Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7725-2021
https://doi.org/10.5194/gmd-14-7725-2021
Model description paper
 | 
21 Dec 2021
Model description paper |  | 21 Dec 2021

ChAP 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity

Alexey V. Eliseev, Rustam D. Gizatullin, and Alexandr V. Timazhev

Related authors

Subsea permafrost and associated methane hydrates: how long will they survive in the future?
Valentina V. Malakhova and Alexey V. Eliseev
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-99,https://doi.org/10.5194/esd-2021-99, 2022
Preprint withdrawn
Short summary
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020,https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model: validation and parameter optimization
Sonja Totz, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou
Geosci. Model Dev., 11, 665–679, https://doi.org/10.5194/gmd-11-665-2018,https://doi.org/10.5194/gmd-11-665-2018, 2018
How sensitive are modeled contemporary subsea permafrost thaw and thickness of the methane clathrates stability zone in Eurasian Arctic to assumptions on Pleistocene glacial cycles?
Valentina V. Malakhova and Alexey V. Eliseev
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-66,https://doi.org/10.5194/cp-2016-66, 2016
Manuscript not accepted for further review
WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015,https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023,https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023,https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023,https://doi.org/10.5194/gmd-16-2055-2023, 2023
Short summary
The impact of lateral boundary forcing in the CORDEX-Africa ensemble over southern Africa
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023,https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Effects of complex terrain on the shortwave radiative balance: a sub-grid-scale parameterization for the GFDL Earth System Model version 4.1
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
Geosci. Model Dev., 16, 1937–1960, https://doi.org/10.5194/gmd-16-1937-2023,https://doi.org/10.5194/gmd-16-1937-2023, 2023
Short summary

Cited articles

Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C., Myhre, C., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P., Schulz, M., Shindell, D., Skeie, R., Stein, A., Takemura, T., Tsyro, S., Vet, R., and Xu, X.: Global and regional trends of atmospheric sulfur, Sci. Rep., 9, 953, https://doi.org/10.1038/s41598-018-37304-0, 2019. a
Allen, R., Landuyt, W., and Rumbold, S.: An increase in aerosol burden and radiative effects in a warmer world, Nat. Clim. Change, 6, 269–274, https://doi.org/10.1038/nclimate2827, 2016. a
Barth, M., Rasch, P., Kiehl, J., Benkovitz, C., and Schwartz, S.: Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry, J. Geophys. Res.-Atmos., 105, 1387–1415, https://doi.org/10.1029/1999JD900773, 2000. a, b, c, d
Bauer, E., Petoukhov, V., Ganopolski, A., and Eliseev, A.: Climatic response to anthropogenic sulphate aerosols versus well-mixed greenhouse gases from 1850 to 2000 AD in CLIMBER–2, Tellus B, 60, 82–97, https://doi.org/10.1111/j.1600-0889.2007.00318.x, 2008. a, b, c
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020. a
Download
Short summary
A stationary, computationally efficient scheme, ChAP 1.0 (Chemical and Aerosol Processes, version 1.0), is developed for the sulfur cycle in the troposphere. This scheme is designed for Earth system models of intermediate complexity (EMICs). The scheme model reasonably reproduces characteristics of the tropospheric sulfur cycle. Despite its simplicity, ChAP may be successfully used to simulate anthropogenic sulfur pollution in the atmosphere at coarse spatial scales and timescales.