
Rio, C., Hourdin, F., Couvreux, F., and Jam, A.: Resolved Versus
Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of
Mixing Rates for Mass-Flux Schemes, Bound.-Lay. Meteorol., 135, 469–483,
https://doi.org/10.1007/s10546-010-9478-z, 2010.
Rio, C., Grandpeix, J.-Y., Hourdin, F., Guichard, F., Couvreux, F., Lafore,
J.-P., Fridlind, A., Mrowiec, A., Roehrig, R., Rochetin, N., Lefebvre,
M.-P., and Idelkadi, A.: Control of deep convection by sub-cloud lifting
processes: the ALP closure in the LMDZ5B general circulation model, Clim.
Dynam., 40, 2271–2292, https://doi.org/10.1007/s00382-012-1506-x, 2013.
Rio, C., Del Genio, A. D., and Hourdin, F.: Ongoing Breakthroughs in
Convective Parameterization, Curr. Clim. Change Rep., 5, 95–111,
https://doi.org/10.1007/s40641-019-00127-w, 2019.
Rocha, R. P. D. and Caetano, E.: The role of convective parameterization in
the simulation of a cyclone over the South Atlantic, Atmosfera. 23, 1–23,
2010.
Rochetin, N., Couvreux, F., Grandpeix, J.-Y., and Rio, C.: Deep Convection
Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic
Triggering Formulation, J. Atmos. Sci., 71, 496–514,
https://doi.org/10.1175/JAS-D-12-0336.1, 2014a.
Rochetin, N., Grandpeix, J.-Y., Rio, C., and Couvreux, F.: Deep Convection
Triggering by Boundary Layer Thermals. Part II: Stochastic Triggering
Parameterization for the LMDZ GCM, J. Atmos. Sci., 71, 515–538,
https://doi.org/10.1175/JAS-D-12-0337.1, 2014b.
Romps, D. M.: A Direct Measure of Entrainment, J. Atmos. Sci., 67,
1908–1927, https://doi.org/10.1175/2010JAS3371.1, 2010.
Romps, D. M.: The Stochastic Parcel Model: A deterministic parameterization
of stochastically entraining convection, J. Adv. Model. Earth Sy., 8,
319–344, https://doi.org/10.1002/2015MS000537, 2016.
Romps, D. M. and Kuang, Z.: Do Undiluted Convective Plumes Exist in the
Upper Tropical Troposphere?, J. Atmos. Sci., 67, 468–484,
https://doi.org/10.1175/2009JAS3184.1, 2010a.
Romps, D. M. and Kuang, Z.: Nature versus Nurture in Shallow Convection, J.
Atmos. Sci., 67, 1655–1666, https://doi.org/10.1175/2009JAS3307.1, 2010b.
Rosa, D. and Collins, W. D.: A case study of subdaily simulated and observed
continental convective precipitation: CMIP5 and multiscale global climate
models comparison, Geophys. Res. Lett., 40, 5999–6003,
https://doi.org/10.1002/2013GL057987, 2013.
Rosenfeld, D., Lohmann, U., Raga, G., O'Dowd, C., Kulmala, M., Sandro, F.,
Reissell, A., and Andreae, M.: Flood or drought: How do aerosols affect
precipitation?, Science, 321, 1309–1313, 2008.
Rougier, J., Sexton, D. M. H., Murphy, J. M., and Stainforth, D.: Analyzing
the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from
Different but Related Experiments, J. Climate, 22, 3540–3557,
https://doi.org/10.1175/2008JCLI2533.1, 2009.
Ruiz, J. J., Pulido, M., and Miyoshi, T.: Estimating Model Parameters with
Ensemble-Based Data Assimilation: A Review, J. Meteorol. Soc. Jpn., 91,
79–99, https://doi.org/10.2151/jmsj.2013-201, 2013.
Sakradzija, M. and Klocke, D.: Physically Constrained Stochastic Shallow
Convection in Realistic Kilometer-Scale Simulations, J. Adv. Model. Earth
Sy., 10, 2755–2776, https://doi.org/10.1029/2018MS001358, 2018.
Sakradzija, M., Seifert, A., and Heus, T.: Fluctuations in a quasi-stationary shallow cumulus cloud ensemble, Nonlin. Processes Geophys., 22, 65–85, https://doi.org/10.5194/npg-22-65-2015, 2015.
Sakradzija, M., Seifert, A., and Dipankar, A.: A stochastic scale-aware
parameterization of shallow cumulus convection across the convective gray
zone, J. Adv. Model. Earth Sy., 8, 786–812,
https://doi.org/10.1002/2016MS000634, 2016.
Sanderson, B. M., Piani, C., Ingram, W. J., Stone, D. A., and Allen, M. R.:
Towards constraining climate sensitivity by linear analysis of feedback
patterns in thousands of perturbed-physics GCM simulations, Clim. Dynam.,
30, 175–190, https://doi.org/10.1007/s00382-007-0280-7, 2008.
Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., and Wang, Y.: Diurnal Cycle
of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model,
J. Climate, 22, 4809–4826, https://doi.org/10.1175/2009JCLI2890.1, 2009.
Schlemmer, L. and Hohenegger, C.: The Formation of Wider and Deeper Clouds
as a Result of Cold-Pool Dynamics, J. Atmos. Sci., 71, 2842–2858,
https://doi.org/10.1175/JAS-D-13-0170.1, 2014.
Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.-C., Hannay, C., Molod, A., Neale, R. B., and Saha, S.: Practice and philosophy of climate model tuning across six US modeling centers, Geosci. Model Dev., 10, 3207–3223, https://doi.org/10.5194/gmd-10-3207-2017, 2017.
Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth System Modeling
2.0: A Blueprint for Models That Learn From Observations and Targeted
High-Resolution Simulations, Geophys. Res. Lett., 44, 12396–12417,
https://doi.org/10.1002/2017GL076101, 2017.
Shin, J. and Park, S.: A Stochastic Unified Convection Scheme (UNICON). Part
I: Formulation and Single-Column Simulation for Shallow Convection, J.
Atmos. Sci., 77, 583–610, https://doi.org/10.1175/JAS-D-19-0117.1, 2020.
Shutts, G.: A kinetic energy backscatter algorithm for use in ensemble
prediction systems, Q. J. Roy. Meteor. Soc., 131, 3079–3102,
https://doi.org/10.1256/qj.04.106, 2005.
Siebesma, A. P.: Shallow Cumulus Convection, in: Buoyant Convection in
Geophysical Flows, edited by: Plate, E. J., Fedorovich, E. E., Viegas, D.
X., and Wyngaard, J. C., Springer Netherlands, Dordrecht, 441–486,
https://doi.org/10.1007/978-94-011-5058-3_19, 1998.
Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of Parametric Assumptions
for Shallow Cumulus Convection, J. Atmos. Sci., 52, 650–666,
https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2, 1995.
Siebesma, A. P. and Holtslag, A. A. M.: Model Impacts of Entrainment and
Detrainment Rates in Shallow Cumulus Convection, J. Atmos. Sci., 53,
2354–2364, https://doi.org/10.1175/1520-0469(1996)053<2354:MIOEAD>2.0.CO;2, 1996.
Siebesma, A. P. and Teixeira, J.: An Advection-Diffusion scheme for the convective boundary layer: description and 1d-results, 14th Symp. on Boundary Layers and Turbulence, 9 August 2000, Aspen, CO, 133–136, 2000.
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A Large Eddy Simulation
Intercomparison Study of Shallow Cumulus Convection, J. Atmos. Sci., 60,
1201–1219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003.
Siebesma, A. P., Soares, P. M. M., and Teixeira, J.: A Combined
Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer, J.
Atmos. Sci., 64, 1230–1248, https://doi.org/10.1175/JAS3888.1, 2007.
Simpson, J.: On Cumulus Entrainment and One-Dimensional Models, J. Atmos.
Sci., 28, 449–455, https://doi.org/10.1175/1520-0469(1971)028<0449:OCEAOD>2.0.CO;2, 1971.
Simpson, J. and Wiggert, V.: Modes of Precipitating Cumulus Towers, Mon. Weather Rev., 97, 471–489, https://doi.org/10.1175/1520-850493(1969)097<0471:MOPCT>2.3.CO;2, 1969.
Singh, M. S., Warren, R. A., and Jakob, C.: A Steady-State Model for the
Relationship Between Humidity, Instability, and Precipitation in the
Tropics, J. Adv. Model. Earth Sy.,11, 3973–3994,
https://doi.org/10.1029/2019MS001686, 2019.
Skofronick-Jackson, G., Kulie, M., Milani, L., Munchak, S. J., Wood, N. B.,
and Levizzani, V.: Satellite Estimation of Falling Snow: A Global
Precipitation Measurement (GPM) Core Observatory Perspective, J. Appl.
Meteorol. Clim., 58, 1429–1448, https://doi.org/10.1175/JAMC-D-18-0124.1,
2019.
Slingo, J., Blackburn, M., Betts, A., Brugge, R., Hodges, K., Hoskins, B.,
Miller, M., Steenman-Clark, L., and Thuburn, J.: Mean climate and transience
in the tropics of the UGAMP GCM: Sensitivity to convective parametrization,
Q. J. Roy. Meteor. Soc., 120, 881–922,
https://doi.org/10.1002/qj.49712051807, 1994.
Smagorinsky, J.: On the inclusion of moist adiabatic processes in numerical
prediction models, Ber. Dtsch. Wetterdienstes, 38, 82–90, 1956.
Smith, L. A.: What might we learn from climate forecasts?, P. Natl. Acad.
Sci. USA, 99, 2487–2492, https://doi.org/10.1073/pnas.012580599, 2002.
Smith, R. N. B.: A scheme for predicting layer clouds and their water
content in a general circulation model, Q. J. Roy. Meteor. Soc., 116,
435–460, https://doi.org/10.1002/qj.49711649210, 1990.
Soares, P. M. M., Miranda, P. M. A., Siebesma, A. P., and Teixeira, J.: An
eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus
convection, Q. J. Roy. Meteor. Soc., 130, 3365–3383,
https://doi.org/10.1256/qj.03.223, 2004.
Sommeria, G. and Deardorff, J. W.: Subgrid-Scale Condensation in Models of
Nonprecipitating Clouds, J. Atmos. Sci., 34, 344–355,
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2, 1977.
Song, F. and Zhang, G. J.: Improving Trigger Functions for Convective
Parameterization Schemes Using GOAmazon Observations, J. Climate, 30,
8711–8726, https://doi.org/10.1175/JCLI-D-17-0042.1, 2017.
Song, H., Lin, W., Lin, Y., Wolf, A. B., Neggers, R., Donner, L. J., Genio,
A. D. D., and Liu, Y.: Evaluation of Precipitation Simulated by Seven SCMs
against the ARM Observations at the SGP Site, J. Climate, 26, 5467–5492,
https://doi.org/10.1175/JCLI-D-12-00263.1, 2013.
Song, X. and Zhang, G. J.: Convection Parameterization, Tropical Pacific
Double ITCZ, and Upper-Ocean Biases in the NCAR CCSM3. Part I: Climatology
and Atmospheric Feedback, J. Climate, 22, 4299–4315,
https://doi.org/10.1175/2009JCLI2642.1, 2009.
Song, X. and Zhang, G. J.: Microphysics parameterization for convective
clouds in a global climate model: Description and single-column model tests,
J. Geophys. Res.-Atmos., 116, D02201, https://doi.org/10.1029/2010JD014833, 2011.
Song, X. and Zhang, G. J.: The Roles of Convection Parameterization in the
Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric
Processes, J. Adv. Model. Earth Sy., 10, 842–866,
https://doi.org/10.1002/2017MS001191, 2018.
Song, X., Zhang, G. J., and Li, J.-L. F.: Evaluation of Microphysics
Parameterization for Convective Clouds in the NCAR Community Atmosphere
Model CAM5, J. Climate, 25, 8568–8590,
https://doi.org/10.1175/JCLI-D-11-00563.1, 2012.
Song, Y., Wikle, C. K., Anderson, C. J., and Lack, S. A.: Bayesian
Estimation of Stochastic Parameterizations in a Numerical Weather
Forecasting Model, Mon. Weather Rev., 135, 4045–4059,
https://doi.org/10.1175/2007MWR1928.1, 2007.
Squires, P.: Penetrative Downdraughts in Cumuli, Tellus, 10, 381–389,
https://doi.org/10.1111/j.2153-3490.1958.tb02025.x, 1958.
Squires, P. and Turner, J. S.: An entraining jet model for cumulo-nimbus
updraughts, Tellus, 14, 422–434,
https://doi.org/10.3402/tellusa.v14i4.9569, 1962.
Stechmann, S. N. and Neelin, J. D.: A Stochastic Model for the Transition to
Strong Convection, J. Atmos. Sci., 68, 2955–2970,
https://doi.org/10.1175/JAS-D-11-028.1, 2011.
Stensrud, D. J.: Parameterization Schemes: Keys to Understanding Numerical
Weather Prediction Models, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511812590, 2007.
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res.-Atmos., 115, D24211,
https://doi.org/10.1029/2010JD014532, 2010.
Stephens, G. L., van den Heever, S. C., Haddad, Z. S., Posselt, D. J., Storer, R. L., Grant, L. D., Sy, O. O., Rao, T. N., Tanelli, S., and Peral, E.: A distributed small satellite approach for measuring convective transports in the Earth's atmosphere, IEEE T. Geosci. Remote, 58, 4–13, https://doi.org/10.1109/TGRS.2019.2918090, 2020.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015,
2013.
Stirling, A. J. and Stratton, R. A.: Entrainment processes in the diurnal
cycle of deep convection over land, Q. J. Roy. Meteor. Soc., 138,
1135–1149, https://doi.org/10.1002/qj.1868, 2012.
Stommel, H.: ENTRAINMENT OF AIR INTO A CUMULUS CLOUD: (Paper presented 27
December 1946 at the Annual Meeting, A.M.S., Cambridge, Massachusetts), J.
Atmos. Sci., 4, 91–94, https://doi.org/10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2, 1947.
Storer, R. L., van den Heever, S. C., and Stephens, G. L.: Modeling Aerosol Impacts on Convective Storms in Different Environments, J. Atmos. Sci., 67, 3904–3915, https://doi.org/10.1175/2010JAS3363.1, 2010.
Storer, R. L., Zhang, G. J., and Song, X.: Effects of Convective
Microphysics Parameterization on Large-Scale Cloud Hydrological Cycle and
Radiative Budget in Tropical and Midlatitude Convective Regions, J. Climate,
28, 9277–9297, https://doi.org/10.1175/JCLI-D-15-0064.1, 2015.
Stratton, R. A. and Stirling, A. J.: Improving the diurnal cycle of
convection in GCMs, Q. J. Roy. Meteor. Soc., 138, 1121–1134,
https://doi.org/10.1002/qj.991, 2012.
Sud, Y. C. and Walker, G. K.: Microphysics of Clouds with the Relaxed
Arakawa–Schubert Scheme (McRAS). Part I: Design and Evaluation with GATE
Phase III Data, J. Atmos. Sci., 56, 3196–3220,
https://doi.org/10.1175/1520-0469(1999)056<3196:MOCWTR>2.0.CO;2, 1999.
Suhas, E. and Zhang, G. J.: Evaluation of Trigger Functions for Convective
Parameterization Schemes Using Observations, J. Climate, 27, 7647–7666,
https://doi.org/10.1175/JCLI-D-13-00718.1, 2014.
Sun, J. and Pritchard, M. S.: Effects of explicit convection on global
land-atmosphere coupling in the superparameterized CAM, J. Adv. Model. Earth
Sy., 8, 1248–1269, https://doi.org/10.1002/2016MS000689, 2016.
Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How Often Does It Rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/JCLI3672.1, 2006.
Sundqvist, H.: A parameterization scheme for non-convective condensation
including prediction of cloud water content, Q. J. Roy. Meteor. Soc., 104,
677–690, https://doi.org/10.1002/qj.49710444110, 1978.
Sundqvist, H.: Parameterization of Condensation and Associated Clouds in
Models for Weather Prediction and General Circulation Simulation, in:
Physically-Based Modelling and Simulation of Climate and Climatic Change:
Part 1, edited by: Schlesinger, M. E., Springer Netherlands, Dordrecht,
433–461, https://doi.org/10.1007/978-94-009-3041-4_10, 1988.
Sušelj, K., Teixeira, J., and Matheou, G.: Eddy Diffusivity/Mass Flux
and Shallow Cumulus Boundary Layer: An Updraft PDF Multiple Mass Flux
Scheme, J. Atmos. Sci., 69, 1513–1533,
https://doi.org/10.1175/JAS-D-11-090.1, 2012.
Sušelj, K., Teixeira, J., and Chung, D.: A Unified Model for Moist
Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux
Parameterization, J. Atmos. Sci., 70, 1929–1953,
https://doi.org/10.1175/JAS-D-12-0106.1, 2013.
Sušelj, K., Hogan, T. F., and Teixeira, J.: Implementation of a
Stochastic Eddy-Diffusivity/Mass-Flux Parameterization into the Navy Global
Environmental Model, Weather Forecast., 29, 1374–1390,
https://doi.org/10.1175/WAF-D-14-00043.1, 2014.
Suselj, K., Kurowski, M. J., and Teixeira, J.: A Unified
Eddy-Diffusivity/Mass-Flux Approach for Modeling Atmospheric Convection, J.
Atmos. Sci., 76, 2505–2537, https://doi.org/10.1175/JAS-D-18-0239.1, 2019a.
Suselj, K., Kurowski, M. J., and Teixeira, J.: On the Factors Controlling
the Development of Shallow Convection in Eddy-Diffusivity/Mass-Flux Models,
J. Atmos. Sci., 76, 433–456, https://doi.org/10.1175/JAS-D-18-0121.1,
2019b.
Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., and
Teixeira, J.: An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified
Representation of Subgrid-Scale Turbulence and Convection, J. Adv. Model.
Earth Sy., 10, 770–800, https://doi.org/10.1002/2017MS001162, 2018.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011RG000369, 2012.
Tapiador, F. J., Hou, A. Y., de Castro, M., Checa, R., Cuartero, F., and
Barros, A. P.: Precipitation estimates for hydroelectricity, Energ. Environ.
Sci., 4, 4435–4448, https://doi.org/10.1039/C1EE01745D, 2011.
Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega,
E., Machado, L. A. T., Angelis, C. F., Salio, P., Kidd, C., Huffman, G. J.,
and de Castro, M.: Global precipitation measurement: Methods, datasets and
applications, Atmos. Res., 104–105, 70–97,
https://doi.org/10.1016/j.atmosres.2011.10.021, 2012.
Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E.,
Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H.,
Petersen, W. A., Roca, R., Sánchez, J.-L., Tao, W.-K., and Turk, F. J.:
Global precipitation measurements for validating climate models, Atmos.
Res., 197, 1–20, https://doi.org/10.1016/j.atmosres.2017.06.021, 2017.
Tapiador, F. J., Navarro, A., Jiménez, A., Moreno, R., and
García-Ortega, E.: Discrepancies with satellite observations in the
spatial structure of global precipitation as derived from global climate
models, . J. Roy. Meteor. Soc., 144, 419–435,
https://doi.org/10.1002/qj.3289, 2018.
Tapiador, F. J., Roca, R., Del Genio, A., Dewitte, B., Petersen, W., and
Zhang, F.: Is Precipitation a Good Metric for Model Performance?, B. Am.
Meteorol. Soc., 100, 223–233, https://doi.org/10.1175/BAMS-D-17-0218.1,
2019a.
Tapiador, F. J., Sánchez, J.-L., and García-Ortega, E.: Empirical
values and assumptions in the microphysics of numerical models, Atmos. Res.,
215, 214–238, https://doi.org/10.1016/j.atmosres.2018.09.010, 2019b.
Tawfik, A. B. and Dirmeyer, P. A.: A process-based framework for quantifying
the atmospheric preconditioning of surface-triggered convection, Geophys.
Res. Lett., 41, 173–178, https://doi.org/10.1002/2013GL057984, 2014.
Tawfik, A. B., Lawrence, D. M., and Dirmeyer, P. A.: Representing subgrid
convective initiation in the Community Earth System Model, J. Adv. Model.
Earth Sy., 9, 1740–1758, https://doi.org/10.1002/2016MS000866, 2017.
Taylor, G. R. and Baker, M. B.: Entrainment and Detrainment in Cumulus
Clouds, J. Atmos. Sci., 48, 112–121,
https://doi.org/10.1175/1520-0469(1991)048<0112:EADICC>2.0.CO;2, 1991.
Teixeira, J. and Kim, Y. J.: On a simple parameterization of convective cloud fraction, Asia-Pac. J. Atmos. Sci., 44, 191–199, 2008.
Teixeira, J. and Reynolds, C. A.: Stochastic Nature of Physical
Parameterizations in Ensemble Prediction: A Stochastic Convection Approach,
Mon. Weather Rev., 136, 483–496, https://doi.org/10.1175/2007MWR1870.1,
2008.
Telford, J. W.: Turbulence, entrainment, and mixing in cloud dynamics, Pure
Appl. Geophys., 113, 1067–1084, https://doi.org/10.1007/BF01592975, 1975.
Thayer-Calder, K.: Downdraft impacts on tropical convection, Colorado State University, Publication Number: AAT 3565466, ISBN 9781303152504, 2012.
Thayer-Calder, K. and Randall, D. A.: The Role of Convective Moistening in
the Madden–Julian Oscillation, J. Atmos. Sci., 66, 3297–3312,
https://doi.org/10.1175/2009JAS3081.1, 2009.
Thayer-Calder, K., Gettelman, A., Craig, C., Goldhaber, S., Bogenschutz, P. A., Chen, C.-C., Morrison, H., Höft, J., Raut, E., Griffin, B. M., Weber, J. K., Larson, V. E., Wyant, M. C., Wang, M., Guo, Z., and Ghan, S. J.: A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model, Geosci. Model Dev., 8, 3801–3821, https://doi.org/10.5194/gmd-8-3801-2015, 2015.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization
in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Tokioka, T., Yamazaki, K., Kitoh, A., and Ose, T.: The Equatorial 30-60 day
Oscillation and the Arakawa-Schubert Penetrative Cumulus Parameterization,
J. Meteorol. Soc. Jpn., 66, 883–901,
https://doi.org/10.2151/jmsj1965.66.6_883, 1988.
Tompkins, A., Bechtold, P., Beljaars, A., Benedetti, A., Cheinet, S., Janiskova, M., Köhler, M., Lopez, P., and Morcrette, J.-J.: Moist physical processes in the IFS: Progress and Plans, Technical memorandum, https://doi.org/10.21957/dhtvdwsk, 2004.
Tompkins, A. M.: A Prognostic Parameterization for the Subgrid-Scale
Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to
Diagnose Cloud Cover, J. Atmos. Sci., 59, 1917–1942,
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2, 2002.
Tompkins, A. M. and Berner, J.: A stochastic convective approach to account
for model uncertainty due to unresolved humidity variability, J. Geophys.
Res.-Atmos., 113, D18101, https://doi.org/10.1029/2007JD009284, 2008.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, 2011.
Troen, I. B. and Mahrt, L.: A simple model of the atmospheric boundary
layer; sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37,
129–148, https://doi.org/10.1007/BF00122760, 1986.
Turner, J. S.: The “starting plume” in neutral surroundings, J. Fluid Mech.,
13, 356–368, https://doi.org/10.1017/S0022112062000762, 1962.
Ushio, T. and Kachi, M.: Kalman Filtering Applications for Global Satellite
Mapping of Precipitation (GSMaP), in: Satellite Rainfall Applications for
Surface Hydrology, edited by: Gebremichael, M. and Hossain, F., Springer
Netherlands, Dordrecht, 105–123,
https://doi.org/10.1007/978-90-481-2915-7_7, 2010.
Vaidya, S. S. and Singh, S. S.: Thermodynamic Adjustment Parameters in the
Betts–Miller Scheme of Convection, Weather Forecast., 12, 819–825,
https://doi.org/10.1175/1520-0434(1997)012<0819:TAPITB>2.0.CO;2, 1997.
Vaidya, S. S. and Singh, S. S.: Applying the Betts–Miller–Janjić Scheme of
Convection in Prediction of the Indian Monsoon, Weather Forecast., 15,
349–356, https://doi.org/10.1175/1520-0434(2000)015<0349:ATBMJS>2.0.CO;2, 2000.
van den Heever, S. C. and Cotton, W. R.: Urban Aerosol Impacts on Downwind Convective Storms, J. Appl. Meteorol. Clim., 46, 828–850, https://doi.org/10.1175/JAM2492.1, 2007.
van den Heever, S. C., Stephens, G. L., and Wood, N. B.: Aerosol Indirect Effects on Tropical Convection Characteristics under Conditions of Radiative–Convective Equilibrium, J. Atmos. Sci., 68, 699–718, https://doi.org/10.1175/2010JAS3603.1, 2011.
van Laar, T. W.: Spatial patterns in shallow cumulus cloud populations over a heterogeneous surface, text.thesis.doctoral, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/10221 (last access: 19 September 2021), 2019.
Vogelmann, A. M., McFarquhar, G. M., Ogren, J. A., Turner, D. D., Comstock,
J. M., Feingold, G., Long, C. N., Jonsson, H. H., Bucholtz, A., Collins, D.
R., Diskin, G. S., Gerber, H., Lawson, R. P., Woods, R. K., Andrews, E.,
Yang, H.-J., Chiu, J. C., Hartsock, D., Hubbe, J. M., Lo, C., Marshak, A.,
Monroe, J. W., McFarlane, S. A., Schmid, B., Tomlinson, J. M., and Toto, T.:
RACORO Extended-Term Aircraft Observations of Boundary Layer Clouds, B. Am.
Meteorol. Soc., 93, 861–878, https://doi.org/10.1175/BAMS-D-11-00189.1,
2012.
Volterra, V.: Variazioni e fluttuazioni del numero d'individui in specie
animali conviventi, Memoria della Reale Accademia Nazionale dei Lincei, 2,
209, 1926.
von Salzen, K. and McFarlane, N. A.: Parameterization of the Bulk Effects of
Lateral and Cloud-Top Entrainment in Transient Shallow Cumulus Clouds,
Atmos. Sci., 59, 1405–1430,
https://doi.org/10.1175/1520-0469(2002)059<1405:POTBEO>2.0.CO;2, 2002.
Wagner, A., Heinzeller, D., Wagner, S., Rummler, T., and Kunstmann, H.:
Explicit Convection and Scale-Aware Cumulus Parameterizations:
High-Resolution Simulations over Areas of Different Topography in Germany,
Mon. Weather Rev., 146, 1925–1944, https://doi.org/10.1175/MWR-D-17-0238.1,
2018.
Wagner, T. J., Turner, D. D., Berg, L. K., and Krueger, S. K.: Ground-Based
Remote Retrievals of Cumulus Entrainment Rates, J. Atmos. Ocean Tech., 30,
1460–1471, https://doi.org/10.1175/JTECH-D-12-00187.1, 2013.
Wagner, T. M. and Graf, H.-F.: An Ensemble Cumulus Convection
Parameterization with Explicit Cloud Treatment, J. Atmos. Sci., 67,
3854–3869, https://doi.org/10.1175/2010JAS3485.1, 2010.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wang, W. and Schlesinger, M. E.: The Dependence on Convection
Parameterization of the Tropical Intraseasonal Oscillation Simulated by the
UIUC 11-Layer Atmospheric GCM, J. Climate, 12, 1423–1457,
https://doi.org/10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2, 1999.
Wang, X. and Zhang, M.: An analysis of parameterization interactions and
sensitivity of single-column model simulations to convection schemes in CAM4
and CAM5, J. Geophys. Res.-Atmos., 118, 8869–8880,
https://doi.org/10.1002/jgrd.50690, 2013.
Wang, X. and Zhang, M.: Vertical velocity in shallow convection for
different plume types, J. Adv. Model. Earth Sy., 6, 478–489,
https://doi.org/10.1002/2014MS000318, 2014.
Wang, Y., Zhou, L., and Hamilton, K.: Effect of Convective
Entrainment/Detrainment on the Simulation of the Tropical Precipitation
Diurnal Cycle, Mon. Weather Rev., 135, 567–585,
https://doi.org/10.1175/MWR3308.1, 2007.
Wang, Y., Zhang, G. J., and Craig, G. C.: Stochastic convective
parameterization improving the simulation of tropical precipitation
variability in the NCAR CAM5, Geophys. Res. Lett., 43, 6612–6619,
https://doi.org/10.1002/2016GL069818, 2016.
Warner, J.: The Microstructure of Cumulus Cloud. Part III. The Nature of the
Updraft, J. Atmos. Sci., 27, 682–688,
https://doi.org/10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;2, 1970.
Watanabe, M., Emori, S., Satoh, M., and Miura, H.: A PDF-based hybrid
prognostic cloud scheme for general circulation models, Clim. Dynam., 33,
795–816, https://doi.org/10.1007/s00382-008-0489-0, 2009.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335,
https://doi.org/10.1175/2010JCLI3679.1, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Wilcox, E. M. and Donner, L. J.: The Frequency of Extreme Rain Events in
Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model,
J. Climate, 20, 53–69, https://doi.org/10.1175/JCLI3987.1, 2007.
Willet, M. R. and Whitall, M. A.: A simple prognostic based convective
entrainment rate for the Unified Model: Description and tests, Met Office
internal) Forecasting Research Technical Reports617, 2017.
Witek, M. L., Teixeira, J., and Matheou, G.: An Integrated TKE-Based Eddy
Diffusivity/Mass Flux Boundary Layer Closure for the Dry Convective Boundary
Layer, J. Atmos. Sci., 68, 1526–1540,
https://doi.org/10.1175/2011JAS3548.1, 2011.
Woetzel, J., Pinner, D., Samandari, H., Engel, H., Krishnan, M., Boland, B.,
and Powis, C.: Climate and risk response: Physical hazars and socioeconomic
impacts, McKinsey Global Institute, 18, 164,
https://doi.org/10.1080/17477891.2018.1540343, 2020.
Wu, C.-M. and Arakawa, A.: A Unified Representation of Deep Moist Convection
in Numerical Modeling of the Atmosphere. Part II, J. Atmos. Sci., 71,
2089–2103, https://doi.org/10.1175/JAS-D-13-0382.1, 2014.
Wu, E., Yang, H., Kleissl, J., Suselj, K., Kurowski, M. J., and Teixeira,
J.: On the Parameterization of Convective Downdrafts for Marine
Stratocumulus Clouds, Mon. Weather Rev., 148, 1931–1950,
https://doi.org/10.1175/MWR-D-19-0292.1, 2020.
Wu, L., Wong, S., Wang, T., and Huffman, G. J.: Moist convection: a key to
tropical wave–moisture interaction in Indian monsoon intraseasonal
oscillation, Clim. Dynam., 51, 3673–3684,
https://doi.org/10.1007/s00382-018-4103-9, 2018.
Wu, T.: A mass-flux cumulus parameterization scheme for large-scale models:
description and test with observations, Clim. Dynam., 38, 725–744,
https://doi.org/10.1007/s00382-011-0995-3, 2012.
Wu, X., Deng, L., Song, X., Vettoretti, G., Peltier, W. R., and Zhang, G.
J.: Impact of a modified convective scheme on the Madden-Julian Oscillation
and El Niño–Southern Oscillation in a coupled climate model, Geophys.
Res. Lett., 34, L16823, https://doi.org/10.1029/2007GL030637, 2007.
Wyant, M. C., Bretherton, C. S., Rand, H. A., and Stevens, D. E.: Numerical
Simulations and a Conceptual Model of the Stratocumulus to Trade Cumulus
Transition, J. Atmos. Sci., 54, 168–192,
https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2, 1997.
Wyngaard, J. C.: Toward Numerical Modeling in the “Terra Incognita”, J.
Atmos. Sci., 61, 1816–1826,
https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004.
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R.:
Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation
Estimates from 1998, J. Hydrometeorol., 18, 1617–1641,
https://doi.org/10.1175/JHM-D-16-0168.1, 2017.
Xie, S. and Zhang, M.: Impact of the convection triggering function on
single-column model simulations, J. Geophys. Res.-Atmos., 105, 14983–14996,
https://doi.org/10.1029/2000JD900170, 2000.
Xu, K.-M. and Randall, D. A.: A Semiempirical Cloudiness Parameterization
for Use in Climate Models, J. Atmos. Sci., 53, 3084–3102,
https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996.
Xu, K.-M., Cederwall, R. T., Donner, L. J., Grabowski, W. W., Guichard, F.,
Johnson, D. E., Khairoutdinov, M., Krueger, S. K., Petch, J. C., Randall, D.
A., Seman, C. J., Tao, W.-K., Wang, D., Xie, S. C., Yio, J. J., and Zhang,
M.-H.: An intercomparison of cloud-resolving models with the atmospheric
radiation measurement summer 1997 intensive observation period data, Q. J.
Roy. Meteor. Soc., 128, 593–624,
https://doi.org/10.1256/003590002321042117, 2002.
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of Bulk Properties of
Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets, J.
Atmos. Sci., 30, 611–627,
https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2, 1973.
Yang, G.-Y. and Slingo, J.: The Diurnal Cycle in the Tropics, Mon. Weather Rev., 129, 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2, 2001.
Yano, J., Bénard, P., Couvreux, F., and Lahellec, A.: NAM–SCA: A Nonhydrostatic Anelastic Model with Segmentally Constant Approximations, Mon. Weather Rev., 138, 1957–1974, https://doi.org/10.1175/2009MWR2997.1, 2010.
Yano, J. I.: Formulation structure of the mass-flux convection parameterization, Dynam. Atmos. Oceans, 67, 1–28, https://doi.org/10.1016/j.dynatmoce.2014.04.002, 2014.
Yano, J.-I. and Baizig, H.: Single SCA-plume dynamics, Dynam. Atmos. Oceans,
58, 62–94, https://doi.org/10.1016/j.dynatmoce.2012.09.001, 2012.
Yano, J.-I. and Plant, R.: Finite departure from convective
quasi-equilibrium: periodic cycle and discharge–recharge mechanism, Q. J.
Roy. Meteor. Soc., 138, 626–637, https://doi.org/10.1002/qj.957, 2012a.
Yano, J.-I. and Plant, R. S.: Convective quasi-equilibrium, Rev. Geophys.,
50, RG4004, https://doi.org/10.1029/2011RG000378, 2012b.
Yano, J.-I., Bister, M., Fuchs, Ž., Gerard, L., Phillips, V. T. J., Barkidija, S., and Piriou, J.-M.: Phenomenology of convection-parameterization closure, Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013, 2013.
Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary
Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke
Cumulus Parameterization Scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
Zhang, D.-L. and Fritsch, J. M.: Numerical Simulation of the Meso-β
Scale Structure and Evolution of the 1977 Johnstown Flood. Part I: Model
Description and Verification, J. Atmos. Sci., 43, 1913–1944,
https://doi.org/10.1175/1520-0469(1986)043<1913:NSOTMS>2.0.CO;2, 1986.
Zhang, G. J.: Convective quasi-equilibrium in midlatitude continental
environment and its effect on convective parameterization, J. Geophys.
Res.-Atmos., 107, ACL 12-1–ACL 12-16, https://doi.org/10.1029/2001JD001005,
2002.
Zhang, G. J.: Convective quasi-equilibrium in the tropical western Pacific:
Comparison with midlatitude continental environment, J. Geophys.
Res.-Atmos., 108, https://doi.org/10.1029/2003JD003520, 2003a.
Zhang, G. J.: Roles of tropospheric and boundary layer forcing in the
diurnal cycle of convection in the U.S. southern great plains, Geophys. Res.
Lett., 30, 2281, https://doi.org/10.1029/2003GL018554, 2003b.
Zhang, G. J.: Effects of entrainment on convective available potential
energy and closure assumptions in convection parameterization, J. Geophys.
Res.-Atmos., 114, D07109, https://doi.org/10.1029/2008JD010976, 2009.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian climate centre
general circulation model, Atmosphere-Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995.
Zhang, G. J. and Mu, M.: Effects of modifications to the Zhang-McFarlane
convection parameterization on the simulation of the tropical precipitation
in the National Center for Atmospheric Research Community Climate Model,
version 3, J. Geophys. Res.-Atmos., 110, D09109,
https://doi.org/10.1029/2004JD005617, 2005a.
Zhang, G. J. and Mu, M.: Simulation of the Madden–Julian Oscillation in the
NCAR CCM3 Using a Revised Zhang–McFarlane Convection Parameterization
Scheme, J. Climate, 18, 4046–4064, https://doi.org/10.1175/JCLI3508.1,
2005b.
Zhang, G. J. and Song, X.: Convection Parameterization, Tropical Pacific
Double ITCZ, and Upper-Ocean Biases in the NCAR CCSM3. Part II: Coupled
Feedback and the Role of Ocean Heat Transport, J. Climate, 23, 800–812,
https://doi.org/10.1175/2009JCLI3109.1, 2010.
Zhang, G. J. and Song, X.: Parameterization of Microphysical Processes in
Convective Clouds in Global Climate Models, Meteor. Mon., 56, 12.1–12.18,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0015.1, 2016.
Zhang, G. J. and Wang, H.: Toward mitigating the double ITCZ problem in NCAR
CCSM3, Geophys. Res. Lett., 33, L06709, https://doi.org/10.1029/2005GL025229, 2006.
Zhang, J., Lohmann, U., and Stier, P.: A microphysical parameterization for
convective clouds in the ECHAM5 climate model: Single-column model results
evaluated at the Oklahoma Atmospheric Radiation Measurement Program site, J.
Geophys. Res.-Atmos., 110, D15S07, https://doi.org/10.1029/2004JD005128, 2005.
Zhang, Z., Tallapragada, V., Kieu, C., Trahan, S., and Wang, W.: HWRF Based
Ensemble Prediction System Using Perturbations from GEFS and Stochastic
Convective Trigger Function, Tropical Cyclone Research and Review, 3,
145–161, https://doi.org/10.6057/2014TCRR03.02, 2014.
Zhao, M.: An Investigation of the Connections among Convection, Clouds, and
Climate Sensitivity in a Global Climate Model, J. Climate, 27, 1845–1862,
https://doi.org/10.1175/JCLI-D-13-00145.1, 2014.
Zhao, M. and Austin, P. H.: Life Cycle of Numerically Simulated Shallow
Cumulus Clouds. Part II: Mixing Dynamics, J. Atmos. Sci., 62, 1291–1310,
https://doi.org/10.1175/JAS3415.1, 2005.
Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen,
J.-H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K., Durachta, J., Fan,
S.-M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M.,
Horowitz, L. W., Krasting, J. P., Langenhorst, A. R., Liang, Z., Lin, P.,
Lin, S.-J., Malyshev, S. L., Mason, E., Milly, P. C. D., Ming, Y., Naik, V.,
Paulot, F., Paynter, D., Phillipps, P., Radhakrishnan, A., Ramaswamy, V.,
Robinson, T., Schwarzkopf, D., Seman, C. J., Shevliakova, E., Shen, Z.,
Shin, H., Silvers, L. G., Wilson, J. R., Winton, M., Wittenberg, A. T.,
Wyman, B., and Xiang, B.: The GFDL Global Atmosphere and Land Model
AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning
Strategies, J. Adv. Model. Earth Sy., 10, 735–769,
https://doi.org/10.1002/2017MS001209, 2018.
Zheng, Y., Alapaty, K., Herwehe, J. A., Del Genio, A. D., and Niyogi, D.:
Improving High-Resolution Weather Forecasts Using the Weather Research and
Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme, Mon. Weather Rev., 144, 833–860, https://doi.org/10.1175/MWR-D-15-0005.1, 2016.
Zheng, Y., Rosenfeld, D., and Li, Z.: Sub-Cloud Turbulence Explains
Cloud-Base Updrafts for Shallow Cumulus Ensembles: First Observational
Evidence, Geophys. Res. Lett., 48, e2020GL091881,
https://doi.org/10.1029/2020GL091881, 2021.
Zhu, H., Hendon, H., and Jakob, C.: Convection in a Parameterized and
Superparameterized Model and Its Role in the Representation of the MJO, J.
Atmos. Sci., 66, 2796–2811, https://doi.org/10.1175/2009JAS3097.1, 2009.
Zimmer, M., Craig, G. C., Keil, C., and Wernli, H.: Classification of
precipitation events with a convective response timescale and their
forecasting characteristics, Geophys. Res. Lett., 38, L05802,
https://doi.org/10.1029/2010GL046199, 2011.
Zou, L., Qian, Y., Zhou, T., and Yang, B.: Parameter Tuning and Calibration
of RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East
Asia Domain, J. Climate, 27, 7687–7701,
https://doi.org/10.1175/JCLI-D-14-00229.1, 2014.
Short summary
The paper provides a comprehensive review of the empirical values and assumptions used in the convection schemes of numerical models. The focus is on the values and assumptions used in the activation of convection (trigger), the transport and microphysics (commonly referred to as the cloud model), and the intensity of convection (closure). Such information can assist satellite missions focused on elucidating convective processes and the evaluation of model output uncertainties.
The paper provides a comprehensive review of the empirical values and assumptions used in the...