Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2013-2022
https://doi.org/10.5194/gmd-15-2013-2022
Model description paper
 | 
10 Mar 2022
Model description paper |  | 10 Mar 2022

Global simulation of dissolved 231Pa and 230Th in the ocean and the sedimentary 231Pa∕230Th ratios with the ocean general circulation model COCO ver4.0

Yusuke Sasaki, Hidetaka Kobayashi, and Akira Oka

Related authors

Assessing transient changes in the ocean carbon cycle during the last deglaciation through carbon isotope modeling
Hidetaka Kobayashi, Akira Oka, Takashi Obase, and Ayako Abe-Ouchi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2526,https://doi.org/10.5194/egusphere-2023-2526, 2023
Short summary
Does a difference in ice sheets between Marine Isotope Stages 3 and 5a affect the duration of stadials? Implications from hosing experiments
Sam Sherriff-Tadano, Ayako Abe-Ouchi, Akira Oka, Takahito Mitsui, and Fuyuki Saito
Clim. Past, 17, 1919–1936, https://doi.org/10.5194/cp-17-1919-2021,https://doi.org/10.5194/cp-17-1919-2021, 2021
Short summary
Impact of mid-glacial ice sheets on deep ocean circulation and global climate
Sam Sherriff-Tadano, Ayako Abe-Ouchi, and Akira Oka
Clim. Past, 17, 95–110, https://doi.org/10.5194/cp-17-95-2021,https://doi.org/10.5194/cp-17-95-2021, 2021
Short summary
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020,https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust
Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka
Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019,https://doi.org/10.5194/cp-15-981-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS)
Allison B. Collow, Peter R. Colarco, Arlindo M. da Silva, Virginie Buchard, Huisheng Bian, Mian Chin, Sampa Das, Ravi Govindaraju, Dongchul Kim, and Valentina Aquila
Geosci. Model Dev., 17, 1443–1468, https://doi.org/10.5194/gmd-17-1443-2024,https://doi.org/10.5194/gmd-17-1443-2024, 2024
Short summary
Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models
Oksana Guba, Mark A. Taylor, Peter A. Bosler, Christopher Eldred, and Peter H. Lauritzen
Geosci. Model Dev., 17, 1429–1442, https://doi.org/10.5194/gmd-17-1429-2024,https://doi.org/10.5194/gmd-17-1429-2024, 2024
Short summary
Evaluation and optimisation of the soil carbon turnover routine in the MONICA model (version 3.3.1)
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024,https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary
Assessing the sensitivity of aerosol mass budget and effective radiative forcing to horizontal grid spacing in E3SMv1 using a regional refinement approach
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024,https://doi.org/10.5194/gmd-17-1327-2024, 2024
Short summary
Towards the definition of a solar forcing dataset for CMIP7
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024,https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary

Cited articles

Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Removal of 230Th and 231Pa from the open ocean, Earth Planet. Sc. Lett., 62, 7–23, https://doi.org/10.1016/0012-821X(83)90067-5, 1983. 
Bacon, M. P. and Anderson, R. F.: Distribution of thorium isotopes between dissolved and particulate forms in the deep sea, J. Geophys. Res., 87, 2045, https://doi.org/10.1029/JC087iC03p02045, 1982. 
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. 
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Anderson, M. B., and Deininger, M.: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015. 
Bradtmiller, L. I., McManus, J. F., and Robinson, L. F.: 231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1, Nat. Commun., 5, 5817, https://doi.org/10.1038/ncomms6817, 2014. 
Download
Short summary
For realistically simulating the recently observed distributions of dissolved 230Th and 231Pa in the ocean, we highlight the importance of the removal process of 231Pa and 230Th at the seafloor (bottom scavenging) and the dependence of scavenging efficiency on particle concentration. We show that consideration of these two processes can well reproduce not only the oceanic distribution of 231Pa and 230Th but also the sedimentary 231Pa/230Th ratios.