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Abstract. Earth system models (ESMs) are useful tools for
predicting and understanding past and future aspects of the
climate system. However, the biological and physical param-
eters used in ESMs can have wide variations in their esti-
mates. Even small changes in these parameters can yield un-
expected results without a clear explanation of how a par-
ticular outcome was reached. The standard method for es-
timating ESM sensitivity is to compare spatiotemporal dis-
tributions of variables from different runs of a single ESM.
However, a potential pitfall of this method is that ESM out-
put could match observational patterns because of compen-
sating errors. For example, if a model predicts overly weak
upwelling and low nutrient concentrations, it might compen-
sate for this by allowing phytoplankton to have a high sen-
sitivity to nutrients. Recently, we demonstrated that neural
network ensembles (NNEs) are capable of extracting rela-
tionships between predictor and target variables within ocean
biogeochemical models. Being able to view the relationships
between variables, along with spatiotemporal distributions,
allows for a more mechanistically based examination of ESM
outputs. Here, we investigated whether we could apply NNEs
to help us determine why different ESMs produce different
spatiotemporal distributions of phytoplankton biomass. We
tested this using three cases. The first and second case used
different runs of the same ESM, except that the physical cir-
culations differed between them in the first case, while the
biological equations differed between them in the second.
Our results indicated that the NNEs were capable of extract-
ing the relationships between variables for different runs of a
single ESM, allowing us to distinguish between differences
due to changes in circulation (which do not change relation-

ships) from changes in biogeochemical formulation (which
do change relationships). In the third case, we applied NNEs
to two different ESMs. The results of the third case high-
lighted the capability of NNEs to contrast the apparent re-
lationships of different ESMs and some of the challenges it
presents. Although applied specifically to the ocean compo-
nents of an ESM, our study demonstrates that Earth system
modelers can use NNEs to separate the contributions of dif-
ferent components of ESMs. Specifically, this allows mod-
elers to compare the apparent relationships across different
ESMs and observational datasets.

1 Introduction

Earth system models (ESMs) are increasingly used to help
us understand how anthropogenic greenhouse gas emissions
will affect biological systems and how such changes will feed
back on the climate system. Although these methods pro-
vide an avenue for examining processes on a global scale,
their representations of biological and physical processes of
the natural world are limited by imperfect knowledge and
the inability to resolve these processes with current models,
which require ever increasingly higher computational costs
for additional complexity and resolution. As a result, esti-
mates of critical biological and physical parameters can vary
quite substantially. For example, from tracer experiments
in the North Atlantic subtropical gyre, diapycnal diffusivity
was estimated between 0.1 and 0.5 cm2 s−1 (Ledwell et al.,
1998), with similar values having been used in ESMs. Vary-
ing the diapycnal diffusivity within this range in ESMs has
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been shown to yield different results in the biogeochemical
output (Oschlies, 2001; Duteil and Oschlies, 2011). Further-
more, ESMs do not agree about how to represent phytoplank-
ton growth parameters, such as temperature dependence. In
the nine ESMs compared in Laufkötter et al. (2015), the
Q10 value describing the sensitivity of growth rate to 10◦

increases in temperature ranged from 1.68 to 3, with some
models varying the Q10 values based on the size or type of
phytoplankton.

The uncertainty associated with some ESM parameters
can make it difficult to understand why different ESMs
may yield different predictions for biological variables rang-
ing from productivity to carbon uptake. Bopp et al. (2013)
demonstrated that while CMIP5 models showed the same
overall global trends under climate change for variables such
as pH, sea surface temperature, O2, and primary productiv-
ity, there were substantial cross-model differences in O2 and
primary productivity on regional scales.

Traditional methods used to estimate the sensitivity of
ESMs often compare the spatial distributions of biological
and physical variables from different runs of a single ESM to
each other or to observations. However, occasionally changes
in one parameter improve the simulation of one variable
while degrading the simulation of another (see, for example,
Bahl et al., 2019, their Table 2). Other times, errors in one
variable are due to errors in another (i.e., getting a physical
front in the wrong place may mean that the biomass has the
wrong distribution).

The intent of ESMs is to get the correct spatial distri-
bution both because the correct relationships between envi-
ronmental predictors and target variables are being modeled
and because the environmental predictors themselves are cor-
rectly modeled. However, it is difficult to know if the correct
relationships are indeed being modeled. Thus, a method is
needed with which we can evaluate whether different ESMs
yield different projections because of fundamental differ-
ences in biogeochemical formulation or whether such differ-
ences are primarily due to differences in physical circulations
and climate sensitivities. Of the potential methods available,
neural network ensembles (NNEs) are a strong candidate.
NNEs are a machine learning (ML) technique which use the
average of many individual neural networks (NNs) to pre-
dict the outcome of datasets. The objective of this paper is to
investigate whether the application of NNEs and sensitivity
analyses can provide useful information for determining the
most substantial sources of differences in ESM outputs.

We previously demonstrated that NNEs were able to
extract relationships between biological forcings and out-
puts within a simplified biogeochemical model (Holder and
Gnanadesikan, 2021). NNEs were able to outperform other
ML algorithms, such as random forests. More importantly,
NNEs also had the benefits of being able to extrapolate out-
side the range of the training dataset and to provide a mea-
sure of their uncertainty in their predictions. In Holder and
Gnanadesikan (2021), we defined two types of relationships

between environmental forcings and biological responses:
intrinsic and apparent. Intrinsic relationships are those in
which the effect of one predictor variable on an outcome
(target variable) can be examined, while maintaining other
predictors at a constant level. An example of this would
be the results of a laboratory experiment examining how
the growth rate of a particular species of phytoplankton de-
pends on different nutrient concentrations, while all other
factors remain constant. For ESMs, an example might be
the Michaelis–Menten relationships programmed into ESMs
that represent how phytoplankton interact with each nutrient.
Apparent relationships are determined by how the intrinsic
relationships interact across space and time, with individ-
ual variables that are not controlled but may systematically
co-vary. An example of this would be the relationships that
emerge in the output of ESMs, in which the intrinsic rela-
tionships programmed into the ESM have interacted with one
another across time and space and then had their outputs av-
eraged into monthly averaged fields. An example of this in
the context of real-world environments would be comparing
satellite observations of phytoplankton distributions against
monthly distributions of nutrients: low phytoplankton con-
centrations may result from both low nutrients and high ir-
radiance in the summer in some locations, but also high nu-
trients and low irradiance in the winter in other locations.
As a result, the apparent relationships between nutrients and
biomass would not resemble the intrinsic Michaelis–Menten
curves coded in the ESM. A proof-of-concept application of
NNEs coupled with sensitivity analyses at the end of Holder
and Gnanadesikan (2021) demonstrated the ability of NNEs
to draw out the co-limitations in a nonlinear biogeochemical
model and illustrated how these co-limitations differed from
the Michaelis–Menten curves programmed into the model.

For this study, we focus on marine phytoplankton physiol-
ogy, but these approaches are also applicable to other com-
ponents of ESMs, including atmospheric and terrestrial. In
general, there are two primary drivers that lead to differences
in how ESMs simulate phytoplankton biogeography: physi-
cal forcings and phytoplankton physiology. Insofar as both of
these act to affect nutrient cycling, they can also act in com-
bination to produce indirect impacts. Before applying this
method to outputs of multiple ESMs, we investigate whether
the method works well on different runs of a single ESM
in which physical parameters are changed to produce differ-
ent circulations. It is uncertain whether the NNEs are able to
pick out the same apparent relationships of the same ESM
when there are differences between runs in the physical forc-
ings and intrinsic biological equations (phytoplankton phys-
iology). If different versions of an ESM, which have differ-
ent circulations, still yield the same apparent relationships
between irradiance–nutrients and biomass, it would suggest
that circulation changes do not produce new patterns of co-
limitation. It is worth noting that we are only stating this in
the context of ESMs, as this may not necessarily be true in
the real ocean. Furthermore, it would suggest that differences
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in the apparent relationships of different ESMs could be par-
titioned between those due to different physical circulations
and those with different representations of biology. For ex-
ample, if one uses the apparent relationships from model A
to predict the biomass from model B given the environmental
parameters from model B, any differences should be due to
differences in the biological formulation.

To investigate the extent to which NNEs could character-
ize differences across ESMs, we explore three cases.

1. We examine an ESM in which biomass is by construc-
tion a function of nutrients and irradiance. Using three
different runs of this ESM, we maintain identical in-
trinsic biological relationships but vary the physical pa-
rameters controlling the circulation across the different
runs. The objective of the first case is to quantify the ex-
tent to which differences in physical circulation might
affect the apparent relationships between predictor (irra-
diance, nutrient, and temperature) and target (biomass)
variables found by NNEs. If models with different cir-
culations produce differences in the apparent relation-
ships, this would indicate that differences in circulation
could push the biology into fundamentally new states,
i.e., phytoplankton in one location experience new com-
binations of co-limitation or temporal variability (as de-
scribed by Henson et al., 2021). However, if the NNEs
find the same apparent relationships between runs when
the physical circulation is changing, this would indicate
that the primary effect of changing the circulation is
simply to change the times and locations where differ-
ent combinations of irradiance and nutrients are found
rather than creating new patterns of co-limitation; i.e.,
phytoplankton are governed by the same dynamics and
equations regardless of location.

2. We use the same ESM as that of Case 1, except we
maintain similar physical circulations between runs and
change the intrinsic biological relationships (this re-
sults in a small change in circulation because within
our ESM the biological cycle affects physical circula-
tion by changing the absorption of shortwave radiation).
The objective of the second case is to quantify the abil-
ity of NNEs to detect differences in the apparent rela-
tionships when the intrinsic biological relationships be-
tween model runs are different and to document the size
of those differences.

3. For the final case, we look at two different ESMs that
have different biogeochemical codes but are run within
the same physical model, giving them identical physi-
cal circulations. The first ESM follows the framework
of the ESMs in Cases 1 and 2, wherein biomass is a
function of nutrients. The second ESM allows biomass
to be advected and diffused, making biomass a func-
tion of nutrients, irradiance, and physical circulation.
The objective of the third case is to apply the principles

from Cases 1 and 2 to more standard ESMs, to quantify
the extent to which physical circulation contributes to
these apparent relationships, and to identify challenges
in comparing the apparent relationships between ESMs.

2 Methods

2.1 Earth system models – biogeochemical codes

In general, ocean biogeochemical components (BCs) of
ESMs predict the evolution of phytoplankton biomass, B, us-
ing equations that have the general form

∂B

∂t
+u ·∇B = µ(N,I,T ) ·B−G(B,. . .)+∇ ·K ·∇B, (1)

where u is the three-dimensional velocity field, µ is the phy-
toplankton growth rate (which is a function of nutrients N ,
irradiance I , and temperature T ), G(B,. . .) represents the
grazing loss rate, which may be a function of phytoplank-
ton biomass and/or other variables such as temperature or
zooplankton concentration, and K is the three-dimensional
mixing tensor. Changes in physical parameters (for example,
changing the values in K) would produce changes in trans-
port of biomass. But the associated changes in circulation
would also produce changes in other fields, such as N , I ,
and T (and thus in growth rateµ). Differences in the physical
parameters between models will produce both direct differ-
ences due to transport and indirect differences due to changes
in growth and/or grazing. Additionally, insofar as the biology
affects the absorption of shortwave radiation, it can produce
differences in the circulation (Sweeney et al., 2005), although
for the simulations in this paper the differences are relatively
small.

For this paper, we focus on the ocean BCs run within
two ESMs: Biogeochemistry with Light, Iron, Nutrients, and
Gases (BLING) and Tracers of Phytoplankton with Allomet-
ric Zooplankton (TOPAZ). As described below, BLING can
be thought of as a simplified version of TOPAZ. For Cases 1
and 2, we only use model runs within different versions of the
Geophysical Fluid Dynamics Laboratory (GFDL) ESM2Mc,
in which BLING is the BC, with the reasoning that if the
NNEs are unable to distinguish apparent relationships in the
simpler BLING model, they would not be able to do so in the
more complex TOPAZ model. In Case 3, we use versions of
the GFDL ESM2M in which BLING and TOPAZ are used as
the BCs to compare apparent relationships found within the
ESM.

2.2 Biogeochemistry with Light, Iron, Nutrients, and
Gases (BLING)

BLING is a diagnostic biogeochemical model (Fig. 1) de-
scribed in Galbraith et al. (2010), which was developed as
a relatively computationally cheap biogeochemical code that
could be run in high-resolution models. Only four explicit
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tracers are included in the model: oxygen, dissolved organic
phosphorus, phosphate, and iron (the last two correspond to
the nutrients – N ; in Fig. 1). Phytoplankton are represented
as two size classes: small and large (biomass – B; in Fig. 1).
Phytoplankton growth and grazingG(B,T ) are modeled us-
ing the phytoplankton size-dependent loss equation devel-
oped by Dunne et al. (2005) represented as

µ(N,I,T ) ·B ≈G(B,T )= λ

(
B

P∗

)α
B, (2)

where λ is a grazing rate, P∗ is a biomass scaling for graz-
ing, and α is a grazing exponent. The grazing rate includes all
losses due to grazing, viral lysis, temperature-dependent loss,
and others. For the small phytoplankton size class α = 1 and
for the large phytoplankton size class α = 1/3. This means
the large phytoplankton biomass is more sensitive to envi-
ronmental conditions than the small phytoplankton biomass.
The growth rate (µ) in Eq. (2) is calculated as

µ= µo · exp(kT ) ·
(

1− exp
(
−
I

KI

))
·min

(
Fe

KFe+Fe
,

PO4

KPO4 +PO4

)
, (3)

whereµ is the growth rate, T is the temperature with constant
k = 0.063 ◦C−1 following Eppley (1972), KFe,PO4,I repre-
sents the half-saturation constants, and I , Fe, and PO4 are
the irradiances and the concentrations of dissolved iron and
phosphate, respectively. KI is a function of the nutrient-
and temperature-dependent growth rate following Geider et
al. (1997). The time-averaged biomass is then

B̄ ≈

(
µ̄

λ

) 1
α

P∗ (4)

Note that this means that given N , I , and T (all of which are
still predicted by the circulation model), the apparent rela-
tionships between biomass, nutrients, and irradiance are po-
tentially tightly coupled to the intrinsic relationships govern-
ing phytoplankton physiology that determine the growth rate.

2.3 Tracers of Phytoplankton with Allometric
Zooplankton (TOPAZ)

TOPAZ is a prognostic biogeochemical model included
in the Geophysical Fluid Dynamics Laboratory (GFDL)
ESM2M (Dunne et al., 2013; Fig. 2). It includes a total of 30
tracers to model cycles such as nitrogen, phosphorus, iron,
oxygen, carbon, and others (nutrients – N ; Fig. 2). TOPAZ
models three phytoplankton groups (small, large, and dia-
zotrophic; biomass – B; Fig. 2) with irradiance limitation
based on the equations of Geider et al. (1997). Addition-
ally, phytoplankton loss and grazing as well as particle ex-
port are modeled using the same size-dependent formulation
as those used in Eq. (2), though without imposing the quasi-
equilibrium assumption that leads to Eq. (4). TOPAZ differs

from BLING in its number of tracers (and associated limi-
tations) and the allowance for advection–diffusion of nutri-
ents and biomass (1Bphys

j in Fig. 2). This means that the loss
rate of phytoplankton in TOPAZ is effectively a function of
circulation as well the temperature- and biomass-dependent

grazing rate, λ
(
B
B·

)α
. This will produce different biomasses

in locations that have the same growth rates. Additionally, a
key difference between BLING and TOPAZ is that the lat-
ter includes denitrification and nitrogen fixation. This then
means (as suggested by Tyrrell, 1999) that the nitrogen is
the proximate limiting nutrient, while phosphorus is the ulti-
mate limiting nutrient; this is a distinction that is not made in
BLING.

3 Case descriptions

3.1 Case 1 – same ESM: identical biological equations,
different physical circulations

The aim of Case 1 is to quantify the extent to which dif-
ferences in physical circulations between model runs of the
same ESM with identical intrinsic biological relationships
could affect the apparent relationships found by NNEs. As
stated in Sect. 2.1, we compare versions of GFDL ESM2Mc
in which BLING is configured identically so we can be cer-
tain the differences are solely due to circulation changing
the environmental conditions, and not the phytoplankton loss
rates. Within GFDL ESM2Mc, the nominal resolution is 3◦

longitudinally and 2◦ latitudinally, while the vertical resolu-
tion has 28 levels. Model runs are initialized with observa-
tions and spun up for 1900 years. The final 100 years are
used to generate a monthly climatology.

We use three configurations of GFDL ESM2Mc. The three
model runs consist of a standard historical pre-industrial
model spin-up (BLING – PI Control), a similar case to the
first but in which the carbon dioxide concentration is 4 times
higher (BLING – 4×CO2), and a case similar to the his-
torical spin-up except that the horizontal mixing parameter
is 3 times higher (BLING – 3×Mixing). These model runs
are described in greater detail in Gnanadesikan et al. (2013),
Pradal and Gnanadesikan (2014), and Bahl et al. (2020).
With the standard historical model essentially serving as a
form of a “control”, the two remaining cases allow us to ex-
amine if changes in the physical circulation could result in
changes to the apparent relationships.

The predictor variables for each model run are macronu-
trient (e.g., phosphate), micronutrient (e.g., dissolved iron),
irradiance, and temperature. The target variables are small
phytoplankton biomass and large phytoplankton biomass.
One NNE is trained for each target variable of each model
run for a total of six NNEs in Case 1 (three model runs and
two target variables in each run). Details of the NNE training
and the construction of the individual NNs making up each
NNE can be found in Sect. 3.4.
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Figure 1. Conceptual diagram of how biogeochemical evolution is computed within an ESM using the BLING BC. The letters and abbrevi-
ations represent nutrients (N ), phytoplankton biomass (B), the physical circulation component (phys), and the biological cycling component
(bio). Each location has initial values for nutrients and biomass. These initial values are passed to the intrinsic biological relationships,
which then feed into the g function in the biological cycling boxes that are then used to calculate the changes in nutrients and biomass due
to biological cycling. The initial nutrient concentrations between the two locations result in a change in nutrients from physical transport,
which is equal in magnitude and opposite in sign between the two boxes (physical circulation component). When the physical circulation
and biological cycling portions are coupled together, the nutrients and biomass for the next time step are calculated.

Figure 2. Conceptual diagram of how biogeochemical evolution is computed within an ESM using the prognostic TOPAZ BC. The letters
and abbreviations represent nutrients (N ), phytoplankton biomass (B), the physical circulation component (phys), and the biological cycling
component (bio). This ESM differs from the one described in Fig. 1. In this prognostic model, the changes in biomass from the biological
cycling component are a function of the nutrients and biomass rather than nutrients alone. Additionally, a change in biomass due to physical
circulation is added.
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3.2 Case 2 – same ESM: different diagnostic biological
equations, nearly identical physical circulations

The purpose of Case 2 is to quantify the differences found by
NNEs between the apparent relationships of model runs from
the same ESM when the biological equations differ between
runs, but the physical circulations are nearly identical.

As in Case 1, we use different configurations of ESM2Mc,
but this time we keep the physical parameterizations constant
and change constants within the BLING BC. We use two
model runs: the standard historical pre-industrial model spin-
up used in Case 1 (BLING – PI Control) and one with dis-
tributions similar to PI Control but different half-saturation
coefficients (KFe andKPO4 in Eq. 3) for small and large phy-
toplankton (BLING – LgSm). Changing the half-saturation
coefficients, which directly affects phytoplankton growth, is
analogous to changing the biological equations. Relative to
the PI Control, the half-saturation coefficients in LgSm are
decreased by

√
3 for small phytoplankton and increased by√

3 for large phytoplankton. While these changes produce
differences in circulation and sea surface temperature (SST)
via changing the absorption of shortwave radiation, these dif-
ferences are small (R2

= 0.9949 for SST between the two
model runs). The primary impact of these changes is to affect
the distribution of nutrients, as increasing the half-saturation
coefficients for large phytoplankton makes it harder for these
phytoplankton to grow and efficiently export nutrients.

The predictor variables for the model runs of Case 2 are
the same as those in Case 1 (macronutrient, micronutrient,
irradiance, and temperature). Likewise, the target variables
are also the same as those in Case 1 (small and large phyto-
plankton biomass). A total of four NNEs are trained for Case
2 (two model runs and two target variables).

3.3 Case 3 – different ESMs: prognostic vs. diagnostic
biological equations, identical physical circulations

For Case 3, the goal is to examine whether the results from
a diagnostic BC from Cases 1 and 2 still hold when a prog-
nostic BC is used. Our goal is to examine any differences
in apparent relationships, along with identifying challenges
when comparing apparent relationships across more realistic
ESMs. In this experiment, the BCs are governed by differ-
ent biological equations but are run within the same physical
model so that the temperatures and irradiance seen by the two
BC codes are identical.

One of our model simulations uses a version of BLING as
the BC, while the other uses TOPAZ. For the BLING model
run, the iron concentrations are fixed at their climatological
values since this formulation was previously used to develop
a model for very high-resolution studies (miniBLING). We
use this pair of simulations since the miniBLING code is
run in an identical physical circulation to the TOPAZ model
run, so the irradiance and temperature experienced by the
two model ecosystems are identical. The ESM2M uses a 1◦

latitude–longitude resolution with 50 vertical layers and the
model is spun up for 2400 years. These simulations are de-
scribed in more detail in Galbraith et al. (2015), which shows
that BLING and miniBLING yield essentially identical pre-
dictions for carbon uptake and ocean deoxygenation under
increased CO2.

The predictor variables for Case 3 are limited to vari-
ables that are present in both ESMs: macronutrient, micronu-
trient, and irradiance. The target variable is total biomass.
The biomass is not split into small and large phytoplankton
biomass because the miniBLING output only contains total
biomass. For consistency, the small and large phytoplank-
ton biomass values in TOPAZ are combined to give total
biomass. Two NNEs are trained for Case 3 (two ESM runs
and one target variable).

3.4 Neural network ensembles (NNEs)

NNEs are an ensemble ML method. NNEs are comprised of a
collection of individual neural networks (NNs) with the pre-
dictions of each NN averaged into a single prediction. This
ensemble approach has been shown to outperform individ-
ual NNs and reduce the generalization error within a dataset
(Hansen and Salamon, 1990) by turning individual “weak
learners” into a single “strong learner.” Individual NNs can
fit a nonlinear function to a dataset without assuming any
prior knowledge of the system. For a more thorough discus-
sion of NNs, please refer to Schmidhuber (2015). The basic
structure of the NN approach that we use here is described in
Appendix 1 of Scardi (1996).

We use NNEs for several reasons.

1. The ensemble approach of NNEs allows us to view the
uncertainty in any given prediction based on the indi-
vidual predictions of each NN.

2. NNEs possess some capability of extrapolating outside
the range of the data on which they are trained (Holder
and Gnanadesikan, 2021).

3. As recently shown in Holder and Gnanadesikan (2021),
NNEs were able to more closely reproduce the underly-
ing intrinsic relationships compared to random forests,
mainly because of their ability to extrapolate.

The structure of the individual NNs is consistent between
the three cases, with each NN containing 25 nodes in the
hidden layer with a hyperbolic tangent sigmoid activation
function and 1 node in the output layer with a linear acti-
vation function. We demonstrated in previous work that the
NNE predictions were not greatly improved with the addition
of a second hidden layer or with hidden layer node quanti-
ties greater than 25 (Holder and Gnanadesikan, 2021). Ad-
ditionally, the activation function of the hidden layer nodes
did not see a substantial increase in performance either as
long as a nonlinear function was used (Holder and Gnanade-
sikan, 2021). The settings specified here allow for reason-
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able training times while maintaining high performance met-
rics relative to the other formulations tested in our previous
work (Holder and Gnanadesikan, 2021). For more detailed
information, see Appendix B2 in Holder and Gnanadesikan
(2021).

The difference between each case is in the number of input
nodes: Cases 1 and 2 each contain four input nodes (one for
each predictor), and Case 3 has three input nodes. The pre-
dicted concentration of each target variable (second column
of Table 1) in individual NNs can be thought of as a func-
tion of the respective predictors (first column of Table 1). For
example, one NN of the NNE for the small phytoplankton
biomass target variable in Case 1 would have the following
structure.

1. The four predictor variables for Case 1 (first column of
Table 1) correspond to the four nodes in the input layer
of the NN.

2. Each of the four input nodes is connected by weights to
each of the 25 nodes in the hidden layer. Additionally, a
bias term is connected to each of the hidden nodes.

3. Each of the nodes in the hidden layer is connected by
weights to the single node in the output layer, which, for
this instance, would correspond to the target variable of
small phytoplankton biomass. As with the hidden layer,
a bias term is connected to the single output node.

The training of each NN is carried out using the “feedfor-
wardnet” function in MATLAB (MATLAB, 2019). For each
trained NN, the “feedforwardnet” function is provided with
the training dataset, which it then automatically separates
into training, validation, and testing subsets, with 70 % of the
observations from the training dataset going to the training
subset, 15 % to the validation subset, and 15 % to the testing
subset. The training stops when the error between the predic-
tions and observations increases for six consecutive epochs.

Separate NNEs are trained for each response variable in
each model run, which equates to six NNEs (two target vari-
ables, three simulations) in Case 1, four NNEs in Case 2, and
two NNEs in Case 3. For consistency, the same framework
and settings are used for the construction of the NNEs, with
each one consisting of 25 individuals NNs.

Each variable is also scaled between −1 and 1 relative to
each variable’s maximum and minimum:

VS =
maxS−minS

maxU−min U
(VU−minU)+minS, (5)

where V is the value of a variable being scaled, S (subscript)
is the scaled value, and U (subscript) is the unscaled value.
This scaling puts the predictor values in the same range, so
more weight is not given to variables with larger ranges. Ad-
ditionally, this step decreases the training time of the NNs
so that no values are too close to the limits of the hyper-
bolic tangent sigmoid activation function. The variables and

predictions are then scaled back to their original values for
analysis and presentation of the results (Eq. 6). The letter
representations in Eq. (6) are the same as those in Eq. (5).

VU =
maxU−minU

maxS−min S
(VS−minS)+minU (6)

When using ML, it is possible to produce overly complex
relationships that “overfit” the data. This provides a good
match for the data on which an ML model is trained but
leads to poor predictions when new data are presented to the
model. This can be avoided by splitting a dataset into train-
ing and testing subsets. For this paper, this means each NNE
is trained using only the observations in the training subset
and tested on the observations from the testing subset. The
data from each model run are randomly split into training and
testing subsets with 60 % of the observations from a dataset
going to the training subset and the other 40 % going to the
testing subset. The observations set aside in the testing subset
are ones that the NNEs never see during their training phase.
This provides a way to evaluate each trained NNE and its
generalizability. If performance metrics of a trained NNE are
similar between the training and testing subsets, it suggests
that the variance of the dataset is well captured in the training
phase and the NNE is generalizable to the entire dataset.

To assess the performance of each NNE, we calculate the
standard R2 values and root mean squared error (RMSE)
by comparing the monthly biomass predictions from each
NNE to the “true” monthly biomass values of the model runs
within the respective training and testing subsets.

The NNEs in each case and matching size class are also
asked to make predictions on the testing subsets of the other
model runs. For example, in Case 1 the NNE trained on the
small phytoplankton of PI Control is asked to make predic-
tions for small phytoplankton of 4×CO2 using the values of
the predictors from the testing subset of the 4×CO2 model
run. These results are then compared to the actual values of
the target variable to calculate the RMSE. This RMSE is then
used to calculate the percent increase or decrease in error
when compared against the RMSE calculated from a point-
by-point comparison of each model run against the others.
The purpose of this is to provide another metric for testing if
the NNEs are finding common apparent relationships across
model runs. If an NNE trained on one model run is able to
predict the outcomes of the other model runs with errors that
are similar in magnitude to the NNEs that were trained on
those runs, it would suggest that the NNEs are finding sim-
ilar apparent relationships between the model runs. On the
other hand, if it shows an increase in RMSE, it suggests that
the apparent relationships between the model runs are differ-
ent in biologically important ways.

To view the apparent relationships found by the NNEs,
we conduct sensitivity analyses in which we present each
NNE with a unique set of values for the predictors. Com-
pared to spatiotemporal distributions and time series, sensi-
tivity analyses allow for the visualization of relationships be-
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Table 1. Summary of each case, which includes information on the predictor variables, the target variables, the ESMs, the model runs, the
biological specifications, and the physical circulation specifications.

Case no. Predictor variables Target variables Biogeochemical
component

Model runs Biological specifica-
tions

Physics/circulation specifica-
tions

1 Macronutrient (mol kg−1);
micronutrient (mol kg−1);
irradiance (W m−2);
temperature (◦C)

Small phytoplankton
biomass (mol P kg−1);
large phytoplankton
biomass (mol P kg−1)

BLING PI Control;
4×CO2; 3×Mixing

Identical diagnostic BC
across model runs

Predicted by different versions
of ESM2Mc produced by sig-
nificant changes in physical pa-
rameters

2 Macronutrient (mol kg−1);
micronutrient (mol kg−1);
irradiance (W m−2);
temperature (◦C)

Small phytoplankton
biomass (mol P kg−1);
large phytoplankton
biomass (mol P kg−1)

BLING PI Control; LgSm Different diagnostic BC
across model runs

Nearly identical circulations
produced by ESM2Mc

3 Macronutrient (mol kg−1);
micronutrient (mol kg−1);
irradiance (W m−2)

Total phytoplankton
biomass (mol P kg−1)

miniBLING
and TOPAZ

One model run
from miniBLING;
one model run from
TOPAZ

Simple diagnostic vs.
complex prognostic BC

Identical physical circulations
produced by ocean component
of ESM2M

tween predictor and target variables. In each sensitivity anal-
ysis, one predictor is varied across its minimum and max-
imum range, while the other variables are held at a speci-
fied value, such as each variable’s 25th percentile. This is
repeated for the 50th and 75th percentile values of each vari-
able as well. This allows us to visualize how the biomass pre-
dictions change across one variable’s range when the other
variables are held at a specified value. An example of this
is varying the macronutrient concentration while holding the
micronutrient, irradiance, and temperature variables at their
25th or 75th percentile values. This allows us to see how the
macronutrient concentration affects biomass when other nu-
trients are low or high, respectively.

4 Results and discussion

4.1 Case 1 – same ESM: identical biological equations,
different physical circulations

In Case 1, our objective is to quantify the extent to which
differences in physical circulation might affect the apparent
relationships found by NNEs when the intrinsic biological re-
lationships remain the same between the model runs and the
physical circulation parameters differ. It is uncertain whether
changing the circulation would lead to new patterns of co-
limitation (i.e., different apparent relationships) or whether
the physical circulation would simply act to change the lo-
cation at which combinations of irradiance and nutrients are
found (i.e., same apparent relationships).

Our results support the latter outcome that the locations
of particular environments are simply being shuffled around.
The sensitivity analysis shows that each NNE finds similar
apparent relationships between biomass and each of the pre-
dictors for the respective size classes, insofar as each line
falls within the standard deviation of the others (Figs. 3 and
4). For example, the standard deviation (gray region) around
the predicted apparent relationships for the large phytoplank-
ton (dashed lines) all overlap one another (Fig. 3). The same

is seen for the predicted apparent relationships for the small
phytoplankton (Fig. 4). Additionally, we are confident in the
apparent relationships since each NNE acquires high perfor-
mance metrics in both the training and testing subsets (high-
est RMSE= 3.11×10−9 mol P kg−1; Table 2) relative to the
mean value of the total biomass (1.24× 10−8 mol P kg−1).

This result can be better understood by considering the
conceptual diagram of how the diagnostic BC BLING works
within an ESM (Fig. 1). For each time step, nutrients are cal-
culated as a function of three terms: the initial nutrients, the
change in nutrients from biology, and the change in nutrients
from physical circulation. In contrast, the biomass is only
a function of two terms: the initial biomass values and the
change in biomass due to biological cycling. Thus, biomass
is not directly affected by changes in the physical circula-
tion. Additionally, this means that when given information
on the biological predictors but not the physical parameters,
the NNEs are able to identify the apparent relationships quite
well. Although it would seem obvious from Fig. 1 that the
biomass is not directly affected by changes in the physical
circulation, we were unsure whether indirect impacts of such
changes (changing patterns of co-limitation or temporal vari-
ability) would affect the results. Our results indicate that such
indirect effects were absent or, at most, minor.

That similar apparent relationships are found between the
model runs is further supported when we task each trained
NNE with making predictions on the testing subsets of the
other model runs for the same size class. For example, the
NNE trained on the PI Control for small phytoplankton can
be tasked with making predictions for the small phytoplank-
ton biomass of 4×CO2 and 3×Mixing using the predictor
values from their testing subsets. This test allows for the eval-
uation of the robustness of the relationships that each NNE
finds. If the NNEs are finding different relationships between
the model runs, the NNE from one model run will likely per-
form poorly when predicting the other model runs. Our re-
sults show that the NNEs perform well when applied to the
other model runs (highest RMSE = 3.74×10−9 mol P kg−1;
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Figure 3. Sensitivity analysis plots for the small and large phytoplankton of Case 1. Each line is the prediction for the NNE (i.e., the average
prediction of 25 NNs) specific to each model run, and the color of each line represents the model run (PI Control – red; 4×CO2 – blue;
3×Mixing – green). The solid lines correspond to the NNE predictions for small phytoplankton and the dashed lines to the NNE predictions
for large phytoplankton. The gray region around each line shows 1 standard deviation in the predictions of the individual NNs that make up
each NNE (e.g., the gray region around the solid red curves shows the standard deviation in the predictions of the 25 NNs that make up that
particular NNE). The rows correspond to the percentile value at which the other predictor variables are held constant (e.g., panel a varies the
macronutrient across its min–max range and holds the micronutrient, irradiance, and temperature at their respective 25th percentile values).
Columns show the x-axis variables as they vary between their min–max range. The y axis in all panels is the biomass concentration. Note
that the biomass scale changes with each panel.

Table 2. The performance metrics for the training and testing subsets for the trained NNEs from each case separated into their respective
size classes and ESM and/or model runs.

Case no. Phytoplankton size ESM/model run/BC Training data Testing data

R2 RMSE R2 RMSE

1 Small Phytoplankton ESM2Mc/PI Control/BLING 0.9912 6.24× 10−10 0.9908 6.35× 10−10

ESM2Mc/4×CO2/BLING 0.9906 6.18× 10−10 0.9903 6.26× 10−10

ESM2Mc/3×Mixing/BLING 0.9912 6.22× 10−10 0.9906 6.35× 10−10

Large phytoplankton ESM2Mc/PI Control/BLING 0.9790 3.00× 10−9 0.9771 3.11× 10−9

ESM2Mc/4×CO2/BLING 0.9749 2.74× 10−9 0.9740 2.77× 10−9

ESM2Mc/3×Mixing/BLING 0.9804 3.00× 10−9 0.9778 3.11× 10−9

2 Small phytoplankton ESM2Mc/PI Control/BLING 0.9912 6.24× 10−10 0.9908 6.35× 10−10

ESM2Mc/PI Control/BLING-LgSm 0.9762 1.00× 10−9 0.9761 1.00× 10−9

Large phytoplankton ESM2Mc/PI Control/BLING 0.9790 3.00× 10−9 0.9771 3.11× 10−9

ESM2Mc/PI Control/BLING-LgSm 0.9862 2.34× 10−9 0.9855 2.38× 10−9

3 Total phytoplankton ESM2Mo/historical/miniBLING 0.9511 8.97× 10−9 0.9507 9.11× 10−9

ESM2Mo/historical/TOPAZ 0.5893 8.97× 10−9 0.5867 8.99× 10−9
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Figure 4. Sensitivity analysis plots for the small phytoplankton of Case 1. This figure is provided to allow for examination of the apparent
relationships for the small phytoplankton, since the large phytoplankton apparent relationships made it difficult to see those for the small
phytoplankton in Fig. 3. Each line is the prediction for the NNE (i.e., the average prediction of 25 NNs) specific to each model run, and
the color of each line represents the model run (PI Control – red; 4×CO2 – blue; 3×Mixing – green). The gray region around each line
shows 1 standard deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves
shows the standard deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile
value at which the other predictor variables were held constant (e.g., panel a varies the macronutrient across its min–max range and holds
the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the x-axis variables as they vary
between their min–max range. The y axis in all panels is the biomass concentration. Note that the biomass scale changes with each panel.

Table 3) relative to the average value of total biomass (1.24×
10−8 mol P kg−1). Given that these values are close to the
performance metrics of their original datasets (Table 2 vs.
Table 3), it seems logical to say that this is because they are
finding the same relationships.

Additionally, using the NNEs to predict the other runs
leads to decreases in error relative to the error from com-
paring each run against the others. For example, the initial
point-by-point comparison of 4×CO2 and PI Control for
small phytoplankton (Fig. 5d) shows an RMSE of 3.06×
10−9 mol P kg−1, while using the NNEs from each model run
to predict the other saw the RMSE go down with a reduction
in error of about 76 % (Table 3). This reduction of error is
consistent across the other model runs and size classes with
error reductions varying from 54 %–79 % (Table 3). This im-
plies the NNEs applied to the other runs are better able to
predict the outcome than the point-by-point analysis, once
again reinforcing our previous result.

That the NNEs from one model run are able to repro-
duce the results from the other model runs is not simply
due to the models producing similar spatiotemporal patterns.
To ensure that distinct differences between the model runs
are present, we compare each model run against the others

(Figs. 5 and 6). Differences in the biomass values between
the three model runs are evident (Figs. 5 and 6). First, we
compare each model run against the others in a point-by-
point analysis and observe that different biomasses are oc-
curring at the same spatiotemporal locations (Figs. 5 and 6d,
g, h). For example, in the small phytoplankton scatter plot
for PI Control vs. 4×CO2, PI Control shows a tendency of
having biomass values higher than 4×CO2 across most loca-
tions (Fig. 5d). Additionally, we look at the contour plots and
log10 relative ratios using the yearly averaged biomass for
each case (Figs. 5 and 6a–c, e, f, i). Specific large differences
that we note are higher biomass in the Pacific and North At-
lantic in PI Control and 3×Mixing relative to 4×CO2 (Figs. 5
and 6b, f) and the highest biomass occurring in 3×Mixing in
the subtropical regions of the Pacific (Figs. 5 and 6c). Sim-
ilar patterns are observed in the large phytoplankton as well
(Fig. 6). These differences between the model runs are rela-
tively large (exceeding a factor of 3 in some locations) and
allow us to dismiss the possibility that the similar apparent
relationships are only due to strong similarities between the
model runs.

Although the sensitivity analysis allows us to see that the
apparent relationships were the same for each size class, it
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Figure 5. Comparison of the model runs for small phytoplankton biomass in Case 1. The units for biomass in all panels are mol P kg−1. The
panels show point-by-point scatter plots comparing the model runs against one another (d, g, h), yearly averaged log10 biomass plots for
each model run (a, e, i), and the log10 relative ratios comparing the yearly averaged contour plots of the model runs (b, c, f). The x axis and
y axis of the scatter plots (d, g, h) correspond to the horizonal and vertical model run labels, respectively (e.g., panel d shows PI Control on
the x axis and 4×CO2 on the y axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal and vertical
model run labels (e.g., panel a shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were calculated
as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., panel b shows 4×CO2 divided PI
Control).

also allows us to see how the two size classes react differ-
ently to the same conditions. Most notably, the large phy-
toplankton seem to be very sensitive to the micronutrient
compared to the small phytoplankton (Fig. 3; closer view
of small phytoplankton in Fig. 4). When the other predic-
tors are held at their 75th percentile values (high macronutri-
ent, high irradiance, and warm temperature), the large phy-
toplankton reach biomass values almost an order of magni-
tude higher than the small phytoplankton (Figs. 3 and 4j).
This is what would be expected given the cubic relationship
of large phytoplankton with growth rate. Another interest-
ing relationship is the stark asymptotes in both size classes
of the macronutrient plots, suggesting limitations by other
nutrients, likely the micronutrient (Fig. 3a, e, i). One unex-
pected relationship is the decreasing biomass with increasing
temperature in both size classes (Fig. 3d, h, l). This could be
a result of warmer regions having fewer available nutrients or

because of the temperature-dependent chlorophyll-to-carbon
(Chl : C) ratios (Geider et al., 1997), which would lead to
phytoplankton needing higher irradiance in warmer waters.

Relative to our main objective in Case 1 to quantify the
extent to which differences in physical circulation affect the
apparent relationships, our results indicate that the different
physical circulations do not produce differences in the appar-
ent relationships found by NNEs. When the biological equa-
tions remain the same, changing the physical parameters sim-
ply changes where combinations of nutrients and irradiance
occur. The NNEs can find the same apparent relationships
between the model runs when the equations and constants
governing those runs are identical, even if the inputs differ.
In contrast to changes in nutrients, changes in biomass in the
BLING ESM are not a function of the physical circulation.
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Figure 6. Comparison of the model runs for large phytoplankton biomass in Case 1. The units for biomass in all panels are mol P kg−1. The
panels show point-by-point scatter plots comparing the model runs against one another (d, g, h), yearly averaged log10 biomass plots for
each model run (a, e, i), and the log10 relative ratios comparing the yearly averaged contour plots of the model runs (b, c, f). The x axis and
y axis of the scatter plots (d, g, h) correspond to the horizonal and vertical model run labels, respectively (e.g., panel d shows PI Control on
the x axis and 4×CO2 on the y axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal and vertical
model run labels (e.g., panel a shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were calculated
as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., panel b shows 4×CO2 divided PI
Control).

4.2 Case 2 – same ESM: different diagnostic biological
equations, nearly identical physical circulations

In Case 1, it is clear from our results that when the biolog-
ical cycling is identical between model runs, the NNEs find
the same apparent relationships because the biomass is not
a function of the physical circulation. Since the biomass is
clearly a function of the biological equations, it would be
reasonable to assume that the apparent relationships could
be different between model runs that are governed by differ-
ent biological equations. So, for Case 2, the objective is to
quantify the extent to which NNEs can detect differences in
the apparent relationships when the intrinsic biological rela-
tionships between model runs are different, while maintain-
ing similar physical circulations and still using a diagnostic
model which guarantees that identical nutrient, irradiance,

and temperature at two different points will produce identical
biomass.

Our results show that NNEs can differentiate the apparent
relationships between model runs when the biological equa-
tions differ. The sensitivity analysis for Case 2 shows that
different apparent relationships are found between model
runs and within the same size classes relative to the non-
overlapping gray standard deviation regions around each
line (Figs. 7 and 8). Additionally, we can be fairly confi-
dent in these predictions given the high performance met-
rics in both the training and testing subsets (highest RMSE
= 3.11× 10−9 mol P kg−1 – Table 2 – vs. the average total
biomass of 1.36× 10−8 mol P kg−1).

This result of different relationships, when the model runs
are governed by different biological equations, reinforces
what we found in Case 1. Changing the biological equations
can be likened to changing how the nutrients affect the phyto-
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Figure 7. Sensitivity analysis plots for the small and large phytoplankton of Case 2. Each line is the prediction for the NNE (i.e., the average
prediction of 25 NNs) specific to each model run, and the color of each line represents the model run (PI Control – red; LgSm – blue).
The solid lines correspond to the small phytoplankton and the dashed lines to the large phytoplankton. The gray region around each line
shows 1 standard deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves
shows the standard deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile
value at which the other predictor variables were held constant (e.g., panel a varies the macronutrient across its min–max range and holds
the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the x-axis variables as they vary
between their min–max range. The y axis in all panels is the biomass concentration. Note that the biomass scale changes with each panel.

plankton biomass (the function g(NJ,L1,L2) in Fig. 1). While
it might seem obvious that changing the biological equations
will change the biomass values, it remains unclear whether
NNEs would be able to pick out these differences in the ap-
parent relationships.

We want to ensure there are noticeable differences be-
tween the model runs (Figs. 9 and 10). We did this in Case
1 to ensure that the similar apparent relationships found
by the NNEs were not simply because of similarities in
the model output. In Case 2, the difference in model out-
puts serves to reinforce the different apparent relationships
found by the NNEs. In the point-by-point comparison, the
large phytoplankton show more agreement between model
runs (Fig. 10c) than the small phytoplankton (Fig. 9c). How-
ever, when we examine the contour and log10 relative ratios
(Figs. 9 and 10a, b, d), it is evident that large, systematic,
spatially coherent differences exist between the model runs.
Both the small and large phytoplankton show higher concen-
trations in the LgSm model run compared to PI Control for
the subtropical and polar regions of the Pacific and Indian
oceans, along with higher concentrations in the equatorial
Atlantic (Figs. 9 and 10).

Although the gray regions in Figs. 7 and 8 overlap toward
the higher concentrations of each predictor, this is likely due

to the lack of observations in the training data meeting those
criteria, without which the NNEs cannot be constrained. For
example, in Fig. 7j, the apparent relationships of the large
phytoplankton overlap past about 5× 10−10 mol kg−1 of the
micronutrient because there are no observations in the train-
ing data that are greater than 5× 10−10 mol kg−1 of the mi-
cronutrient while simultaneously being at the 75th percentile
level of the macronutrient, irradiance, and temperature (data
not shown). Without observations to constrain them, the
NNEs cannot be constrained and are therefore less certain
about the extrapolated relationships in those regions, which
leads to higher uncertainty and overlapping standard devia-
tions.

As in Case 1, our result is supported by the additional test
in which the NNEs trained on one model run are tasked with
making predictions on the other. Had the NNEs found simi-
lar apparent relationships, the reductions in error would have
been of similar magnitude as those in Case 1 (Table 3 vs.
Table 4). For this second case, we see that there are only
modest decreases in RMSE for the small phytoplankton and
increases in RMSE for large phytoplankton (Table 4). For ex-
ample, relative to the RMSE of the point-by-point compari-
son, the RMSE decreases about 21 % when LgSm makes pre-
dictions on PI Control for the small phytoplankton (Table 4).
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Figure 8. Sensitivity analysis plots for the small phytoplankton of Case 2. This figure is provided to allow for examination of the apparent
relationships for the small phytoplankton, since the large phytoplankton apparent relationships made it difficult to see those for the small
phytoplankton in Fig. 7. Each line is the prediction for the NNE (i.e., the average prediction of 25 NNs) specific to each model run, and the
color of each line represents the model run (PI Control – red; LgSm – blue). The gray region around each line shows 1 standard deviation in
the predictions of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard deviation
in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile value at which the other predictor
variables were held constant (e.g., panel a varies the macronutrient across its min–max range and holds the micronutrient, irradiance, and
temperature at their respective 25th percentile values). Columns show the x-axis variables as they vary between their min–max range. The y
axis in all panels is the biomass concentration. Note that the biomass scale changes with each panel.

Additionally, it is observed that even though the RMSE in-
creases in the large phytoplankton, the R2 values improve
in the cross-model comparison compared to the point-by-
point comparison (0.92–0.93 vs. 0.85; Table 4). This sug-
gests that the NNEs improve the simulation in terms of the
overall pattern but not the magnitude. These results make
sense since the apparent relationships of the small phyto-
plankton show greater similarities than the apparent relation-
ships of the large phytoplankton (Fig. 7).

With respect to the apparent relationships that the NNEs
uncover, the large phytoplankton once again appear to be
more sensitive to the micronutrient concentrations compared
to the small phytoplankton (Fig. 7b, f, j). Both size classes
show asymptotes around the same concentrations for the
macronutrient, albeit at different biomass values (Fig. 7a,
e, i). As with Case 1, the decreasing biomass with increas-
ing temperature is an unexpected relationship (Fig. 7d, h,
l), which might be explained by the temperature-dependent
Chl : C ratios causing phytoplankton in warmer regions to
need higher irradiance.

As previously stated, our main objective with Case 2 is to
quantify the extent to which NNEs can detect differences in
the apparent relationships when the physical conditions be-

tween model runs are identical and the biological relation-
ships differ. With the biomass being a function of changes
in biomass from biology (i.e., the equations governing how
nutrients affect biomass), it is unsurprising that different bio-
logical equations produce differences in biomass. What was
unclear was whether NNEs would be able to highlight these
differences in the apparent relationships. Our results indicate
that NNEs can find noticeable differences in the apparent re-
lationships, insofar as the standard deviation regions of the
sensitivity analysis curves do not overlap.

4.3 Case 3 – different ESMs: prognostic vs. diagnostic
biological equations, identical physical circulations

From Cases 1 and 2, we learn from our results that NNEs
are capable of discerning differences in apparent relation-
ships between model runs of the same ESM. For Case 3,
we apply these principles to different ESMs to quantify the
differences in the apparent relationships and highlight chal-
lenges that arise in comparing relationships between ESMs.
The model runs of Cases 1 and 2 using BLING as a BC
afford us the opportunity to test a “best-case” scenario for
predicting biomass from nutrients and irradiance because of
the tight coupling of growth rate and biomass (i.e., know-
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Figure 9. Comparison of the model runs for small phytoplankton biomass in Case 2. The units for biomass in all panels are mol P kg−1.
The panels show point-by-point scatter plots comparing the model runs against one another (c), yearly averaged log10 biomass plots for each
model run (a, d), and the log10 relative ratios comparing the yearly averaged contour plots of the model runs (b). The x axis and y axis of
the scatter plots (c) correspond to the horizonal and vertical model run labels, respectively (e.g., panel c shows PI Control on the x axis and
LgSm on the y axis). The yearly averaged log10 contour plots (a, d) correspond to the matching horizontal and vertical model run labels
(e.g., panel a shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were calculated as the model run listed
on the horizontal axis divided by the model run listed on the vertical axis (e.g., panel b shows LgSm divided PI Control).

ing the growth rate means we know the biomass). In Case 3,
the ESMs have different biogeochemical codes (i.e., differ-
ent biological equations) and identical physical circulations.
One ESM (ESM2Mo with miniBLING as BC, referred to as
miniBLING) is comparable to the BLING formulation in that
the growth rate is tightly coupled with the biomass. However,
the other ESM (ESM2Mo with TOPAZ as BC, referred to as
TOPAZ) does not have as tight of a coupling. The TOPAZ
simulation allows biomass to be advected and diffused in the
same way as nutrients, effectively making biomass a function
of nutrients and physical circulation, which is more typical of
ESMs and likely true in the real ocean as well.

Our results indicate that the phytoplankton in the two
ESMs react differently to the same conditions. It should be
noted that total phytoplankton biomass is used for Case 3
rather than splitting the biomass into large and small because
phytoplankton output by the miniBLING BC is not differ-
entiated into size classes. The sensitivity analysis shows that
the miniBLING simulation produces higher biomass concen-

trations than the TOPAZ simulation under the same condi-
tions (Fig. 11), except at lower concentrations of nutrients
at which they seem to react similarly (Fig. 11a, b, c). This
is not entirely unexpected since the biomass values in the
miniBLING simulation are generally much higher than those
in the TOPAZ simulation, as can be seen in the point-by-
point comparison (Fig. 12c). However, not all the biomass
values in the miniBLING simulation are larger than those
in the TOPAZ simulation. The subtropical Atlantic regions
and northern subtropical Pacific have higher yearly averaged
biomass values in the TOPAZ simulation compared to the
miniBLING simulation (Fig. 12a, b, d). As with Case 2, the
additional test of asking the NNEs trained on the output of
one ESM to predict the output from the other ESM reinforces
the result that different apparent relationships are found from
an increase in error for both ESMs (Table 5).

The challenge of comparing the results of different ESMs
is evident in Case 3. For example, the performance metrics
for the model runs in Cases 1 and 2 are relatively high in
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Figure 10. Comparison of the model runs for large phytoplankton biomass in Case 2. The units for biomass in all panels are mol P kg−1.
The panels show point-by-point scatter plots comparing the model runs against one another (c), yearly averaged log10 biomass plots for each
model run (a, d), and the log10 relative ratios comparing the yearly averaged contour plots of the model runs (b). The x axis and y axis of
the scatter plots (c) correspond to the horizonal and vertical model run labels, respectively (e.g., panel c shows PI Control on the x axis and
LgSm on the y axis). The yearly averaged log10 contour plots (a, d) correspond to the matching horizontal and vertical model run labels
(e.g., panel a shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were calculated as the model run listed
on the horizontal axis divided by the model run listed on the vertical axis (e.g., panel b shows LgSm divided PI Control).

both the training and testing subsets, but the performance
metrics for the TOPAZ simulation in Case 3 are much lower
(R2 > 0.97 vs. ∼ 0.58, respectively; Table 2). From these re-
sults alone, it is unclear whether this drop in performance is
because we are unable to characterize the TOPAZ simulation
with NNEs using predictors common to both runs or whether
we simply do not include enough relevant variables. To un-
derstand this, we perform a brief analysis in which we train
NNEs on specific variables and measure their performance
with ESM output from CMIP5 ESM2M, which has TOPAZ
as its BC (Table 6). One NNE is trained using only variables
that directly affected the phytoplankton growth rate (biol-
ogy), one is trained using only variables that do not directly
affect the growth rate (physics), and another is trained with
both sets of variables (all). Our results indicate that we are
able to characterize ESM2M (and, by extension, results pro-
duced by using TOPAZ as a BC) with NNEs with the inclu-
sion of more relevant variables, such as nitrate, ammonium,
and silicate (RMSE∼ 5.90× 10−5 mol N m−3 – Table 6 –

vs. the average biomass value of 3.14× 10−4 mol N m−3).
Without the inclusion of all the relevant variables as predic-
tors, the performance of the NNE trained on output from the
TOPAZ simulation suffers compared to the NNE trained on
the miniBLING simulation.

An additional challenge with comparing different ESMs is
that certain variables may not be present in all ESMs. For ex-
ample, one ESM may have phosphate included as a variable
and another ESM may not. This presents a problem when
using the sensitivity analyses because each NNE needs to
be presented with the same conditions for direct compara-
bility. One potential method for mitigating this could be to
use proxy variables such that variables not common to both
ESMs could be modified to represent the missing variables.
For example, if one ESM has phosphate as a variable and an-
other ESM does not, it might be possible to modify a variable
that would be equivalent to phosphate, such as nitrate. Using
the Redfield ratio of 16 : 1 for the N : P ratio, the nitrate vari-
able could be divided by 16 and thus be considered a proxy
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Figure 11. Sensitivity analysis plots for phytoplankton biomass for Case 3. Each line is the prediction for the NNE (i.e., the average prediction
of 25 NNs) specific to each ESM, and the color of each line represents the ESM (miniBLING – red; TOPAZ – blue). The gray region around
each line shows 1 standard deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region around the solid
red curves shows the standard deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the
percentile value at which the other predictor variables were held constant (e.g., panel a varies the macronutrient across its min–max range and
holds the micronutrient and irradiance at their respective 25th percentile values). Columns show the x-axis variables as they vary between
their min–max range. The y axis in all panels is the biomass concentration. Note that the biomass scale changes with each panel.

Table 5. The performance metrics for the NNEs being used to predict the outcome of the other ESM of Case 3. In the top half of the table,
the R2 and RMSE are listed. The values in parentheses are the values from comparing the respective ESMs against one another (these are
the same values listed in the respective scatter plot in Fig. 12). The values outside the parentheses are the values from using the trained NNE
of the ESM listed in the row to predict the outcome of the ESM in the column (e.g., the NNE trained on the TOPAZ simulation was used to
predict the outcome of the miniBLING using the predictor values computed using the miniBLING simulation; these values were compared
against the actual values of the miniBLING simulation to compute the RMSE of 3.91× 10−8). In the bottom half of the table is the percent
decrease in RMSE from the number listed inside the parentheses to the RMSE outside the parentheses (a negative percent means that the
error increased).

Case being predicted

miniBLING TOPAZ

R2 NNE being used for
predicting

miniBLING – (0.2900) 0.3985

TOPAZ (0.2900) 0.5405 –

RMSE NNE being used for
predicting

miniBLING – (3.72× 10−8) 7.79× 10−8

TOPAZ (3.72× 10−8) 3.91× 10−8 –

Percent decrease in error NNE being used for
predicting

miniBLING – −109.29 %

TOPAZ −5.03 % –
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Figure 12. Comparison of the ESMs for total phytoplankton biomass in Case 3 in which circulation is given by ESM2Mo, but the BCs are
different. The units for biomass in all panels are mol P kg−1. The panels show point-by-point scatter plots comparing the ESMs against one
another (c), yearly averaged log10 biomass plots for each ESM (a, d), and the log10 relative ratios comparing the yearly averaged contour
plots of the ESMs (b). The x axis and y axis of the scatter plots (c) correspond to the horizonal and vertical ESM labels, respectively (e.g.,
panel c shows the miniBLING simulation on the x axis and the TOPAZ simulation on the y axis). The yearly averaged log10 contour plots
(a, d) correspond to the matching horizontal and vertical ESM labels (e.g., panel a shows the yearly averaged log10 biomass of miniBLING).
The log10 relative ratios (b) were calculated as the ESM listed on the horizontal axis divided by the ESM listed on the vertical axis (e.g.,
panel b shows TOPAZ divided by miniBLING).

variable for phosphate. This proxy phosphate variable could
then be used in training the NNE particular to the applicable
ESM, so all NNEs would be trained using the same predic-
tors.

5 Summary and conclusions

A challenge of using ESMs is understanding why different
ESMs yield different results, even when they are run under
similar conditions. Our objective with this paper was to in-
vestigate the extent to which NNEs could characterize dif-
ferences across ESMs through differences in circulation vs.
differences in biological formulations. We approached this
objective by exploring three cases.

1. In the first case, we compared three configurations of an
ESM that had identical intrinsic biological relationships
but different physical circulations. The purpose of this

case was to quantify the extent to which differences in
physical circulations between model runs of the same
ESM could affect the apparent relationships found by
NNEs.

2. In the second case, we compared two model runs from
the same ESM, except that the intrinsic biological equa-
tions were different, and the physical circulations were
similar. The purpose of this case was to quantify the ex-
tent to which NNEs found differences in the apparent
relationships and the size of those differences.

3. In the third case, we used two different ESMs that had
different intrinsic biological relationships but identical
physical circulations. The greatest difference between
them was that in one ESM (ESM2Mo with TOPAZ as
BC), biomass was able to be advected and diffused,
making it a function of nutrients, irradiance, and circu-
lation. This was in contrast to the other ESM (ESM2M
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Table 6. The performance metrics for the training and testing subsets of NNEs trained on different variable combinations of CMIP5 ESM2M
output and details about the predictor and target variables.

Variable groupings Predictor variables Target variable Training data Testing data

R2 RMSE R2 RMSE

All variables (1) Nitrate (mol m−3) Phytoplankton concen-
tration (mol N m−3)

0.9756 3.61× 10−5 0.9754 3.65× 10−5

(2) Ammonium (mol m−3)
(3) Phosphate (mol m−3)
(4) Dissolved iron (mol m−3)
(5) Silicate (mol m−3)
(6) Temperature (K)
(7) Net downward shortwave flux

(W m−2)
(8) Mixed layer thickness (m)
(9) Surface X velocity (m s−1)

(10) Surface Y velocity (m s−1)
(11) Upward ocean mass transport at

45 m (kg s−1)

Only variables directly
affecting phytoplank-
ton growth rate

(1) Nitrate (mol m−3) Phytoplankton concen-
tration (mol N m−3)

0.9358 5.87× 10−5 0.9352 5.93× 10−5

(2) Ammonium (mol m−3)
(3) Phosphate (mol m−3)
(4) Dissolved iron (mol m−3)
(5) Silicate (mol m−3)
(6) Temperature (K)
(7) Net downward shortwave flux

(W m−2)

Only variables not
directly affecting
phytoplankton growth
rate

(1) Mixed layer thickness (m) Phytoplankton concen-
tration (mol N m−3)

0.3268 1.90× 10−4 0.3279 1.91× 10−4

(2) Surface X velocity (m s−1)
(3) Surface Y velocity (m s−1)
(4) Upward ocean mass transport at

45 m (kg s−1)

with miniBLING embedded as BC) for which biomass
was only a function of nutrients. The purpose of this
case was to apply what we had learned in the first two
cases to a more realistic ESM to quantify differences in
the apparent relationships and identify any challenges.

Our results indicated that when all the relevant variables were
included as predictors, the NNEs served as a parsimonious
representation of the ESMs. With the first and second cases,
NNEs were able to attribute differences between the model
runs to physics and biological factors, respectively. The third
case demonstrated that NNEs could be used to compare ap-
parent relationships between different ESMs and find their
key differences, along with highlighting some of the chal-
lenges in applying this to more realistic models.

The results of our study suggest that oceanographers and
climate scientists could use the methods we have demon-
strated to compare apparent relationships between ESMs, in
addition to using spatiotemporal distributions and time se-
ries. This is not to say that spatiotemporal information is not

important; rather, the relationships and spatiotemporal infor-
mation can be used to inform one another. For example, in a
side-by-side comparison of contour plots between biomass
and nitrate concentrations, one might expect to see high
biomass in high-nitrate regions. However, if low biomass is
observed in a high-nitrate region, this would suggest that an-
other factor (such as phosphate) is limiting phytoplankton
growth. By visualizing the apparent relationships, one would
be able to observe that phosphate has a strong limitation fac-
tor on the phytoplankton. This could then be verified with the
spatial contour plot of phosphate against the original biomass
and nitrate contour plots.

In addition to comparing relationships between ESMs, the
methods presented here can allow for the comparison of re-
lationships found in observational datasets to the relation-
ships in ESMs, allowing for better tuning of the models and
more accurate representations of the natural world as well
as what changes we might expect under climate change. Our
results here show the “best case” for comparing models with
observations. The prevailing assumption is that environmen-
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tal conditions set biomass and that ecological details do not
matter; if two places have the same nutrients, irradiance,
and mixing, they will have the same phytoplankton biomass.
Our methods demonstrate that we can evaluate the extent to
which such dynamics usually hold. In a follow-up paper, our
preliminary results show that these methods can explain a
large portion of the variance (60 %–80 %) in two satellite-
derived observational datasets, along with greater than 90 %
across a suite of CMIP6 ESMs.

Appendix A

This Appendix provides additional information about the
datasets used in each of the three cases, along with infor-
mation about how each dataset was randomly sampled.

The sizes of the datasets were as follows: 77 328 data
points for each model run in Case 1, 77 328 data points for
each model run in Case 2, and 577 332 data points for each
model run in Case 3. Each dataset was split into training and
testing subsets with 60 % of the full dataset going to the train-
ing subset and 40 % going to the testing subset. The training
subset for each model run contained 46 397 data points in
Case 1, 46 397 data points in Case 2, and 364 399 data points
in Case 3. The testing subsets for each model run contained
30 932 data points in Case 1, 30 932 data points in Case 2,
and 230 934 data points in Case 3.

The composition of the training and testing subsets was
determined by random sampling such that the full dataset
was randomly sampled in both space and time. Specifi-
cally, the random number generator function for MATLAB
(2019b) was set to “twister” and the seed was set as “123” for
reproducibility. Each data point was either part of the train-
ing subset or the testing subset; no observations were part of
both.
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