Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1595-2022
https://doi.org/10.5194/gmd-15-1595-2022
Methods for assessment of models
 | Highlight paper
 | 
23 Feb 2022
Methods for assessment of models | Highlight paper |  | 23 Feb 2022

Using neural network ensembles to separate ocean biogeochemical and physical drivers of phytoplankton biogeography in Earth system models

Christopher Holder, Anand Gnanadesikan, and Marie Aude-Pradal

Related authors

Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study
Christopher Holder and Anand Gnanadesikan
Biogeosciences, 18, 1941–1970, https://doi.org/10.5194/bg-18-1941-2021,https://doi.org/10.5194/bg-18-1941-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023,https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023,https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023,https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023,https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023,https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary

Cited articles

Bahl, A., Gnanadesikan, A., and Pradal, M.-A.: Variations in Ocean Deoxygenation Across Earth System Models: Isolating the Role of Parameterized Lateral Mixing, Global Biogeochem. Cy., 33, 703–724, https://doi.org/10.1029/2018GB006121, 2019. 
Bahl, A., Gnanadesikan, A., and Pradal, M.-A. S.: Scaling Global Warming Impacts on Ocean Ecosystems: Lessons From a Suite of Earth System Models, Front. Mar. Sci., 7, 698, https://doi.org/10.3389/fmars.2020.00698, 2020. 
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. 
Dunne, J. P., Armstrong, R. A., Gnanadesikan, A., and Sarmiento, J. L.: Empirical and mechanistic models for the particle export ratio, Global Biogeochem. Cy., 19, GB4026, https://doi.org/10.1029/2004GB002390, 2005. 
Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Adcroft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models, Part II: Carbon System Formulation and Baseline Simulation Characteristics, J. Climate, 26, 2247–2267, https://doi.org/10.1175/JCLI-D-12-00150.1, 2013. 
Download
Short summary
It can be challenging to understand why Earth system models (ESMs) produce specific results because one can arrive at the same result simply by changing the values of the parameters. In our paper, we demonstrate that it is possible to use machine learning to figure out how and why particular components of an ESM (such as biology or ocean circulations) affect the output. This work could be applied to observations to improve the accuracy of the formulations used in ESMs.