Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2013-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2013-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global simulation of dissolved 231Pa and 230Th in the ocean and the sedimentary 231Pa∕230Th ratios with the ocean general circulation model COCO ver4.0
Yusuke Sasaki
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, Japan
Hidetaka Kobayashi
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, Japan
Akira Oka
CORRESPONDING AUTHOR
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, Japan
Related authors
No articles found.
Hidetaka Kobayashi, Tokuta Yokohata, Akitomo Yamamoto, Tomohiro Hajima, Hiroaki Tatebe, Akira Oka, and Keith B. Rodgers
EGUsphere, https://doi.org/10.5194/egusphere-2026-120, https://doi.org/10.5194/egusphere-2026-120, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Using long-term MIROC-ES2L simulations under extended SSP scenarios to 2500, we show that ocean–atmosphere pCO2 disequilibrium exhibits strong scenario dependence. Low emissions lead to near equilibrium by 2100, whereas high emissions drive expanding oceanic CO2 supersaturation and declining buffering capacity. Marine ecosystem stress persists for centuries, reflecting the ocean’s long memory and limited reversibility.
Hidetaka Kobayashi, Akira Oka, Takashi Obase, and Ayako Abe-Ouchi
Clim. Past, 20, 769–787, https://doi.org/10.5194/cp-20-769-2024, https://doi.org/10.5194/cp-20-769-2024, 2024
Short summary
Short summary
This study examines the transient response of the ocean carbon cycle to climate change since the last ice age by using an ocean general circulation model. Our carbon cycle model calculates atmospheric pCO2 changes that are consistent with ice core records but whose magnitude is underestimated. Our analysis of carbon isotopes suggests that improving the expression of activated ocean ventilation and suppressing biological productivity are critical in simulating atmospheric pCO2 changes.
Sam Sherriff-Tadano, Ayako Abe-Ouchi, Akira Oka, Takahito Mitsui, and Fuyuki Saito
Clim. Past, 17, 1919–1936, https://doi.org/10.5194/cp-17-1919-2021, https://doi.org/10.5194/cp-17-1919-2021, 2021
Short summary
Short summary
Glacial periods underwent climate shifts between warm states and cold states on a millennial timescale. Frequency of these climate shifts varied along time: it was shorter during mid-glacial period compared to early glacial period. Here, from climate simulations of early and mid-glacial periods with a comprehensive climate model, we show that the larger ice sheet in the mid-glacial compared to early glacial periods could contribute to the frequent climate shifts during the mid-glacial period.
Cited articles
Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Removal of 230Th and 231Pa
from the open ocean, Earth Planet. Sc. Lett., 62, 7–23,
https://doi.org/10.1016/0012-821X(83)90067-5, 1983.
Bacon, M. P. and Anderson, R. F.: Distribution of thorium isotopes between
dissolved and particulate forms in the deep sea, J. Geophys. Res., 87, 2045,
https://doi.org/10.1029/JC087iC03p02045, 1982.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20,
https://doi.org/10.4319/lo.1997.42.1.0001, 1997.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Anderson, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015.
Bradtmiller, L. I., McManus, J. F., and Robinson, L. F.:
evidence for a weakened but persistent Atlantic meridional overturning
circulation during Heinrich Stadial 1, Nat. Commun., 5, 5817,
https://doi.org/10.1038/ncomms6817, 2014.
Chase, Z. and Anderson, R. F.: Comment on “On the importance of opal,
carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa
and 10Be in the ocean” by S. Luo and T.-L. Ku, Earth Planet. Sc. Lett., 220, 213–222,
https://doi.org/10.1016/S0012-821X(04)00028-7, 2004.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: The influence
of particle composition and particle flux on scavenging of Th, Pa and Be in
the ocean, Earth Planet. Sc. Lett., 204, 215–229,
https://doi.org/10.1016/S0012-821X(02)00984-6, 2002.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Scavenging of
230Th, 231Pa and 10Be in the Southern Ocean (SW Pacific sector): the
importance of particle flux, particle composition and advection, Deep-Sea Res. Pt. II,
50, 739–768, https://doi.org/10.1016/S0967-0645(02)00593-3, 2003.
Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J.-C., Geibert, W., Heinze, C., Henderson, G., Hillaire‐Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Lise Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy‐Barman, M., Tagliabue, A., Torfstein, A., Winckler, G., and Zhou, Y.: 230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean, Paleoceanogr. Paleocl., 35, e2019PA003820, https://doi.org/10.1029/2019PA003820, 2020.
Dunne, J. P., Armstrong, R. A., Gnnadesikan, A., and Sarmiento, J. L.:
Empirical and mechanistic models for the particle export ratio, Glob. Biogeochem. Cycles, 19, GB4026,
https://doi.org/10.1029/2004GB002390, 2005.
Dutay, J.-C., Lacan, F., Roy-Barman, M., and Bopp, L.: Influence of particle
size and type on 231Pa and 230Th simulation with a global coupled
biogeochemical-ocean general circulation model: A first approach, Geochem. Geophys. Geosyst., 10,
Q01011, https://doi.org/10.1029/2008GC002291, 2009.
Edwards, N. R., Stocker, T. F., Joos, F., Henderson, G. M., Frank, M.,
Siddall, M., and Müller, S. A.: fractionation by ocean
transport, biogenic particle flux and particle type, Earth Planet. Sc. Lett., 237, 135–155,
https://doi.org/10.1016/j.epsl.2005.05.031, 2005.
François, R., Bacon, M. P., Altabet, M. A., and Labeyrie, L. D.:
Glacial/interglacial changes in sediment rain rate in the SW Indian Sector
of subantarctic Waters as recorded by 230Th, 231Pa, U, and δ15N,
Paleoceanography, 8, 611–629, https://doi.org/10.1029/93PA00784, 1993.
Frank, M.: Reconstruction of Late Quaternary environmental conditions applying the natural radionuclides 230Th, 10Be, 231Pa and 238U: a study of deep-sea sediments from the eastern sector of the Antarctic Circumpolar Current System, PhD thesis, Alfred Wegener Institute for Polar and Marine Research, 136 pp., 1996.
Frank, M., Eckhardt, J.-D., Eisenhauer, A., Kubik, P. W., Dittrich-Hannen,
B., Segl, M., and Mangini, A.: Beryllium 10, thorium 230, and protactinium
231 in Galapagos microplate sediments: Implications of hydrothermal activity
and paleoproductivity changes during the last 100,000 years,
Paleoceanography, 9, 559–578, https://doi.org/10.1029/94PA01132, 1994.
Gardner, W. D., Mishonov, A. V., and Richardson, M. J.: Decadal Comparisons
of Particulate Matter in Repeat Transects in the Atlantic, Pacific, and
Indian Ocean Basins, Geophys. Res. Lett., 45, 277–286, https://doi.org/10.1002/2017GL076571,
2018.
German, C. R., Casciotti, K. A., Dutay, J. -C., Heimbürger, L. E.,
Jenkins, W. J., Measures, C. I., Mills, R. A., Obata, H., Schlitzer, R.,
Tagliabue, A., Turner, D. R., and Whitby, H.: Hydrothermal impacts on trace
element and isotope ocean biogeochemistry, Phil. Trans. R. Soc. A, 374, 20160035,
https://doi.org/10.1098/rsta.2016.0035, 2016.
Gherardi, J.-M., Labeyrie, L., Nave, S., François, R., McManus, J. F.,
and Cortijo, E.: Glacial-interglacial circulation changes inferred from
sedimentary record in the North Atlantic region,
Paleoceanography, 24, PA2204, https://doi.org/10.1029/2008PA001696, 2009.
Gregory, J. M., Dixon, K. W., Stouffer, R. J., Weaver, A. J., Driesschaert,
E., Eby, M., Fichefet, T., Hasumi, H., Hu, A., Jungclaus, J. H.,
Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S.
Oka, A., Sokolov, A. P., and Thorpe, R. B.: A model intercomparison of changes
in the Atlantic thermohaline circulation in response to increasing
atmospheric CO2 concentration, Geophys. Res. Lett., 32, 1–5,
https://doi.org/10.1029/2005GL023209, 2005.
Gu, S. and Liu, Z.: 231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3), Geosci. Model Dev., 10, 4723–4742, https://doi.org/10.5194/gmd-10-4723-2017, 2017.
Gu, S., Liu, Z., Oppo, D. W. Lynch-Stieglitz, J., Jahn, A., Zhang, J., and Wu,
L.: Assessing the potential capability of reconstructing glacial Atlantic
water masses and AMOC using multiple proxies in CESM, Earth Planet. Sc. Lett., 541, 116294,
https://doi.org/10.1016/j.epsl.2020.116294, 2020.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020.
Hasumi, H.: CCSR Ocean Component Model (COCO) version 4.0, CCSR Rep. 25, 103 pp., Center
for Climate System Research, Univ. of Tokyo, 2006.
Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Huang, K.-F., Robinson, L.
F., Lu, Y., Cheng, H., Lawrence Edwards, R., and Bradley Moran, S.: 230Th
and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and
implications for modern and paleoceanographic chemical fluxes, Deep-Sea Res. Pt. II, 116, 29–41,
https://doi.org/10.1016/j.dsr2.2014.07.007, 2015.
Henderson, G. M. and Anderson, R. F.: The U-series Toolbox for
Paleoceanography, Rev. Mineral. Geochem., 52, 493–531, https://doi.org/10.2113/0520493, 2003.
Henderson, Gideon M., Heinze, C., Anderson, R. F., and Winguth, A. M. E.:
Global distribution of the 230Th flux to ocean sediments constrained by GCM
modeling, Deep-Sea Res. Pt. I, 46, 1861–1893, https://doi.org/10.1016/S0967-0637(99)00030-8,
1999.
Honeyman, B. D., Balistrieri, L. S., and Murray, J. W.: Oceanic trace metal
scavenging: the importance of particle concentration, Deep-Sea Res. Pt. I, 35, 227–246,
https://doi.org/10.1016/0198-0149(88)90038-6, 1988.
Honjo, S., Manganini, S. J., Krishfield, R. A., and François, R.:
Particulate organic carbon fluxes to the ocean interior and factors
controlling the biological pump: A synthesis of global sediment trap
programs since 1983, Prog. Oceanogr., 76, 217–285,
https://doi.org/10.1016/j.pocean.2007.11.003, 2008.
K-1 Model Developers: K-1 coupled GCM (MIROC) description, edited by: Hasumi, H.,
and Emori, S., K-1 Tech. Rep. 1, 34 pp., Center for Climate System Research, Univ. of
Tokyo, 2004.
Kobayashi, H. and Oka, A.: Response of atmospheric pCO2 to glacial changes
in the Southern Ocean amplified by carbonate compensation, Paleoceanogr. Paleocl., 33,
1206–1229, https://doi.org/10.1029/2018PA003360, 2018.
Kobayashi, H., Abe-Ouchi, A., and Oka, A.: Role of Southern Ocean
stratification in glacial atmospheric CO2 reduction evaluated by a
three-dimensional ocean general circulation model, Paleoceanography, 30, 1202–1216,
https://doi.org/10.1002/2015PA002786, 2015.
Lam, P. J., Ohnemus, D. C., and Auro, M. E.: Size-fractionated major
particle composition and concentrations from the US GEOTRACES North Atlantic
Zonal Transect, Deep-Sea Res. Pt. II, 116, 303–320, https://doi.org/10.1016/J.DSR2.2014.11.020,
2015.
Lao, Y., Anderson, R. F., Broecker, W. S., Trumbore, S. E., Hofmann, H. J.,
and Wolfli, W.: Transport and burial rates of 10Be and 231Pa in the Pacific
Ocean during the Holocene period, Earth Planet. Sc. Lett., 113, 173–189,
https://doi.org/10.1016/0012-821X(92)90218-K, 1992.
Lerner, P., Marchal, O., Lam, P., Buesseler, K., and Charette, M.: Kinetics of
thorium and particle cycling along the U.S. GEOTRACES North Atlantic
transect, Deep-Sea Res. Pt. I, 125, 106–128, https://doi.org/10.1016/j.dsr.2017.05.003, 2017.
Lerner, P., Marchal, O., Lam, P. J., Gardner, W., Richardson, M. J., and
Mishonov, A.: A model study of the relative influences of scavenging and
circulation on 230Th and 231Pa in the western North Atlantic, Deep-Sea Res. Pt. I, 155, 103159,
https://doi.org/10.1016/j.dsr.2019.103159, 2020.
Lippold, J., Luo, Y., Francois, R., Allen, S. E., Gherardi, J., Pichat, S.,
Hickey, B., and Schulz, H.: Strength and geometry of the glacial Atlantic
Meridional Overturning Circulation, Nat. Geosci., 5, 813–816,
https://doi.org/10.1038/NGEO1608, 2012.
Lopez, G. I., Marcantonio, F., Lyle, M., and Lynch-Stieglitz, J.: Dissolved
and particulate 230Th–232Th in the Central Equatorial Pacific Ocean:
Evidence for far-field transport of the East Pacific Rise hydrothermal
plume, Earth Planet. Sc. Lett., 431, 87–95, https://doi.org/10.1016/j.epsl.2015.09.019, 2015.
Luo, S. and Ku, T. L.: Oceanic
ratio influenced by particle composition and remineralization,
Earth Planet. Sc. Lett., 167, 183–195, https://doi.org/10.1016/S0012-821X(99)00035-7, 1999.
Luo, Y., Francois, R., and Allen, S. E.: Sediment as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model, Ocean Sci., 6, 381–400, https://doi.org/10.5194/os-6-381-2010, 2010.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model.
Preindustrial tracer distributions, Glob. Biogeochem. Cycles, 7, 645–677,
https://doi.org/10.1029/93GB01355, 1993.
Mangini, A. and Sonntag, C.: 231Pa dating of deep-sea cores via 227Th
counting, Earth Planet. Sc. Lett., 37, 251–256, https://doi.org/10.1016/0012-821X(77)90170-4,
1977.
Marchal, O., Stocker, T. F., and Joos, F.: A latitude-depth,
circulation-biogeochemical ocean model for paleoclimate studies. Development
and sensitivities, Tellus B, 50, 290–316,
https://doi.org/10.3402/tellusb.v50i3.16130, 1998.
Marchal, O., François, R., Stocker, T. F., and Joos, F.: Ocean
thermohaline circulation and sedimentary ratio,
Paleoceanography, 15, 625–641, https://doi.org/10.1029/2000PA000496, 2000.
Marchal, O., François, R., and Scholten, J.: Contribution of 230Th measurements to the estimation of the abyssal circulation, Deep-Sea Res. Pt. I, 54, 557–585, https://doi.org/10.1016/j.dsr.2007.01.002, 2007.
McManus, J. F., François, R., Gherardl, J. M., Kelgwin, L., and
Drown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837,
https://doi.org/10.1038/nature02494, 2004.
Missiaen, L., Pichat, S., Waelbroeck, C., Douville, E., Bordier, L., Dapoigny, A., Thil, F., Foliot, L., and Wacker, L.: Downcore variations of sedimentary detrital ( ) ratio: Implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation. Geochem. Geophys. Geosyst., 19, 2560–2573, https://doi.org/10.1029/2017GC007410, 2018.
Missiaen, L., Bouttes, N., Roche, D. M., Dutay, J.-C., Quiquet, A., Waelbroeck, C., Pichat, S., and Peterschmitt, J.-Y.: Carbon isotopes and response to forced circulation changes: a model perspective, Clim. Past, 16, 867–883, https://doi.org/10.5194/cp-16-867-2020, 2020a.
Missiaen, L., Menviel, L. C., Meissner, K. J., Roche, D. M., Dutay, J.-C.,
Bouttes, N., Lhardy, F., Quiquet, A., Pichat, S., and Waelbroeck, C.: Modelling
the impact of biogenic particle flux intensity and composition on
sedimentary , Quaternary Sci. Rev., 240, 106394,
https://doi.org/10.1016/j.quascirev.2020.106394, 2020b.
Müller, P. J. and Mangini, A.: Organic carbon decomposition rates in
sediments of the pacific manganese nodule belt dated by 230Th and 231Pa,
Earth Planet. Sc. Lett., 51, 94–114, https://doi.org/10.1016/0012-821X(80)90259-9, 1980.
Ohgaito, R., Yamamoto, A., Hajima, T., O'ishi, R., Abe, M., Tatebe, H.,
Abe-Ouchi, A., and Kawamiya, M.: Core code of MIROC-ES2L, Geoscientific
Model Development, Zenodo [code], https://doi.org/10.5281/zenodo.3893386, 2020.
Ohgaito, R., Yamamoto, A., Hajima, T., O'ishi, R., Abe, M., Tatebe, H., Abe-Ouchi, A., and Kawamiya, M.: PMIP4 experiments using MIROC-ES2L Earth system model, Geosci. Model Dev., 14, 1195–1217, https://doi.org/10.5194/gmd-14-1195-2021, 2021.
Oka, A., Hasumi, H, Okada, N., Sakamoto, T. T., and Suzuki, T.: Deep
convection seesaw controlled by freshwater transport through the Denmark
Strait, Ocean Model., 15, 157–176, https://doi.org/10.1016/j.ocemod.2006.08.004,
2006.
Oka, A., Kato, S., and Hasumi, H.: Evaluating effect of ballast mineral on
deep-ocean nutrient concentration by using an ocean general circulation
model, Glob. Biogeochem. Cycles, 22, GB3004, https://doi.org/10.1029/2007GB003067, 2008.
Oka, A., Hasumi, H., Obata, H., Gamo, T., and Yamanaka, Y.: Study on
vertical profiles of rare earth elements by using an ocean general
circulation model, Glob. Biogeochem. Cycles, 23, GB4025, https://doi.org/10.1029/2008GB003353,
2009.
Oka, A., Abe‐Ouchi, A., Chikamoto, M. O., and Ide, T.: Mechanisms controlling export production at the LGM: Effects of changes in oceanic physical fields and atmospheric dust deposition, Global Biogeochem. Cycles, 25, GB2009, https://doi.org/10.1029/2009GB003628, 2011.
Oka, A., Hasumi, H., and Abe-Ouchi, A.: The thermal threshold of the
Atlantic meridional overturning circulation and its control by wind stress
forcing during glacial climate, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL051421,
2012.
Oka, A., Tazoe H., and Obata, H.: Simulation of global distribution of rare
earth elements in the ocean using an ocean general circulation model, J. Oceanogr., 77, 413–430,
https://doi.org/10.1007/s10872-021-00600-x, 2021.
Okubo, A., Obata, H., Gamo, T., and Yamada, M.: 230Th and 232Th
distributions in mid-latitudes of the North Pacific Ocean: Effect of bottom
scavenging, Earth Planet. Sc. Lett., 339–340, 139–150, https://doi.org/10.1016/J.EPSL.2012.05.012,
2012.
Pavia, F., Anderson, R., Vivancos, S., Fleisher, M., Lam, P., Lu, Y., Cheng,
H., Zhang, P., Lawrence Edwards, R.: Intense hydrothermal scavenging of
230Th and 231Pa in the deep Southeast Pacific, Mar. Chem., 201, 212–228,
https://doi.org/10.1016/J.MARCHEM.2017.08.003, 2018.
Rempfer, J., Stocker, T. F., Joos, F., Lippold, J., and Jaccard, S. L.: New
insights into cycling of 231Pa and 230Th in the Atlantic Ocean, Earth Planet. Sc. Lett., 468, 27–37,
https://doi.org/10.1016/j.epsl.2017.03.027, 2017.
Roy-Barman, M.: Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean, Biogeosciences, 6, 3091–3107, https://doi.org/10.5194/bg-6-3091-2009, 2009.
Rutgers van der Loeff, M. M. and Berger, G. W.: Scavenging of 230Th and
231Pa near the antarctic polar front in the South Atlantic, Deep-Sea Res. Pt. I, 40, 339–357,
https://doi.org/10.1016/0967-0637(93)90007-P, 1993.
Rutgers van der Loeff, M. M., Venchiarutti, C., Stimac, I., van Ooijen, J.,
Huhn, O., Rohardt, G., and Strass, V.: Meridional circulation across the
Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap,
Earth Planet. Sc. Lett., 455, 73–84, https://doi.org/10.1016/j.epsl.2016.07.027, 2016.
Sasaki, Y., Kobayashi, H., and Oka, A.: Data for the figures of Sasaki et al. entitled “An investigation into the processes controlling the global distribution of dissolved 231Pa and 230Th in the ocean and the sedimentary ratios by using an ocean general circulation model COCO ver4.0”, Zenodo [data set], https://doi.org/10.5281/zenodo.4600287, 2021a.
Sasaki, Y., Kobayashi, H., and Oka, A.: Code of Sasaki et al. entitled “An investigation into the processes controlling the global distribution of dissolved 231Pa and 230Th in the ocean and the sedimentary ratios by using an ocean general circulation model COCO ver4.0”, Zenodo [code], https://doi.org/10.5281/zenodo.4655883, 2021.
Schlitzer, R., Anderson, R. F., Dodas, E. M., et al.: The GEOTRACES Intermediate Data Product 2017, Chem. Geol., 493,
210–223, https://doi.org/10.1016/j.chemgeo.2018.05.040, 2018.
Schmitz, W., Mangini, A., Stoffers, P., Glasby, G. P., and Plüger, W.
L.: Sediment accumulation rates in the southwestern Pacific Basin and
Aitutaki Passage, Mar. Geol., 73, 181–190,
https://doi.org/10.1016/0025-3227(86)90118-0, 1986.
Shimmield, G. B. and Price, N. B.: The scavenging of U, 230Th and 231Pa
during pulsed hydrothermal activity at 20∘ S, East Pacific Rise,
Geochim. Cosmochim. Ac., 52, 669–677, https://doi.org/10.1016/0016-7037(88)90329-8, 1988.
Shimmield, G. B., Murray, J. W., Thomson, J., Bacon, M. P., Anderson, R. F.,
and Price, N. B.: The distribution and behaviour of 230Th and 231Pa at an
ocean margin, Baja California, Mexico, Geochim. Cosmochim. Ac., 50, 2499–2507,
https://doi.org/10.1016/0016-7037(86)90032-3, 1986.
Siddall, M., Henderson, G. M., Edwards, N. R., Frank, M., Mu, S. A.,
Stocker, T. F., and Joos, F.: fractionation by ocean transport,
biogenic particle flux and particle type, Earth Planet. Sci. Lett., 237, 135–155,
https://doi.org/10.1016/j.epsl.2005.05.031, 2005.
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J.,
Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A.,
Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami,
S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A.,
Vettoretti, G., and Weber, S. L.: Investigating the Causes of the Response of
the Thermohaline Circulation to Past and Future Climate Changes, J. Climate, 19,
1365–1387, https://doi.org/10.1175/JCLI3689.1, 2006.
Süfke, F., Schulz, H., Scheen, J., Szidat, S., Regelous, M., Blaser, P.,
Pöppelmeier, F., Goepfert, T. J., Stocker, T. F., and Lippold, J.: Inverse
response of to variations of the Atlantic meridional overturning
circulation in the North Atlantic intermediate water, Geo-Mar. Lett., 40, 75–87,
https://doi.org/10.1007/s00367-019-00634-7, 2020.
van Hulten, M., Dutay, J.-C., and Roy-Barman, M.: A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1), Geosci. Model Dev., 11, 3537–3556, https://doi.org/10.5194/gmd-11-3537-2018, 2018.
Waelbroeck, C., Pichat, S., Böhm, E., Lougheed, B. C., Faranda, D., Vrac, M., Missiaen, L., Vazquez Riveiros, N., Burckel, P., Lippold, J., Arz, H. W., Dokken, T., Thil, F., and Dapoigny, A.: Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr, Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, 2018.
Walter, H. J., Rutgers van der Loeff, M. M., and Hoeltzen, H.: Enhanced
scavenging of 231Pa relative to 230Th in the South Atlantic south of the
Polar Front: Implications for the use of the ratio as a
paleoproductivity proxy, Earth Planet. Sc. Lett., 149, 85–100,
https://doi.org/10.1016/s0012-821x(97)00068-x, 1997.
Yang, H.-S., Nozaki, Y., Sakai, H., and Masuda, A.: The distribution of
230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean,
Geochim. Cosmochim. Ac., 50, 81–89, https://doi.org/10.1016/0016-7037(86)90050-5, 1986.
Yu, E.-F., François, R., and Bacon, M. P.: Similar rates of modern and
last-glacial ocean thermohaline circulation inferred from radiochemical
data, Nature, 379, 689–694, https://doi.org/10.1038/379689a0, 1996.
Short summary
For realistically simulating the recently observed distributions of dissolved 230Th and 231Pa in the ocean, we highlight the importance of the removal process of 231Pa and 230Th at the seafloor (bottom scavenging) and the dependence of scavenging efficiency on particle concentration. We show that consideration of these two processes can well reproduce not only the oceanic distribution of 231Pa and 230Th but also the sedimentary 231Pa/230Th ratios.
For realistically simulating the recently observed distributions of dissolved 230Th and 231Pa in...