Articles | Volume 14, issue 9
Geosci. Model Dev., 14, 5695–5730, 2021
https://doi.org/10.5194/gmd-14-5695-2021
Geosci. Model Dev., 14, 5695–5730, 2021
https://doi.org/10.5194/gmd-14-5695-2021
Model description paper
14 Sep 2021
Model description paper | 14 Sep 2021

NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets

Annika Günther et al.

Related authors

Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems
Francesco N. Tubiello, Kevin Karl, Alessandro Flammini, Johannes Gütschow, Griffiths Obli-Laryea​​​​​​​, Giulia Conchedda, Xueyao Pan, Sally Yue Qi, Hörn Halldórudóttir Heiðarsdóttir, Nathan Wanner, Roberta Quadrelli, Leonardo Rocha Souza, Philippe Benoit, Matthew Hayek, David Sandalow, Erik Mencos Contreras​​​​​​​, Cynthia Rosenzweig, Jose Rosero Moncayo, Piero Conforti, and Maximo Torero
Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022,https://doi.org/10.5194/essd-14-1795-2022, 2022
Short summary
Country-resolved combined emission and socio-economic pathways based on the Representative Concentration Pathway (RCP) and Shared Socio-Economic Pathway (SSP) scenarios
Johannes Gütschow, M. Louise Jeffery, Annika Günther, and Malte Meinshausen
Earth Syst. Sci. Data, 13, 1005–1040, https://doi.org/10.5194/essd-13-1005-2021,https://doi.org/10.5194/essd-13-1005-2021, 2021
Short summary
PRIMAP-crf: UNFCCC CRF data in IPCC 2006 categories
M. Louise Jeffery, Johannes Gütschow, Robert Gieseke, and Ronja Gebel
Earth Syst. Sci. Data, 10, 1427–1438, https://doi.org/10.5194/essd-10-1427-2018,https://doi.org/10.5194/essd-10-1427-2018, 2018
Short summary
The PRIMAP-hist national historical emissions time series
Johannes Gütschow, M. Louise Jeffery, Robert Gieseke, Ronja Gebel, David Stevens, Mario Krapp, and Marcia Rocha
Earth Syst. Sci. Data, 8, 571–603, https://doi.org/10.5194/essd-8-571-2016,https://doi.org/10.5194/essd-8-571-2016, 2016
Short summary

Related subject area

Numerical methods
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022,https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022,https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022,https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022,https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022,https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary

Cited articles

Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S., Hilaire, J., Eom, J., Krey, V., Kriegler, E., Mouratiadou, I., de Boer, H. S., van den Berg, M., Carrara, S., Daioglou, V., Drouet, L., Edmonds, J. E., Gernaat, D., Havlik, P., Johnson, N., Klein, D., Kyle, P., Marangoni, G., Masui, T., Pietzcker, R. C., Strubegger, M., Wise, M., Riahi, K., and van Vuuren, D. P.: Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives, Global Environ. Change, 42, 316–330, https://doi.org/10.1016/j.gloenvcha.2016.07.006, 2017. a
Benveniste, H., Boucher, O., Guivarch, C., Treut, H. L., and Criqui, P.: Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions, Environ. Res. Lett., 13, 014022, https://doi.org/10.1088/1748-9326/aaa0b9, 2018. a, b, c, d, e, f, g, h
Carey, E. V., Sala, A., Keane, R., and Callaway, R. M.: Are old forests underestimated as global carbon sinks?, Glob. Change Biol., 7, 339–344, https://doi.org/10.1046/j.1365-2486.2001.00418.x, 2001. a
CAT: Climate Action Tracker: Australia: Assumptions: Pledge, available at: https://climateactiontracker.org/countries/australia/assumptions/ (last access: 1 June 2020), 2019a. a
CAT: Climate Action Tracker: Brazil: Assumptions: NDC, https://climateactiontracker.org/countries/brazil/assumptions/ (last access: 1 June 2020), 2019b. a
Download
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.