Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1533-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1533-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols
Department of Physics, Regional Atmospheric Modeling group, Regional
Campus of International Excellence “Campus Mare Nostrum”, University of
Murcia, 30100 Murcia, Spain
Department of Applied Physics, MAPA group, Technical University of Cartagena, 30202 Cartagena, Spain
Laura Palacios-Peña
Department of Physics, Regional Atmospheric Modeling group, Regional
Campus of International Excellence “Campus Mare Nostrum”, University of
Murcia, 30100 Murcia, Spain
Claudia Gutiérrez
Environmental Sciences Institute, University of Castilla–La Mancha,
45071 Toledo, Spain
Pedro Jiménez-Guerrero
Department of Physics, Regional Atmospheric Modeling group, Regional
Campus of International Excellence “Campus Mare Nostrum”, University of
Murcia, 30100 Murcia, Spain
Jose María López-Romero
Department of Physics, Regional Atmospheric Modeling group, Regional
Campus of International Excellence “Campus Mare Nostrum”, University of
Murcia, 30100 Murcia, Spain
Enrique Pravia-Sarabia
Department of Physics, Regional Atmospheric Modeling group, Regional
Campus of International Excellence “Campus Mare Nostrum”, University of
Murcia, 30100 Murcia, Spain
Juan Pedro Montávez
Department of Physics, Regional Atmospheric Modeling group, Regional
Campus of International Excellence “Campus Mare Nostrum”, University of
Murcia, 30100 Murcia, Spain
Related authors
José María López-Romero, Juan Pedro Montávez, Sonia Jerez, Raquel Lorente-Plazas, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, https://doi.org/10.5194/acp-21-415-2021, 2021
Short summary
Short summary
The effect of aerosols on regional climate simulations presents large uncertainties due to their complex and non-linear interactions with a wide variety of factors, including aerosol–radiation and aerosol–cloud interactions. We show how these interactions are strongly conditioned by the meteorological situation and the type of aerosol. While natural aerosols tend to increase precipitation in some areas, anthropogenic aerosols decrease the number of rainy days in some pollutant regions.
Eloisa Raluy-López, Domingo Muñoz-Esparza, and Juan Pedro Montávez
EGUsphere, https://doi.org/10.5194/egusphere-2025-3744, https://doi.org/10.5194/egusphere-2025-3744, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Steep terrain can cause numerical problems in weather and climate simulations. We present a new local method that smooths only the steepest areas, preserving important terrain details elsewhere. This improves numerical stability without reducing resolution across the entire map, as was common in previous global approaches. The technique is simple, fast, and effective across models and scales, helping researchers run more accurate and reliable high-resolution simulations over complex landscapes.
Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 17, 1469–1495, https://doi.org/10.5194/gmd-17-1469-2024, https://doi.org/10.5194/gmd-17-1469-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) represent a significant source of water but are also related to extreme precipitation events. Here, we present a new regional-scale AR identification algorithm and apply it to three simulations that include aerosol interactions at different levels. The results show that aerosols modify the intensity and trajectory of ARs and redistribute the AR-related precipitation. Thus, the correct inclusion of aerosol effects is important in the simulation of AR behavior.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Short summary
Given the hazardous nature of medicanes, studies focused on understanding and quantifying the processes governing their formation have become paramount for present and future disaster risk reduction. Therefore, enhancing the modeling and forecasting capabilities of such events is of crucial importance. In this sense, the authors find that the microphysical processes, and specifically the wind--sea salt aerosol feedback, play a key role in their development and thus should not be neglected.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
José María López-Romero, Juan Pedro Montávez, Sonia Jerez, Raquel Lorente-Plazas, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, https://doi.org/10.5194/acp-21-415-2021, 2021
Short summary
Short summary
The effect of aerosols on regional climate simulations presents large uncertainties due to their complex and non-linear interactions with a wide variety of factors, including aerosol–radiation and aerosol–cloud interactions. We show how these interactions are strongly conditioned by the meteorological situation and the type of aerosol. While natural aerosols tend to increase precipitation in some areas, anthropogenic aerosols decrease the number of rainy days in some pollutant regions.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Geosci. Model Dev., 13, 6051–6075, https://doi.org/10.5194/gmd-13-6051-2020, https://doi.org/10.5194/gmd-13-6051-2020, 2020
Short summary
Short summary
This work shows TITAM, a time-independent tracking algorithm specifically suited for Mediterranean tropical-like cyclones, often referred to as medicanes. The methodology developed has the capacity to track multiple simultaneous cyclones, the ability to track a medicane in the presence of intense extratropical lows, and the potential to separate the medicane from other similar structures by handling the intermittent loss of structure and managing the tilting of the axis.
Laura Palacios-Peña, Jerome D. Fast, Enrique Pravia-Sarabia, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 13, 5897–5915, https://doi.org/10.5194/gmd-13-5897-2020, https://doi.org/10.5194/gmd-13-5897-2020, 2020
Short summary
Short summary
The main objective of this work is to study the impact of the representation of aerosol size distribution on aerosol optical properties over central Europe and the Mediterranean Basin during a summertime aerosol episode using the WRF-Chem online model. Results reveal that the reduction in the standard deviation of the accumulation mode leads to the largest impacts on aerosol optical depth (AOD) representation due to a transfer of particles from the accumulation mode to the coarse mode.
Cited articles
Allen, R. J. and Sherwood, S. C.: Aerosol-cloud semi-direct effect and
land-sea temperature contrast in a GCM, Geophys. Res. Lett., 37, L07702,
https://doi.org/10.1029/2010GL042759, 2010.
Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D., Hodnebrog, Ø., Denier van der Gon, H., and McFiggans, G.: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem, Geosci. Model Dev., 7, 2557–2579, https://doi.org/10.5194/gmd-7-2557-2014, 2014.
Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S.,
Schär, C., Vautard, R., Jerez, S., and Imecs, Z.: Projected changes in
surface solar radiation in CMIP5 global climate models and in EURO-CORDEX
regional climate models for Europe, Clim. Dynam., 49, 2665–2683, https://doi.org/10.1007/s00382-016-3471-2, 2017.
Bloomfield, H. C., Brayshaw, D. J., Shaffrey, L. C., Coker, P. J., and
Thornton, H. E.: Quantifying the increasing sensitivity of power systems to
climate variability, Environ. Res. Lett., 11, 124025, https://doi.org/10.1088/1748-9326/11/12/124025, 2016.
Boé, J., Somot, S., Corre, L., and Nabat, P.: Large discrepancies in
summer climate change over Europe as projected by global and regional
climate models: causes and consequences, Clim. Dynam., 54, 2981–3002,
https://doi.org/10.1007/s00382-020-05153-1, 2020.
Boucher, O.: Atmospheric aerosols, in: Atmospheric Aerosols, Springer, Dordrecht, 9–24, 2015.
Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945–964, https://doi.org/10.5194/acp-9-945-2009, 2009.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model
with the Penn State–NCAR MM5 modeling system. Part I: Model implementation
and sensitivity. Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res., 105, 24671–24687, https://doi.org/10.1029/2000JD900384, 2000.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59, 461–483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
Collins, S., Deane, P., Gallachóir, B. Ó., Pfenninger, S., and Staffell, I.: Impacts of inter-annual wind and solar variations on the European power system, Joule, 2, 2076–2090, https://doi.org/10.1016/j.joule.2018.06.020, 2018.
Croft, B., Pierce, J. R., Martin, R. V., Hoose, C., and Lohmann, U.: Uncertainty associated with convective wet removal of entrained aerosols in a global climate model, Atmos. Chem. Phys., 12, 10725–10748, https://doi.org/10.5194/acp-12-10725-2012, 2012.
Crook, J. A., Jones, L. A., Forster, P. M., and Crook, R.: Climate change
impacts on future photovoltaic and concentrated solar power energy output,
Energy Environ. Sci., 4, 3101–3109, https://doi.org/10.1039/C1EE01495A, 2011.
Fast, J. D., Gustafson Jr, W. I., Easter, R. C., Zaveri, R. A., Barnard, J.
C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J.
Geophys. Res., 111, D21305, https://doi.org/10.1029/2005JD006721, 2006.
Gaetani, M., Huld, T., Vignati, E., Monforti-Ferrario, F., Dosio, A., and
Raes, F.: The near future availability of photovoltaic energy in Europe and
Africa in climate-aerosol modeling experiments, Renew. Sustain. Energ. Rev.,
38, 706–716, https://doi.org/10.1016/j.rser.2014.07.041, 2014.
Geiger, H., Barnes, I., Bejan, I., Benter, T., and Spittler, M.: The tropospheric degradation of isoprene: an updated module for the regional atmospheric chemistry mechanism, Atmos. Environ., 37, 1503–1519, https://doi.org/10.1016/S1352-2310(02)01047-6, 2003.
Ghan, S. J., Leung, L. R., Easter, R. C., and Abdul-Razzak, H.: Prediction of cloud droplet number in a general circulation model, J. Geophys. Res., 102, 21777–21794, https://doi.org/10.1029/97JD01810, 1997.
Gil, V., Gaertner, M. A., Gutierrez, C., and Losada, T.: Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models, Int. J. Climatol., 39, 1733–1747, https://doi.org/10.1002/joc.5916, 2019.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J.: Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20255–20273, https://doi.org/10.1029/2000JD000053, 2001.
Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Brovkin, V., Crueger,
T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D.,
Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U.,
Müller, W., Notz, D., Raddatz, T., Rast, S., Roeckner, E., Salzmann, M.,
Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Wegner,
J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens,
B.: Forcing Data for Regional Climate Models Based on the MPI-ESM-LR Model
of the Max Planck Institute for Meteorology (MPI-M): The CMIP5 Historical
Experiment, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.1594/WDCC/RCM_CMIP5_historical-LR, 2012a.
Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Brovkin, V., Crueger,
T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D.,
Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U.,
Müller, W., Notz, D., Raddatz, T., Rast, S., Roeckner, E., Salzmann, M.,
Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Wegner,
J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens,
B.: Forcing data for Regional Climate Models Based on the MPI-ESM-LR model
of the Max Planck Institute for Meteorology (MPI-M): The CMIP5rcp85
experiment, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.1594/WDCC/RCM_CMIP5_rcp85-LR, 2012b.
Giorgi, F., Bi, X., and Qian, Y.: Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study, J. Geophys. Res., 107, 4439, https://doi.org/10.1029/2001JD001066, 2002.
Gómez-Navarro, J. J., Montávez, J. P., Jiménez-Guerrero, P., Jerez, S., Lorente-Plazas, R., González-Rouco, J. F., and Zorita, E.: Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium, Clim. Past, 8, 25–36, https://doi.org/10.5194/cp-8-25-2012, 2012.
Grell, G. A.: Prognostic evaluation of assumptions used by cumulus
parameterizations, Mon. Weather Rev., 121, 764–787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
Grell, G. A. and Dévényi, D.: A generalized approach to
parameterizing convection combining ensemble and data assimilation
techniques. Geophys. Res. Lett., 29, 14, https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Gutiérrez, C., Somot, S., Nabat, P., Mallet, M., Gaertner, M. Á.,
and Perpiñán, O.: Impact of aerosols on the spatiotemporal
variability of photovoltaic energy production in the Euro-Mediterranean
area, Sol. Energy, 174, 1142–1152, https://doi.org/10.1016/j.solener.2018.09.085, 2018.
Gutiérrez, C., Somot, S., Nabat, P., Mallet, M., Corre, L., van Meijgaard, E., Perpiñán, O., and Gaertner, M. Á.: Future
evolution of surface solar radiation and photovoltaic potential in Europe:
investigating the role of aerosols, Environ. Res. Lett., 15, 034035,
https://doi.org/10.1088/1748-9326/ab6666, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:https://doi.org/10.1029/2008JD009944, 2018.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 1535 pp., 2013.
IPCC: Climate Change 2014: Mitigation of Climate Change. Contribution of
Working Group III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y.,
Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S.,
Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C.,
Zwickel T., and Minx, J. C., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2014.
IRENA: Global energy transformation: A roadmap to 2050 (2019 edition), International Renewable Energy Agency, Abu Dhabi, 2019.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research,
Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda,
M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin, E.
L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M.
A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K.,
Gómez-Navarro, J. J., González-Alemán, J. J., Gutiérrez, C.,
Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S.,
Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E.,
Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P.,
Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N.,
Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen,
J.-P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R.,
Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community, Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9, 2020.
Jerez, S., Trigo, R. M., Vicente-Serrano, S. M., Pozo-Vázquez, D.,
Lorente-Plazas, R., Lorenzo-Lacruz, J., Santos-Alamillos, F., and
Montávez, J. P.: The impact of the North Atlantic Oscillation on
renewable energy resources in southwestern Europe, J. Appl. Meteorol.
Clim., 52, 2204–2225, https://doi.org/10.1175/JAMC-D-12-0257.1, 2013.
Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J.
M., Thais, F., Bartok, B., Christensen, O. B., Colette, A., Déqué,
M., Nikulin, G., Kotlarski, S., van Meijgaard, E., Teichmann, C., and Wild,
M.: The impact of climate change on photovoltaic power generation in Europe,
Nat. Commun., 6, 10014, https://doi.org/10.1038/ncomms10014, 2015.
Jerez, S., López-Romero, J. M., Turco, M., Jiménez-Guerrero, P.,
Vautard, R., and Montávez, J. P.: Impact of evolving greenhouse gas
forcing on the warming signal in regional climate model experiments, Nat.
Commun., 9, 1304, https://doi.org/10.1038/s41467-018-03527-y,
2018.
Jerez, S., Tobin, I., Turco, M., Jiménez-Guerrero, P., Vautard, R., and
Montávez, J. P.: Future changes, or lack thereof, in the temporal
variability of the combined wind-plus-solar power production in Europe,
Renew. Energ., 139, 251–260, https://doi.org/10.1016/j.renene.2019.02.060, 2019.
Jerez, S., Palacios-Peña, L., Gutiérrez, C., Jiménez-Guerrero, P., López-Romero, J. M., Pravia-Sarabia, E., and Montávez J. P.:
Sensitivity of surface solar radiation to aerosol-radiation and aerosol-clouds interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols,
B2SHARE EUDAT, https://doi.org/10.23728/b2share.a65d25c2b3ba49e1a46e970783e9476e, 2020.
Jiménez, P., Baldasano, J. M., and Dabdub, D.: Comparison of
photochemical mechanisms for air quality modeling, Atmos. Environ., 37,
4179–4194, https://doi.org/10.1016/S1352-2310(03)00567-3, 2003.
Kinne, S.: Aerosol radiative effects with MACv2, Atmos. Chem. Phys., 19, 10919–10959, https://doi.org/10.5194/acp-19-10919-2019, 2019.
Kloster, S., Dentener, F., Feichter, J., Raes, F., Lohmann, U., Roeckner, E., and Fischer-Bruns, I.: A GCM study of future climate response to aerosol pollution reductions, Clim. Dynam., 34, 1177–1194, https://doi.org/10.1007/s00382-009-0573-0, 2010.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lee, S. S., Donner, L. J., Phillips, V. T., and Ming, Y.: Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment, Q. J. Roy. Meteor. Soc., 134, 1201–1220, https://doi.org/10.1002/qj.287, 2008.
Li, G., Wang, Y., and Zhang, R.: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud
interaction, J. Geophys. Res., 113, D15211, doi:https://doi.org/10.1029/2007JD009361, 2008.
Li, X., Wagner, F., Peng, W., Yang, J., and Mauzerall, D. L.: Reduction of solar photovoltaic resources due to air pollution in China, P. Natl. Acad. Sci. USA, 114, 11867–11872, https://doi.org/10.1073/pnas.1711462114, 2017.
Lin, Y. L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the snow field in a cloud model, J. Appl. Meteorol. Clim., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Liu, Y., Daum, P. H., and McGraw, R. L.: Size truncation effect, threshold behavior, and a new type of autoconversion parameterization, Geophys. Res. Lett., 32, L11811, https://doi.org/10.1029/2005GL022636, 2005.
López-Romero, J. M., Montávez, J. P., Jerez, S., Lorente-Plazas, R., Palacios-Peña, L., and Jiménez-Guerrero, P.: Precipitation response to aerosol–radiation and aerosol–cloud interactions in regional climate simulations over Europe, Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, 2021.
Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and seasonal trends in particle concentration and optical extinction in the United States, J. Geophys. Res., 99, 1347–1370, https://doi.org/10.1029/93JD02916, 1994.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram,T., Meehl, G.
A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson,A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Müller, J., Folini, D., Wild, M., and Pfenninger, S.: CMIP-5 models
project photovoltaics are a no-regrets investment in Europe irrespective of
climate change, Energy, 171, 135–148, https://doi.org/10.1016/j.energy.2018.12.139, 2019.
Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A., and Wild, M.: Contribution of anthropogenic sulfate aerosols to the changing
Euro-Mediterranean climate since 1980, Geophys. Res. Lett., 41, 5605–5611,
doi:https://doi.org/10.1002/2014GL060798, 2014.
Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M.: Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model, Clim. Dynam., 44,
1127–1155, https://doi.org/10.1007/s00382-014-2205-6, 2015a.
Nabat, P., Somot, S., Mallet, M., Michou, M., Sevault, F., Driouech, F., Meloni, D., di Sarra, A., Di Biagio, C., Formenti, P., Sicard, M., Léon, J.-F., and Bouin, M.-N.: Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean, Atmos. Chem. Phys., 15, 3303–3326, https://doi.org/10.5194/acp-15-3303-2015, 2015b.
Palacios-Peña, L., Lorente-Plazas, R., Montávez, J. P., and Jiménez-Guerrero, P.: Saharan Dust Modeling Over the Mediterranean Basin
and Central Europe: Does the Resolution Matter?, Front. Earth Sci., 7, 290,
https://doi.org/10.3389/feart.2019.00290, 2019.
Palacios-Peña, L., Montávez, J. P., López-Romero, J. M., Jerez,
S., Gómez-Navarro, J. J., Lorente-Plazas, R., Ruiz, J., and
Jiménez-Guerrero, P.: Added Value of Aerosol-Cloud Interactions for
Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry
Model over Europe, Atmosphere-Basel, 11, 360, https://doi.org/10.3390/atmos11040360, 2020.
Pavlidis, V., Katragkou, E., Prein, A., Georgoulias, A. K., Kartsios, S., Zanis, P., and Karacostas, T.: Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe, Geosci. Model Dev., 13, 2511–2532, https://doi.org/10.5194/gmd-13-2511-2020, 2020.
Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich, S., Hahn,
B., Jung, M., Pauscher, L., Seibel, A., Shan, M., Siefert, M., Steffen, J.,
Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange,
B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske J.: Powering the 21st
century by wind energy – Options, facts, figures, Appl. Phys. Rev., 6,
031303, https://doi.org/10.1063/1.5089877, 2019.
Rummukainen, M.: State-of-the-art with regional climate models, WIRES Clim. Change, 1, 82–96, https://doi.org/10.1002/wcc.8, 2010.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O.,
Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G.,
Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage,
K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and
Vervatis, V.: MED-CORDEX initiative for Mediterranean climate studies, B.
Am. Meteorol. Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Schewe, J., Gosling, S. N., Reyer, C., Zhao, F., Ciais, P., Elliott, J.,
Francois, L., Huber, V., Lotze, H. K., Seneviratne, S. I., van Vliet, M. T.
H., Vautard, R., Wada, Y., Breuer, L., Büchner, M., Carozza, D. A.,
Chang, J., Coll, M., Deryng, D., de Wit, A., Eddy, T. D., Folberth, C.,
Frieler, K., Friend, A. D., Gerten, D., Gudmundsson, L., Hanasaki, N., Ito,
A., Khabarov, N., Kim, H., Lawrence, P., Morfopoulos, C., Müller, C.,
Schmied, H. M., Orth, R., Ostberg, S., Pokhrel, Y., Pugh, T. A. M., Sakurai,
G., Satoh, Y., Schmid, E., Stacke, T., Steenbeek, J., Steinkamp, J., Tang,
Q., Tian, H., Tittensor, D.P., Volkholz, J., Wang, X., and Warszawski, L.:
State-of-the-art global models underestimate impacts from climate extremes,
Nat. Commun., 10, 1005, https://doi.org/10.1038/s41467-019-08745-6, 2019.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Wang, W., and Powers, J. G.:. A description of the Advanced Research WRF
version 3, Technical report, NCAR Tech. Note TN-475+STR,
https://doi.org/10.5065/D68S4MVH, 2008.
Soares, P. M. M., Brito, M. C., and Careto, J. A.: Persistence of the high
solar potential in Africa in a changing climate, Environ. Res. Lett., 14,
124036, https://doi.org/10.1088/1748-9326/ab51a1, 2019.
Sørland, S. L., Schär, C., Lüthi, D., and Kjellström, E.:
Bias patterns and climate change signals in GCM-RCM model chains, Environ.
Res. Lett., 13, 074017, https://doi.org/10.1088/1748-9326/aacc77,
2018.
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102, 25847–25879, https://doi.org/10.1029/97JD00849, 1997.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J. W., and Cuenca, R. H.: Implementation and
verification of the unified NOAH land surface model in the WRF model,
20th conference on weather analysis and forecasting/16th conference on
numerical weather prediction (Vol. 1115), American Meteorological Society, Seattle, WA, 14 January 2004, Paper Number 17.5, 2004.
Tobin, I., Greuell, W., Jerez, S., Ludwig, F., Vautard, R., Van Vliet, M. T. H., and Breón, F. M.: Vulnerabilities and resilience of European power generation to 1.5∘C, 2∘C and
3∘C warming, Environ. Res. Lett., 13, 044024, https://doi.org/10.1088/1748-9326/aab211, 2018.
van der Wiel, K., Bloomfield, H. C., Lee, R. W., Stoop, L. P., Blackport, R., Screen, J. A., and Selten, F. M.: The influence of weather regimes on
European renewable energy production and demand, Environ. Res. Lett., 14,
094010, https://doi.org/10.1088/1748-9326/ab38d3, 2019.
Wang, H., Xie, S. P., Tokinaga, H., Liu, Q., and Kosaka, Y.: Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing, Geophys. Res. Lett., 43, 3444–3450, https://doi.org/10.1002/2016GL068521, 2016.
Wilcox, L. J., Highwood, E. J., and Dunstone, N. J.: The influence of anthropogenic aerosol on multi-decadal variations of historical global
climate, Environ. Res. Lett., 8, 024033, https://doi.org/10.1088/1748-9326/8/2/024033, 2013.
Wild, M., Folini, D., Henschel, F., Fischer, N., and Müller, B.: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems, Sol. Energy, 116, 12–24, https://doi.org/10.1016/j.solener.2015.03.039, 2015.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In-and Below-Cloud Photolysis in Tropospheric Chemical Models, J. Atmos. Chem., 37, 245–282, https://doi.org/10.1023/A:1006415919030, 2000.
Yin, Y., Levin, Z., Reisin, T., and Tzivion, S.: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics, J. Appl. Meteorol., 39, 1460–1472, https://doi.org/10.1175/1520-0450(2000)039<1460:SCCWHF>2.0.CO;2, 2000.
Short summary
This research explores the role of aerosols when modeling surface solar radiation at regional scales (over Europe). A set of model experiments was performed with and without dynamical modeling of atmospheric aerosols and their direct and indirect effects on radiation. Results showed significant differences in the simulated solar radiation, mainly driven by the aerosol impact on cloudiness, which calls for caution when interpreting model experiments that do not include aerosols.
This research explores the role of aerosols when modeling surface solar radiation at regional...