Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1195-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1195-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
Kevin Bulthuis
CORRESPONDING AUTHOR
Jet Propulsion Laboratory – California Institute of Technology, 4800 Oak Grove Drive MS 300-323, Pasadena, CA 91109, USA
Eric Larour
Jet Propulsion Laboratory – California Institute of Technology, 4800 Oak Grove Drive MS 300-323, Pasadena, CA 91109, USA
Related authors
No articles found.
Luc Houriez, Eric Larour, Lambert Caron, Nicole-Jeanne Schlegel, Surendra Adhikari, Erik Ivins, Tyler Pelle, Hélène Seroussi, Eric Darve, and Martin Fischer
The Cryosphere, 19, 4355–4372, https://doi.org/10.5194/tc-19-4355-2025, https://doi.org/10.5194/tc-19-4355-2025, 2025
Short summary
Short summary
This work examines how interactions between the ice sheet and the Earth’s evolving surface affect the future of Thwaites Glacier in Antarctica. We find that small features in the bedrock play a major role in these interactions which can delay the glacier’s retreat by decades or even centuries. This can significantly reduce sea-level rise projections. Our study highlights resolution requirements for similar ice–earth models and the importance of bedrock mapping efforts in Antarctica.
Surendra Adhikari, Lambert Caron, Holly K. Han, Luc Houriez, Eric Larour, and Erik Ivins
EGUsphere, https://doi.org/10.5194/egusphere-2025-3561, https://doi.org/10.5194/egusphere-2025-3561, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an efficient way of coupling ice sheet and solid Earth models, targeting ice sheet modelers with little knowledge of and interest in glacial isostatic adjustment processes. We distill solid Earth response signals into "Green's functions," which can be convolved with the spatiotemporal pattern of modeled ice mass change using simple matrix multiplication. The manuscript is timely and encourages greater participation with coupled ice/Earth simulations in the ongoing ISMIP effort.
Lambert Caron, Erik Ivins, Eric Larour, Surendra Adhikari, and Laurent Metivier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3414, https://doi.org/10.5194/egusphere-2024-3414, 2025
Short summary
Short summary
Presented here is a new model of the solid-Earth response to tides and mass changes in ice sheets, oceans, and groundwater, in of terms of gravity change and bedrock motion. The model is capable simulating mantle deformation including elasticity, transient and steady-state viscous flow. We detail our approach to numerical optimization, and report the accuracy of results with respect to community benchmarks. The resulting coupled system features kilometer-scale resolution and fast computation.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022, https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
Short summary
In the described study, we derive an uncertainty range for global mean sea level rise (SLR) contribution from Thwaites Glacier in a 200-year period under an extreme ocean warming scenario. We derive the spatial and vertical resolutions needed for bedrock data acquisition missions in order to limit global mean SLR contribution from Thwaites Glacier to ±2 cm in a 200-year period. We conduct sensitivity experiments in order to present the locations of critical regions in need of accurate mapping.
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary
Short summary
Tracking changes in Greenland's glaciers is important for understanding Earth's climate, but it is time consuming to do so by hand. We train a program, called CALFIN, to automatically track these changes with human levels of accuracy. CALFIN is a special type of program called a neural network. This method can be applied to other glaciers and eventually other tracking tasks. This will enhance our understanding of the Greenland Ice Sheet and permit better models of Earth's climate.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Cited articles
Abramowitz, M. and Stegun, I. A.:
Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, 9th edn.,
Dover Publications, New York, NY, 1970. a
Babaniyi, O., Nicholson, R., Villa, U., and Petra, N.: Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty, The Cryosphere, 15, 1731–1750, https://doi.org/10.5194/tc-15-1731-2021, 2021. a, b
Bakka, H., Krainski, E., Bolin, D., Rue, H., and Lindgren, F.:
The diffusion-based extension of the Matérn field to space-time,
arXiv [preprint], arXiv:2006.04917, 2020. a
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009. a
Beskos, A., Girolami, M., Lan, S., Farrell, P. E., and Stuart, A. M.:
Geometric MCMC for infinite-dimensional inverse problems,
J. Comput. Phys.,
335, 327–351, https://doi.org/10.1016/j.jcp.2016.12.041, 2017. a
Bolin, D.:
Spatial Matérn Fields Driven by Non-Gaussian Noise,
Scand. J. Stat.,
41, 557–579, https://doi.org/10.1111/sjos.12046, 2014. a, b
Bolin, D. and Lindgren, F.:
Wavelet Markov models as efficient alternatives to tapering and convolution fields, Tech. rep.,
Centre for Mathematical Sciences, Faculty of Engineering, Lund University, 2009. a
Bolin, D., Kirchner, K., and Kovács, M.:
Numerical solution of fractional elliptic stochastic PDEs with spatial white noise,
IMA J. Numer. Anal.,
40, 1051–1073, https://doi.org/10.1093/imanum/dry091, 2018. a
Brinkerhoff, D. J.:
Variational Inference at Glacier Scale,
arXiv [preprint], arXiv:2108.07263, 2021. a, b
Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G.:
A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion,
SIAM J. Sci. Comput.,
35, A2494–A2523, https://doi.org/10.1137/12089586x, 2013. a, b, c
Bulthuis, K. and Larour, E.: A new sampling capability for uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19 using Gaussian Markov random fields – Software, Zenodo [code], https://doi.org/10.5281/zenodo.5532775, 2021a. a
Bulthuis, K. and Larour, E.: A new sampling capability for uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19 using Gaussian Markov random fields – Datasets and results, Zenodo [data set], https://doi.org/10.5281/zenodo.5532710, 2021b. a
Bulthuis, K., Arnst, M., Sun, S., and Pattyn, F.: Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change, The Cryosphere, 13, 1349–1380, https://doi.org/10.5194/tc-13-1349-2019, 2019. a, b
Bulthuis, K., Pattyn, F., and Arnst, M.:
A Multifidelity Quantile-Based Approach for Confidence Sets of Random Excursion Sets with Application to Ice-Sheet Dynamics,
SIAM/ASA Journal on Uncertainty Quantification,
8, 860–890, https://doi.org/10.1137/19m1280466, 2020. a
Cameletti, M., Lindgren, F., Simpson, D., and Rue, H.:
Spatio-temporal modeling of particulate matter concentration through the SPDE approach,
ASTA-Adv. Stat. Anal.,
97, 109–131, https://doi.org/10.1007/s10182-012-0196-3, 2012. a, b, c
Chu, S. and Guilleminot, J.:
Stochastic multiscale modeling with random fields of material properties defined on nonconvex domains,
Mech. Res. Commun.,
97, 39–45, https://doi.org/10.1016/j.mechrescom.2019.01.008, 2019. a
Comiso, J. C.:
Variability and Trends in Antarctic Surface Temperatures from In Situ and Satellite Infrared Measurements,
J. Climate,
13, 1674–1696, https://doi.org/10.1175/1520-0442(2000)013<1674:vatias>2.0.co;2, 2000. a
Cressie, N. A. C.:
Statistics for Spatial Data, revised edn.,
John Wiley & Sons, Inc., New York, NY, https://doi.org/10.1002/9781119115151, 1993. a
Da Veiga, S.:
Global sensitivity analysis with dependence measures,
J. Stat. Comput. Sim.,
85, 1283–1305, https://doi.org/10.1080/00949655.2014.945932, 2014. a
Daon, Y. and Stadler, G.:
Mitigating the influence of the boundary on PDE-based covariance operators,
Inverse Probl. Imag.,
12, 1083–1102, https://doi.org/10.3934/ipi.2018045, 2018. a, b
De Lozzo, M. and Marrel, A.:
New improvements in the use of dependence measures for sensitivity analysis and screening,
J. Stat. Comput. Sim.,
86, 3038–3058, https://doi.org/10.1080/00949655.2016.1149854, 2016. a
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability,
Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019. a, b
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M., Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne, A. J., Shepherd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers, C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le clec'h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F., Morlighem, M., O'Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D., Breedam, J. V., van de Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T., and Zwinger, T.:
Projected land ice contributions to twenty-first-century sea level rise,
Nature,
593, 74–82, https://doi.org/10.1038/s41586-021-03302-y, 2021. a, b
Furrer, R., Genton, M. G., and Nychka, D.:
Covariance Tapering for Interpolation of Large Spatial Datasets,
J. Comput. Graph. Stat.,
15, 502–523, https://doi.org/10.1198/106186006x132178, 2006. a
Griggs, J. A. and Bamber, J. L.: A new 1 km digital elevation model of Antarctica derived from combined radar and laser data – Part 2: Validation and error estimates, The Cryosphere, 3, 113–123, https://doi.org/10.5194/tc-3-113-2009, 2009. a
Hendrickson, B. and Leland, R.:
The Chaco user's guide, version 2.0, Technical Report SAND-95-2344, Tech. rep.,
Sandia National Laboratories, https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/guide.pdf (last access: 3 September 2021), 1995. a
Hristopulos, D. T.:
Random Fields for Spatial Data Modeling: A Primer for Scientists and Engineers, Advances in Geographic Information Science,
Springer Netherlands, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-024-1918-4, 2020. a, b
Isaac, T., Petra, N., Stadler, G., and Ghattas, O.:
Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet,
J. Comput. Phys.,
296, 348–368, https://doi.org/10.1016/j.jcp.2015.04.047, 2015. a, b, c, d, e, f
Janon, A., Klein, T., Lagnoux, A., Nodet, M., and Prieur, C.:
Asymptotic normality and efficiency of two Sobol index estimators,
ESAIM-Probab. Stat.,
18, 342–364, https://doi.org/10.1051/ps/2013040, 2014. a
Khristenko, U., Scarabosio, L., Swierczynski, P., Ullmann, E., and Wohlmuth, B.:
Analysis of Boundary Effects on PDE-Based Sampling of Whittle–Matérn Random Fields,
SIAM/ASA Journal on Uncertainty Quantification,
7, 948–974, https://doi.org/10.1137/18m1215700, 2019. a, b
Krainski, E. T.:
Statistical Analysis of Space-time Date: New Models and Applications,
PhD thesis,
Norwegian University of Science and Technology, Trondheim, Norway, 2018. a
Larour, E., Morlighem, M., Seroussi, H., Schiermeier, J., and Rignot, E.:
Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica,
J. Geophys. Res.-Earth,
117, F04023, https://doi.org/10.1029/2012jf002371, 2012a. a
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.:
Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM),
J. Geophys. Res.-Earth,
117, F01022, https://doi.org/10.1029/2011jf002140, 2012c. a, b, c
Larour, E., Caron, L., Morlighem, M., Adhikari, S., Frederikse, T., Schlegel, N.-J., Ivins, E., Hamlington, B., Kopp, R., and Nowicki, S.: ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17, Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, 2020. a
MacAyeal, D. R.:
Large-scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica,
J. Geophys. Res.-Sol. Ea.,
94, 4071–4087, https://doi.org/10.1029/jb094ib04p04071, 1989. a
Minasny, B. and McBratney, A. B.:
The Matérn function as a general model for soil variograms,
Geoderma,
128, 192–207, https://doi.org/10.1016/j.geoderma.2005.04.003, 2005. a
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Dhia, H. B., and Aubry, D.:
Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica,
Geophys. Res. Lett.,
37, L14502, https://doi.org/10.1029/2010gl043853, 2010. a
Nitsche, F. O., Jacobs, S. S., Larter, R. D., and Gohl, K.:
Bathymetry of the Amundsen Sea continental shelf: Implications for geology, oceanography, and glaciology,
Geochem. Geophy. Geosy.,
8, Q10009, https://doi.org/10.1029/2007gc001694, 2007. a
Petra, N., Martin, J., Stadler, G., and Ghattas, O.:
A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems,
SIAM J. Sci. Comput.,
36, A1525–A1555, https://doi.org/10.1137/130934805, 2014. a, b, c, d
Rasmussen, C. E. and Williams, C. K. I.:
Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning,
The MIT Press, Cambridge, MA, 2006. a
Rignot, E.: Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophys. Res. Lett., 35, L12505, https://doi.org/10.1029/2008GL033365, 2008. a
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh, R. C. A.:
Potential sea-level rise from Antarctic ice-sheet instability constrained by observations,
Nature,
528, 115–118, https://doi.org/10.1038/nature16147, 2015. a, b
Roininen, L., Huttunen, J. M. J., Lasanen, S., and and:
Whittle–Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography,
Inverse Probl. Imag.,
8, 561–586, https://doi.org/10.3934/ipi.2014.8.561, 2014. a
Rue, H. and Held, L.:
Gaussian Markov random fields: Theory and Applications,
vol. 104 of Monographs on statistics and applied probability,
Chapman & Hall/CRC, Boca Raton, FL, 2005. a
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.:
Global Sensitivity Analysis: The Primer,
John Wiley & Sons, West Sussex, UK, 2008. a
Schabenger, O. and Gotway, C. A.: Statistical Methods for Spatial Data Analysis, Chapman & Hall, Boca Raton, FL, ISBN 1-58488-322-7, 2005. a
Schlegel, N.-J. and Larour, E. Y.:
Quantification of Surface Forcing Requirements for a Greenland Ice Sheet Model Using Uncertainty Analyses,
Geophys. Res. Lett.,
46, 9700–9709, https://doi.org/10.1029/2019gl083532, 2019. a
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.:
Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM,
J. Geophys. Res.-Earth,
118, 667–680, https://doi.org/10.1002/jgrf.20062, 2013. a
Schlegel, N.-J., Larour, E., Seroussi, H., Morlighem, M., and Box, J. E.:
Ice discharge uncertainties in Northeast Greenland from boundary conditions and climate forcing of an ice flow model,
J. Geophys. Res.-Earth,
120, 29–54, https://doi.org/10.1002/2014jf003359, 2015. a
Schlegel, N.-J., Seroussi, H., Schodlok, M. P., Larour, E. Y., Boening, C., Limonadi, D., Watkins, M. M., Morlighem, M., and van den Broeke, M. R.: Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework, The Cryosphere, 12, 3511–3534, https://doi.org/10.5194/tc-12-3511-2018, 2018. a, b, c
Scott, D. W.:
Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd edn.,
Wiley Series in Probability and Statistics, Wiley, Hoboken, NJ, https://doi.org/10.1002/9781118575574, 2015. a
Simpson, D., Lindgren, F., and Rue, H.:
In order to make spatial statistics computationally feasible, we need to forget about the covariance function,
Environmetrics,
23, 65–74, https://doi.org/10.1002/env.1137, 2011. a
Sobol', I.:
Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates,
Math. Comput. Simulat.,
55, 271–280, https://doi.org/10.1016/s0378-4754(00)00270-6, 2001. a
Stein, M. L.:
Interpolation of Spatial Data: Some theory for Kriging, Springer Series in Statistics,
Springer, New York, NY, https://doi.org/10.1007/978-1-4612-1494-6, 1999. a, b
Stuart, A. M.:
Inverse problems: A Bayesian perspective,
Acta Numer.,
19, 451–559, https://doi.org/10.1017/s0962492910000061, 2010.
a
Vaughan, D. G., Bamber, J. L., Giovinetto, M., Russell, J., and Cooper, A. P. R.:
Reassessment of Net Surfcace Mass Balance in Antarctica,
J. Climate,
12, 933–946, https://doi.org/10.1175/1520-0442(1999)012<0933:ronsmb>2.0.co;2, 1999. a
Vio, R., Andreani, P., and Wamsteker, W.:
Numerical Simulation of Non-Gaussian Random Fields with Prescribed Correlation Structure,
Publ. Astron. Soc. Pac.,
113, 1009–1020, https://doi.org/10.1086/322919, 2001. a
Western, L. M., Sha, Z., Rigby, M., Ganesan, A. L., Manning, A. J., Stanley, K. M., O'Doherty, S. J., Young, D., and Rougier, J.: Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields, Geosci. Model Dev., 13, 2095–2107, https://doi.org/10.5194/gmd-13-2095-2020, 2020. a, b, c
White, P. A., Reese, C. S., Christensen, W. F., and Rupper, S.:
A model for Antarctic surface mass balance and ice core site selection,
Environmetrics,
30, e2579, https://doi.org/10.1002/env.2579, 2019. a
Whittle, P.:
On Stationary Processes in the Plane,
Biometrika,
41, 434, https://doi.org/10.2307/2332724, 1954. a
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
We present and implement a stochastic solver to sample spatially and temporal varying uncertain...