Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Department of Agricultural Economics, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany
Florian Humpenöder
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jan Philipp Dietrich
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Benjamin Leon Bodirsky
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Brent Sohngen
Department of Agricultural, Environmental, and Development Economics, The Ohio State University, Columbus, Ohio, USA
Christopher P. O. Reyer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Hermann Lotze-Campen
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Department of Agricultural Economics, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany
Alexander Popp
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Related authors
No articles found.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Petra Lasch-Born, Felicitas Suckow, Christopher P. O. Reyer, Martin Gutsch, Chris Kollas, Franz-Werner Badeck, Harald K. M. Bugmann, Rüdiger Grote, Cornelia Fürstenau, Marcus Lindner, and Jörg Schaber
Geosci. Model Dev., 13, 5311–5343, https://doi.org/10.5194/gmd-13-5311-2020, https://doi.org/10.5194/gmd-13-5311-2020, 2020
Short summary
Short summary
The process-based model 4C has been developed to study climate impacts on forests and is now freely available as an open-source tool. This paper provides a comprehensive description of the 4C version (v2.2) for scientific users of the model and presents an evaluation of 4C. The evaluation focused on forest growth, carbon water, and heat fluxes. We conclude that 4C is widely applicable, reliable, and ready to be released to the scientific community to use and further develop the model.
Cited articles
Abhijeet, M. and Humpenöder, F.: MAgPIE v4.3.x model run outputs including dynamic forestry sector (Version 2), Zenodo [data set and code], https://doi.org/10.5281/zenodo.5417474, 2021. a
Biber, P., Felton, A., Nieuwenhuis, M., Lindbladh, M., Black, K., Bahýľ, J., Bingöl, Ö., Borges, J.G., Botequim, B., Brukas, V., and Bugalho, M. N:
Forest Biodiversity, Carbon Sequestration, and Wood Production: Modelling Synergies and Trade-Offs for Ten Forest Landscapes across Europe,
Frontiers in Ecology and Evolution,
8, p. 291, 2020. a
Bodirsky, B. L., Dietrich, J. P., Martinelli, E., Stenstad, A., Pradhan, P., Gabrysch, S., Mishra, A., Weindl, I., Le Mouël, C., Rolinski, S., and Baumstark, L.:
The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection,
Sci. Rep.-UK, 10, 1–14, 2020. a
Bodirsky, B. L., Humpenoeder, F., Dietrich, J. P., Stevanovic, M., Weindl, I., Karstens, K., Wang, X., Mishra, A., Breier, J., Yalew, A. W., Chen, D., Biewald, A., Wirth, S., and von Jeetze, P.:
magpie4: MAgPIE outputs R package for MAgPIE version 4.x, R package version 1.83.3,
available at: https://github.com/pik-piam/magpie4, last access: 3 March 2021. a
Bonan, G. B. and Doney, S. C.:
Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models,
Science,
359, p. 533, 2018. a
Böttcher, H. and Reise, J.:
The climate impact of forest and land management in the EU and the role of current reporting and accounting rules, Öko Institut, Berlin,
2020. a
Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P., and Sayer, J.:
Plantation forests and biodiversity: oxymoron or opportunity?, Biodivers. Conserv., 17, 925–951, 2008. a
Buotte, P. C., Law, B. E., Ripple, W. J., and Berner, L. T.:
Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States,
Ecol. Appl.,
30, e02039, https://doi.org/10.1002/eap.2039, 2020. a
Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder, A., Waldhoff, S., and Wise, M.: GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems, Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, 2019. a, b, c
Crate, S., Ulrich, M., Habeck, J. O., Desyatkin, A. R., Desyatkin, R. V., Fedorov, A. N., Hiyama, T., Iijima, Y., Ksenofontov, S., Mészáros, C., and Takakura, H.:
Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use,
Anthropocene,
18, 89–104, 2017. a
Cubbage, F., Mac Donagh, P., Júnior, J. S., Rubilar, R., Donoso, P., Ferreira, A., Hoeflich, V., Olmos, V. M., Ferreira, G., Balmelli, G., and and Siry, J.:
Timber investment returns for selected plantations and native forests in South America and the Southern United States,
New Forest.,
33, 237–255, 2007. a
Dietrich, J. P., Schmitz, C., Müller, C., Fader, M., Lotze-Campen, H., and Popp, A.:
Measuring agricultural land-use intensity–A global analysis using a model-assisted approach,
Ecol. Model.,
232, 109–118, 2012. a
Dietrich, J. P., Popp, A., and Lotze-Campen, H.:
Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model,
Ecol. Model.,
263, 233–243, 2013. a
Dietrich, J. P., Bodirsky, B. L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., Kreidenweis, U., Wang, X., Mishra, A., Klein, D., Ambrósio, G., Araujo, E., Yalew, A. W., Baumstark, L., Wirth, S., Giannousakis, A., Beier, F., Chen, D. M.-C., Lotze-Campen, H., and Popp, A.: MAgPIE 4 – a modular open-source framework for modeling global land systems, Geosci. Model Dev., 12, 1299–1317, https://doi.org/10.5194/gmd-12-1299-2019, 2019. a, b, c, d, e, f, g
Dietrich, J. P., Bodirsky, B. L., Weindl, I., Humpenöder, F., Stevanovic, M., Kreidenweis, U., Wang, X., Karstens, K., Mishra, A., Beier, F. D., Molina Bacca, E. J., Klein, D., Ambrósio, G., Araujo, E., Biewald, A., Lotze-Campen, H., and Popp, A.:
MAgPIE 4.3.0 Model Documentation,
available at: https://rse.pik-potsdam.de/doc/magpie/4.3/index.htm (last access: 10 March 2021), Potsdam Institute for Climate Impact Research, Potsdam, Germany, 2020a. a, b
Dietrich, J. P., Bodirsky, B. L., Weindl, I., Humpenöder, F., Stevanovic, M., Kreidenweis, U., Wang, X., Karstens, K., Mishra, A., Beier, F. D., Molina Bacca, E. J., Klein, D., Ambrósio, G., Araujo, E., Biewald, A., Lotze-Campen, H., and Popp, A.:
MAgPIE – An Open Source land-use modeling framework – Version 4.3.1, Zenodo [code]. https://doi.org/10.5281/zenodo.4231467,
available at: https://github.com/magpiemodel/magpie (last access: 10 March 2021), 2020b. a, b, c
Doelman, J. C., Stehfest, E., Tabeau, A., van Meijl, H., Lassaletta, L., Gernaat, D. E., Hermans, K., Harmsen, M., Daioglou, V., Biemans, H., and van der Sluis, S.:
Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation,
Global Environ. Chang.,
48, 119–135, 2018. a, b
Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E., van den Berg, M., van Zeist, W.-J., Daioglou, V., and van Meijl, H.:
Afforestation for climate change mitigation: Potentials, risks and trade-offs,
Glob. Change Biol.,
26, 1576–1591, 2020. a
Drud, A.:
GAMS/CONOPT4,
ARKI Consulting and Development A/S, Bagsvaerd, Denmark, available at: https://www.gams.com/35/docs/S_CONOPT4.html (last access: 3 March 2021), 2015. a
FAO:
Accounting for the benefits of forest resources: concepts and experience, Revised Report,
Forestry Department Planning and Statistics Branch, Policy and Planning Division, FAO, Rome, Italy, 1997. a
FAO:
Global Forest Resources Assessment 2020: Main report, FAO,
https://doi.org/10.4060/ca9825en,
FAO, Rome, Italy, 2020a. a, b, c, d
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., and Helkowski, J. H.:
Global consequences of land use,
Science,
309, 570–574, 2005. a
GAMS, D. C.:
The General Algebraic Modeling System,
available at: https://www.gams.com/ (last access: 10 March 2021),
GAMS Development Corp., Fairfax, USA, 2021. a
Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P., and Obersteiner, M.: Historical CO2 emissions from land use and land cover change and their uncertainty, Biogeosciences, 17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020, 2020. a, b, c, d
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J., Laurance, W. F., Lovejoy, T. E., and Sodhi, N. S.:
Primary forests are irreplaceable for sustaining tropical biodiversity,
Nature,
478, 378–381, 2011. a
Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., and Rocha, M.: The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571–603, https://doi.org/10.5194/essd-8-571-2016, 2016. a, b
Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.: Carbon emissions from land use and land-cover change, Biogeosciences, 9, 5125–5142, https://doi.org/10.5194/bg-9-5125-2012, 2012. a, b
Humpenöder, F., Popp, A., Dietrich, J. P., Klein, D., Lotze-Campen, H., Bonsch, M., Bodirsky, B. L., Weindl, I., Stevanovic, M., and Müller, C.:
Investigating afforestation and bioenergy CCS as climate change mitigation strategies,
Environ. Res. Lett.,
9, 064029, https://doi.org/10.1088/1748-9326/9/6/064029, 2014. a, b, c, d
Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., Dietrich, J. P., Klein, D., Kreidenweis, U., Müller, C., and Rolinski, S:
Large-scale bioenergy production: how to resolve sustainability trade-offs?,
Environ. Res. Lett.,
13, 024011, https://doi.org/10.1088/1748-9326/aa9e3b, 2018. a
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020. a, b, c
IIASA:
SSP Database (version 2.0), Tech. rep.,
available at: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10 (last access: 21 October 2021),
International Institute for Applied Systems Analysis, Laxenburg, 2018. a
Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudré, N., Houghton, R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., and Sukumar, R.:
Land–Climate Interactions. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, food security, and greenhouse gas fluxes in terrestrial ecosystems,
Intergovernmental Panel on Climate Change, Geneva, Switzerland, pp. 1–186, 2019. a
Latta, G. S., Sjølie, H. K., and Solberg, B.:
A review of recent developments and applications of partial equilibrium models of the forest sector,
J. Forest Econ.,
19, 350–360, 2013. a
Lauk, C., Haberl, H., Erb, K.-H., Gingrich, S., and Krausmann, F.:
Global socioeconomic carbon stocks in long-lived products 1900–2008,
Environ. Res. Lett.,
7, 034023, https://doi.org/10.1088/1748-9326/7/3/034023, 2012. a
Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., and Gielen, B.:
Land management and land-cover change have impacts of similar magnitude on surface temperature,
Nat. Clim. Change,
4, 389–393, 2014. a
MacDicken, K. G.:
Global forest resources assessment 2015: what, why and how?,
Forest Ecol. Manag.,
352, 3–8, 2015. a
Moomaw, W. R., Law, B. E., and Goetz, S. J.:
Focus on the role of forests and soils in meeting climate change mitigation goals: summary,
Environ. Res. Lett.,
15, 045 009, 2020. a
Oswalt, S. N., Smith, W. B., Miles, P. D., and Pugh, S. A.:
Forest resources of the United States, 2017: A technical document supporting the Forest Service 2020 RPA Assessment, Gen. Tech. Rep. WO-97,
US Department of Agriculture, Forest Service, Washington Office, Washington, DC, 97, 2019. a
Payn, T., Carnus, J.-M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., Rodriguez, L., Silva, L. N., and Wingfield, M. J.:
Changes in planted forests and future global implications,
Forest Ecol. Manag.,
352, 57–67, 2015. a
Pokharel, R., Grala, R. K., Grebner, D. L., and Grado, S. C.:
Factors affecting utilization of woody residues for bioenergy production in the southern United States,
Biomass Bioenerg.,
105, 278–287, 2017. a
Popp, A., Lotze-Campen, H., and Bodirsky, B.:
Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production,
Global Environ. Chang.,
20, 451–462, 2010. a
Poulter, B., Aragão, L., Andela, N., Bellassen, V., Ciais, P., Kato, T., Lin, X., Nachin, B., Luyssaert, S., Pederson, N., and Peylin, P.:
The global forest age dataset and its uncertainties (GFADv1. 1),
NASA National Aeronautics and Space Administration,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.889943, 2019. a, b
Ravindranath, N. H. and Ostwald, M.:
Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects, vol. 29,
Springer Science & Business Media, Heidelberg, Germany, 2007. a
Reid, W. V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.-T., Mokhele, K., Ostrom, E., Raivio, K., Rockström, J., Schellnhuber, H. J., and Whyte, A.:
Earth system science for global sustainability: grand challenges,
Science,
330, 916–917, 2010. a
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O'neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., and Lutz, W.:
The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview,
Global Environ. Chang.,
42, 153–168, 2017. a
Ruane, A. C. and Rosenzweig, C.:
Climate Change Impacts on Agriculture: Challenges, Opportunities, and AgMIP Frameworks for Foresight,
NASA Scientific and Technical Information Program, Virginia, USA, 2018. a
Rubel, F. and Kottek, M.:
Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification,
Meteorol. Z.,
19, 135–141, 2010. a
Siry, J. P., Cubbage, F. W., Potter, K. M., and McGinley, K.:
Current perspectives on sustainable forest management: North America,
Current Forestry Reports,
4, 138–149, 2018. a
Smith, P., Clark, H., Dong, H., Elsiddig, E., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., and Ravindranath, N. H.:
Agriculture, forestry and other land use (AFOLU), Climate Change 2014: Mitigation of Climate Change, IPCC Working Group III Contribution to AR5,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014. a
Snyder, A., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Narayan, K., Di Vittorio, A., Waldhoff, S., Wise, M., and Patel, P.:
The domestic and international implications of future climate for US agriculture in GCAM,
PloS one,
15, e0237918, 2020. a
Standard, G.:
Afforestation-reforestation requirements,
The Gold Standard, Geneva, Switzerland, 2013. a
Stehfest, E., van Zeist, W.-J., Valin, H., Havlik, P., Popp, A., Kyle, P., Tabeau, A., Mason-D'Croz, D., Hasegawa, T., Bodirsky, B. L., and Calvin, K.:
Key determinants of global land-use projections,
Nat. Commun.,
10, 1–10, 2019. a
Thuiller, W., Münkemüller, T., Lavergne, S., Mouillot, D., Mouquet, N., Schiffers, K., and Gravel, D.:
A road map for integrating eco-evolutionary processes into biodiversity models,
Ecol. Lett.,
16, 94–105, 2013. a
UNESCO:
World Database on Protected Areas WDPA,
UNEP-WCMC, Cambridge, UK, 2011. a
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Pe'er, G., Singer, A., Bridle, J., Crozier, L., De Meester, L., Godsoe, W., and Gonzalez, A.:
Improving the forecast for biodiversity under climate change,
Science,
353, https://doi.org/10.1126/science.aad8466, 2016. a
van de Ven, D.-J., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., and Gonzalez-Eguino, M.:
The potential land requirements and related land use change emissions of solar energy,
Sci. Rep.-UK,
11, 1–12, 2021. a
Verhagen, W., van der Zanden, E. H., Strauch, M., van Teeffelen, A. J., and Verburg, P. H.:
Optimizing the allocation of agri-environment measures to navigate the trade-offs between ecosystem services, biodiversity and agricultural production,
Environ. Sci. Policy,
84, 186–196, 2018. a
Waring, B., Neumann, M., Prentice, I. C., Adams, M., Smith, P., and Siegert, M.:
Forests and Decarbonization–Roles of Natural and Planted Forests,
Frontiers in Forests and Global Change,
3, 58, 2020. a
Wise, M., Calvin, K., Kyle, P., Luckow, P., and Edmonds, J.:
Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon,
Climate Change Economics,
5, 1450003, https://doi.org/10.1142/S2010007814500031, 2014. a, b
Zhang, X., Chen, J., Dias, A. C., and Yang, H.:
Improving Carbon Stock Estimates for In-Use Harvested Wood Products by Linking Production and Consumption–A Global Case Study,
Environ. Sci. Technol.,
54, 2565–2574, 2020. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(10793 KB) - Full-text XML
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Timber plantations are an increasingly important source of roundwood production, next to harvest...