Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
Shaoqing Zhang
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
Laboratory for Ocean Dynamics and Climate, Qingdao Pilot National
Laboratory for Marine Science and Technology, Qingdao, China
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Haohuan Fu
CORRESPONDING AUTHOR
Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
National Supercomputing Center in Wuxi, Wuxi, China
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
Lixin Wu
CORRESPONDING AUTHOR
Laboratory for Ocean Dynamics and Climate, Qingdao Pilot National
Laboratory for Marine Science and Technology, Qingdao, China
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Yuxuan Li
Department of Computer Science and Technology, Tsinghua University,
Beijing, China
Hong Wang
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
Laboratory for Ocean Dynamics and Climate, Qingdao Pilot National
Laboratory for Marine Science and Technology, Qingdao, China
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Yunhui Zeng
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Xiaohui Duan
National Supercomputing Center in Wuxi, Wuxi, China
School of Software, Shandong University, Jinan, China
Wubing Wan
National Supercomputing Center in Wuxi, Wuxi, China
Li Wang
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Yuan Zhuang
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Hongsong Meng
National Supercomputing Center in Wuxi, Wuxi, China
Kai Xu
National Supercomputing Center in Wuxi, Wuxi, China
School of Software, Shandong University, Jinan, China
Ping Xu
National Supercomputing Center in Wuxi, Wuxi, China
Department of Computer Science and Technology, Tsinghua University,
Beijing, China
Lin Gan
National Supercomputing Center in Wuxi, Wuxi, China
Department of Computer Science and Technology, Tsinghua University,
Beijing, China
Zhao Liu
National Supercomputing Center in Wuxi, Wuxi, China
Department of Computer Science and Technology, Tsinghua University,
Beijing, China
Sihai Wu
National Supercomputing Center in Wuxi, Wuxi, China
Yuhu Chen
Department of Supercomputing, Qingdao Pilot National Laboratory for
Marine Science and Technology, Qingdao, China
Haining Yu
National Supercomputing Center in Wuxi, Wuxi, China
Shupeng Shi
National Supercomputing Center in Wuxi, Wuxi, China
Lanning Wang
National Supercomputing Center in Wuxi, Wuxi, China
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Shiming Xu
Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
Wei Xue
National Supercomputing Center in Wuxi, Wuxi, China
Department of Computer Science and Technology, Tsinghua University,
Beijing, China
Weiguo Liu
National Supercomputing Center in Wuxi, Wuxi, China
School of Software, Shandong University, Jinan, China
Qiang Guo
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Jie Zhang
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Guanghui Zhu
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Yang Tu
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Jim Edwards
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
National Center for Atmospheric Research, Boulder, Colorado, USA
Allison Baker
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
National Center for Atmospheric Research, Boulder, Colorado, USA
Jianlin Yong
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Yangyang Yu
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Qiuying Zhang
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
Department of Oceanography, Texas A&M University, College
Station, Texas, USA
Zedong Liu
Department of Supercomputing, Qingdao Pilot National Laboratory for
Marine Science and Technology, Qingdao, China
Mingkui Li
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
Laboratory for Ocean Dynamics and Climate, Qingdao Pilot National
Laboratory for Marine Science and Technology, Qingdao, China
Key Laboratory of Physical Oceanography, Institute for Advanced
Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth
System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China
Dongning Jia
Department of Supercomputing, Qingdao Pilot National Laboratory for
Marine Science and Technology, Qingdao, China
Guangwen Yang
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
National Supercomputing Center in Wuxi, Wuxi, China
Department of Computer Science and Technology, Tsinghua University,
Beijing, China
Zhiqiang Wei
Department of Supercomputing, Qingdao Pilot National Laboratory for
Marine Science and Technology, Qingdao, China
Jingshan Pan
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Ping Chang
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
Department of Oceanography, Texas A&M University, College
Station, Texas, USA
Gokhan Danabasoglu
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
National Center for Atmospheric Research, Boulder, Colorado, USA
Stephen Yeager
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
National Center for Atmospheric Research, Boulder, Colorado, USA
Nan Rosenbloom
International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao, China
National Center for Atmospheric Research, Boulder, Colorado, USA
Ying Guo
Computer Science Center & National Supercomputer Center in Jinan,
Jinan, China
Related authors
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025, https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of surface ozone and large-scale circulations such as atmospheric blocking. Besides local heat waves, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation in regional air quality.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Dexun Chen, Yang Gao, Xiaopei Lin, Zhao Liu, and Xiaojing Lv
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-10, https://doi.org/10.5194/gmd-2024-10, 2024
Preprint withdrawn
Short summary
Short summary
The hardware-related perturbations caused by the heterogeneous many-core architectures can blend with software or human errors, which can affect the accuracy of the model consistency verification. We develop a deep learning-based consistency test tool for ESMs on the heterogeneous systems (ESM-DCT) and evaluate it in CESM on new Sunway system. The ESM-DCT can detect the existence of software or human errors when taking hardware-related perturbations into account.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Jingzhe Sun, Yingjing Jiang, Shaoqing Zhang, Weimin Zhang, Lv Lu, Guangliang Liu, Yuhu Chen, Xiang Xing, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 15, 4805–4830, https://doi.org/10.5194/gmd-15-4805-2022, https://doi.org/10.5194/gmd-15-4805-2022, 2022
Short summary
Short summary
An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
Revised manuscript not accepted
Short summary
Short summary
During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021, https://doi.org/10.5194/npg-28-481-2021, 2021
Short summary
Short summary
A general methodology is introduced to capture regime transitions of the Atlantic meridional overturning circulation (AMOC). The assimilation models with different parameters simulate different paths for the AMOC to switch between equilibrium states. Constraining model parameters with observations can significantly mitigate the model deviations, thus capturing AMOC regime transitions. This simple model study serves as a guideline for improving coupled general circulation models.
Kai Xu, Maoxue Yu, Jiangfeng Yu, Jingwei Xie, Xiang Han, Jiaying Song, Mingyao Geng, Jinrong Jiang, Hailong Liu, Pengfei Wang, and Pengfei Lin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2231, https://doi.org/10.5194/egusphere-2025-2231, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
swLICOM represents a significant advancement in kilometer-scale resolution ocean general circulation models on heterogeneous computing architectures. Our optimization efforts addressed a series of challenges that are particularly crucial for high-resolution modeling. We use swLICOM with a horizontal resolution of 2 km to conduct a short-term simulation test. The 2-km resolution global simulation shows the high capacity of swLICOM to capture the oceanic meso- to submesoscale processes.
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Lilong Zhou and Wei Xue
EGUsphere, https://doi.org/10.5194/egusphere-2025-1889, https://doi.org/10.5194/egusphere-2025-1889, 2025
Short summary
Short summary
This study develops a novel physics-based weather prediction model using artificial intelligence development platforms, achieving high accuracy while maintaining strict physical conservation laws. Our algorithms are optimized for modern super computers, enabling efficient large-scale weather simulations. A key innovation is the model's inherent differentiable nature, allowing seamless integration with AI systems to enhance predictive capabilities through machine learning techniques.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Carmine Donatelli, Christopher M. Little, Rui M. Ponte, and Stephen G. Yeager
EGUsphere, https://doi.org/10.5194/egusphere-2025-1571, https://doi.org/10.5194/egusphere-2025-1571, 2025
Short summary
Short summary
Assessing the spatiotemporal properties of intrinsic sea level variability is vital to improving predictions of coastal sea level changes. Here, we examined intrinsic sea level variability along the Southeast United States coast, an area of high and increasing societal vulnerability to sea level change, using numerical modeling. Our findings reveal that intrinsic coastal sea level variability is not negligible as previously thought and may exhibit predictability despite its chaotic nature.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025, https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of surface ozone and large-scale circulations such as atmospheric blocking. Besides local heat waves, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation in regional air quality.
Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
EGUsphere, https://doi.org/10.5194/egusphere-2025-1069, https://doi.org/10.5194/egusphere-2025-1069, 2025
Short summary
Short summary
In this study, we explore the potential of using synthetic aperture radars (SAR) to predict the sea ice height measurements by the airborne campaign of Operation IceBridge. In particular, we predict the meter-scale sea ice height with the statistical relationship between the two, overcoming the resolution limitation of SAR images from Sentinel-1 satellites. The prediction and ice drift correction algorithms can be applied to the extrapolation of ICESat-2 measurements in the Arctic region.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025, https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Short summary
High-performance computing limitations often hinder numerical model development. Traditional models use double precision for accuracy, which is computationally expensive. Lower precision reduces costs but can introduce errors. The quasi-double-precision (QDP) algorithm helps mitigate these errors. This study applies the QDP algorithm to the Model for Prediction Across Scales – Atmosphere, showing reduced errors and computational time, making it an efficient solution for large-scale simulations.
Hendrik Großelindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
Ocean Sci., 21, 93–112, https://doi.org/10.5194/os-21-93-2025, https://doi.org/10.5194/os-21-93-2025, 2025
Short summary
Short summary
This study investigates the Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution Earth system model and a preindustrial climate to look at the response of the Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) and its evolution under climate change. The Agulhas Leakage could influence the stability of the AMOC, whose possible collapse would impact the climate in the Northern Hemisphere.
Sun-Seon Lee, Sahil Sharma, Nan Rosenbloom, Keith B. Rodgers, Ji-Eun Kim, Eun Young Kwon, Christian L. E. Franzke, In-Won Kim, Mohanan Geethalekshmi Sreeush, and Karl Stein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3377, https://doi.org/10.5194/egusphere-2024-3377, 2024
Short summary
Short summary
This study presents a 10-member extension from 2101 to 2500 of the CESM2-LE, under a scenario aiming for zero fossil fuel emissions by 2250. Key findings include a 12 °C warming, a 23.5 % rise in precipitation, and diminished ENSO variability. Substantial carbon release from thawing permafrost will shift land from a carbon sink to a source. The ocean’s CO2 absorption capacity will decline, emphasizing the extensive impacts of long-term climate change on ecosystems and human societies.
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Weixin Zhu, Siqi Liu, Shiming Xu, and Lu Zhou
Earth Syst. Sci. Data, 16, 2917–2940, https://doi.org/10.5194/essd-16-2917-2024, https://doi.org/10.5194/essd-16-2917-2024, 2024
Short summary
Short summary
In the polar ocean, wind waves generate and propagate into the sea ice cover, forming marginal ice zones (MIZs). Using ESA's CryoSat-2, we construct a 12-year dataset of the MIZ in the Atlantic Arctic, a key region for climate change and human activities. The dataset is validated with high-resolution observations by ICESat2 and Sentinel-1. MIZs over 300 km wide are found under storms in the Barents Sea. The new dataset serves as the basis for research areas, including wave–ice interactions.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
John T. Fasullo, Jean-Christophe Golaz, Julie M. Caron, Nan Rosenbloom, Gerald A. Meehl, Warren Strand, Sasha Glanville, Samantha Stevenson, Maria Molina, Christine A. Shields, Chengzhu Zhang, James Benedict, Hailong Wang, and Tony Bartoletti
Earth Syst. Dynam., 15, 367–386, https://doi.org/10.5194/esd-15-367-2024, https://doi.org/10.5194/esd-15-367-2024, 2024
Short summary
Short summary
Climate model large ensembles provide a unique and invaluable means for estimating the climate response to external forcing agents and quantify contrasts in model structure. Here, an overview of the Energy Exascale Earth System Model (E3SM) version 2 large ensemble is given along with comparisons to large ensembles from E3SM version 1 and versions 1 and 2 of the Community Earth System Model. The paper provides broad and important context for users of these ensembles.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Dexun Chen, Yang Gao, Xiaopei Lin, Zhao Liu, and Xiaojing Lv
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-10, https://doi.org/10.5194/gmd-2024-10, 2024
Preprint withdrawn
Short summary
Short summary
The hardware-related perturbations caused by the heterogeneous many-core architectures can blend with software or human errors, which can affect the accuracy of the model consistency verification. We develop a deep learning-based consistency test tool for ESMs on the heterogeneous systems (ESM-DCT) and evaluate it in CESM on new Sunway system. The ESM-DCT can detect the existence of software or human errors when taking hardware-related perturbations into account.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Xianwei Wu, Liang Hu, Lanning Wang, Haitian Lu, and Juepeng Zheng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-164, https://doi.org/10.5194/gmd-2023-164, 2023
Revised manuscript not accepted
Short summary
Short summary
In order to build an effective surrogate model for the community atmospheric model (CAM). We present a surrogate model-based parameter tuning framework for the CAM and apply it to improve the CAM5 precipitation performance and propose a multilevel surrogate model-based optimization method. We design a nonuniform parameter parameterization scheme and integrate the parameters using a parameter smoothing scheme, and the experimental results improve in four regions.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Jingzhe Sun, Yingjing Jiang, Shaoqing Zhang, Weimin Zhang, Lv Lu, Guangliang Liu, Yuhu Chen, Xiang Xing, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 15, 4805–4830, https://doi.org/10.5194/gmd-15-4805-2022, https://doi.org/10.5194/gmd-15-4805-2022, 2022
Short summary
Short summary
An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
Revised manuscript not accepted
Short summary
Short summary
During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022, https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
Short summary
This study uses a set of deep neural networks to learn a parameterization scheme from a superparameterized general circulation model (GCM). After being embedded in a realistically configurated GCM, the parameterization scheme performs stably in long-term climate simulations and reproduces reasonable climatology and climate variability. This success is the first for long-term stable climate simulations using machine learning parameterization under real geographical boundary conditions.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021, https://doi.org/10.5194/npg-28-481-2021, 2021
Short summary
Short summary
A general methodology is introduced to capture regime transitions of the Atlantic meridional overturning circulation (AMOC). The assimilation models with different parameters simulate different paths for the AMOC to switch between equilibrium states. Constraining model parameters with observations can significantly mitigate the model deviations, thus capturing AMOC regime transitions. This simple model study serves as a guideline for improving coupled general circulation models.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, https://doi.org/10.5194/gmd-14-603-2021, 2021
Short summary
Short summary
A multi-resolution tripolar grid hierarchy is constructed and integrated in CESM (version 1.2.1). The resolution range includes 0.45, 0.15, and 0.05°. Based on atmospherically forced sea ice experiments, the model simulates reasonable sea ice kinematics and scaling properties. Landfast ice thickness can also be systematically shifted due to non-convergent solutions to an
elastic–viscous–plastic (EVP) model. This work is a framework for multi-scale modeling of the ocean and sea ice with CESM.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238, https://doi.org/10.5194/gmd-14-223-2021, https://doi.org/10.5194/gmd-14-223-2021, 2021
Short summary
Short summary
Few studies have investigated the effects of initial conditions on the simulation or prediction of PM2.5 concentrations. Here, sensitivity experiments are used to explore the effects of three initial mechanisms (clean, restart, and continuous) and emissions in Xi’an in December 2016. According to this work, if the restart mechanism cannot be used due to computing resource and storage space limitations when forecasting PM2.5 concentrations, a spin-up time of at least 27 h is needed.
Guangzhi Xu, Xiaohui Ma, Ping Chang, and Lin Wang
Geosci. Model Dev., 13, 4639–4662, https://doi.org/10.5194/gmd-13-4639-2020, https://doi.org/10.5194/gmd-13-4639-2020, 2020
Short summary
Short summary
We observed considerable limitations in existing atmospheric river (AR) detection methods and looked into other disciplines for inspirations of tackling the AR detection problem. A new method is derived from an image-processing technique and encodes the spatiotemporal-scale information of AR systems, which is a key physical ingredient of ARs that is more stable than the vapor flux intensities, making it more suitable for climate-scale studies when models often have different biases.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Cited articles
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015.
Bandishti, V., Pananilath, I., and Bondhugula, U.: Tiling stencil computations to maximize parallelism, in: Sc'12: Proceedings of the
international conference on high performance computing, networking, storage
and analysis, 10–16 November 2012, https://doi.org/10.1109/SC.2012.107, 2012.
Briegleb, B. P. and Light, B.: A Delta-Eddington Multiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the
Community Climate System Model, NCAR Tech. Note NCAR/TN-472+STR,
University Corporation for Atmospheric Research, https://doi.org/10.5065/D6B27S71,
2007.
Carpenter, I., Archibald, R., Evans, K. J., Larkin, J., Micikevicius, P.,
Norman, M., Rosinski, J., Schwarzmeier, J., and Taylor, M. A.: Progress towards
accelerating HOMME on hybrid multi-core systems, Int. J. High Perform. Comput. Appl., 27, 335–347, 2013.
Collins, W. D., Blackman, M. L., Bonan, G. B., Hack, J. J., Henderson, T. B., Kiehl, J.
T., Large, W. G., and Mckenna, D. S.: The Community Climate System
Model version 3 (CCSM3), J. Climate, 19, 2122–2143, 2006.
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V.,
Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Durachta, K. A. D. J. W.,
Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M.,
Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein,
S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu,
J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M.
D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M.,
Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 global coupled
climate models. Part I: Formulation and simulation characteristics, J. Climate, 19, 643–674, 2006.
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V.,
Benson, R., Dixon, K., Griffies, S. M., Lee, H. C., Pacanowski, R. C., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated climate and
climate change in the GFDL CM2.5 high-resolution coupled climate model,
J. Climate, 25, 2755–2781, 2012.
Demeshko, I., Maruyama, N., Tomita, H., and Matsuoka, S.: Multi-GPU implementation of the NICAM5 atmospheric model, in: European conference on parallel processing, Springer, 175–184, 2012.
Dongarra, J.: Sunway taihulight supercomputer makes its appearance,
Nat. Sci. Rev., 3, 265–266, 2016.
Eichenberger, A. E., Wu, P., and O'brien, K.: Vectorization for simd
architec- tures with alignment constraints, in: Acm sigplan notices, 39,
82–93, 2004.
Fu, H., Liao, J., Ding, N., Duan, X., Gan, L., Liang, Y., Wang, X., Yang, J., Zheng, Y.,
Liu, W., Wang, L., and Yang, G.: Redesigning cam-se for peta-scale climate modeling performance and
ultra-high resolution on sunway taihulight, in: Proceedings of the
international conference for high performance computing, networking, storage
and analysis, ACM/IEEE, p. 1, 2017.
Fu, H., Liao, J., Xue, W., Wang, L., Chen, D., Gu, L., Xu, J., Ding, N.,
Wang, X., He, C., Xu, S., Liang, Y., Fang, J., Xu, Y., Zheng, Z., Wei, W.,
Ji, X., Zhang, H. Chen, B., Li, K., Huang, X., Chen, W., and Yang, G.:
Refactoring and optimizing the community atmosphere model (CAM) on the
sunway taihu-light supercomputer, in: sc16: International conference for High performance computing, networking, storage and analysis, IEEE Xplore,
969–980, 2016a.
Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Huang, X., Yang,
C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge,
W., Zhang, J., Wang, Y., Zhou, C., and Yang, G.: The sunway taihulight supercomputer: system and applications, Sci. China Inf.
Sci., 59, 072001, 2016b.
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.
Gan, L., Fu, H., Xue, W., Xu, Y., Yang, C., Wang, X., Lv, Z., You, Y., Yang,
G., and Ou, K.: Scaling and analyzing the stencil performance on multi-core and
many-core architectures, in: 2014 20th ieee international conference on
parallel and distributed systems (icpads), 103–110, 2017.
Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J., Alexander
MacDonald, A., Wang, N., Madden, P., Schramm, J., and Duarte, A.:
Parallelization and Performance of the NIM Weather Model on CPU, GPU, and
MIC Processors, B. Am. Meteorol. Sci., 98, 2201–2213, https://doi.org/10.1175/BAMS-D-15-00278.1,
2017.
Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., and Schulthess, T. C.:
Stella: A domain-specific tool for structured grid methods in weather and
climate models, in: Proceedings of the international conference for high
performance computing, networking, storage and analysis, no. 41, 1–12,
https://doi.org/10.1145/2807591.2807627,
2015.
Hu, Y., Huang, X., Baker, A. H., Tseng, Y., Bryan, F. O., Dennis, J. M., and Guangweng, Y.: Improving the Scalability of the Ocean Barotropic Solver in the
Community Earth System Model, in: Proceedings of the International Conference
for High Performance Computing, Networking, and Storage, SC '15, Austin, TX,
42, 1–12, 2015.
Huang, X., Tang, Q., Tseng, Y., Hu, Y., Baker, A. H., Bryan, F. O., Dennis, J., Fu, H., and Yang, G.: P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0, Geosci. Model Dev., 9, 4209–4225, https://doi.org/10.5194/gmd-9-4209-2016, 2016.
Kelly, R.: GPU Computing for Atmospheric Modeling, Comput. Sci.
Eng., 12, 26–33, 2010.
Liao, X., Xiao, L., Yang, C., and Lu, Y.: Milkyway-2 supercomputer: system and application, Front. Comput. Sci., 8, 345–356, 2014.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: a
review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys. 32, 363–403, 1994.
Linford, J., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core acceleration of chemical kinetics for simulation and prediction, in: Proceedings of the conference on High
performance computing networking, storage and analysis, ACM/IEEE, 1–11, 2009.
Lynch, P.: The eniac forecasts: A re-creation, B. Am. Meteorol. Soc., 89, 45–56, 2008.
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.: The coupled model intercomparison project (cmip), B. Am.
Meteorol. Soc., 81, 313–318, 2000.
Meehl, G. A., Yang, D., Arblaster, J. M., Bates, S. C., Rosenbloom, N., Neale, R., Bacmeister, J., Lauritzen, P. H., Bryan, F., Small, J., Truesdale, J., Hannay, C., Shields, C., Strand, W. G., Dennis, J., and Danabasoglu, G.: Effects of model resolution, physics, and coupling on Southern Hemisphere storm tracks in CESM1.3, Geophys. Res. Lett., 46, 12408–12416, https://doi.org/10.1029/2019GL084057, 2019.
Mielikainen, J., Huang, B., Wang, J., Huang, H.-L. A., and Goldberg, M. D.:
Compute unified device architecture (CUDA)-based parallelization of WRF
Kessler cloud microphysics scheme, Comput. Geosci., 52, 292–299, 2013.
Milroy, D. J., Baker, A. H., Hammerling, D. M., Dennis, J. M., Mickelson, S. A., and Jessup, E. R.: Towards characterizing the variability
of statistically consistent Community Earth System Model simulations,
Proc. Comput. Sci., 80, 1589–1600, 2016.
Milroy, D. J., Baker, A. H., Hammerling, D. M., and Jessup, E. R.: Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0), Geosci. Model Dev., 11, 697–711, https://doi.org/10.5194/gmd-11-697-2018, 2018.
Milroy, D. J., Baker, A. H., Hammerling, D. M., Kim, Y., Hauser, T., and
Jessup, E. R.: Making root cause analysis feasible for large code bases: a
solution approach for a climate model, Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing: HPDC2019, Phoenix, AZ, edited by: Weissman, J. B.,
Raza Butt, A., and Smirni, E., https://doi.org/10.1145/3307681,
2019.
Owens, J. D., Luebke, D., Govindaraju, N. K., Harris, M. J., Kruger, J. H.,
Lefohn, A. E., and Purcell, T. J.: A survey of general-purpose computation
on graphics hardware, Eurographics, 26, 80–113, 2007.
Roberts M. J., Vidale P. L., Senior, C., Hewitt, H. T, Bates, C., Berthou, S., Chang, P., Christensen, H. M., Danilov, S., Demory, M.-E.,
Griffies, S. M., Haarsma, R., Jung, T., Martin, G., Minob, S., Ringler, R.,
Satoh, M., Schiemann, R., Scoccimarro, E., Stephens, G., and Wehner, M. F.: The
Benefits of Global High Resolution for Climate Simulation: Process
Understanding and the Enabling of Stakeholder Decisions at the Regional
Scale, B. Am. Meteorol. Soc., 2018,
99, 2341–2359, 2018.
Ruo: lgan/cesm_sw_1.0.1: Some efforts on
refactoring and optimizing the Community Earth System
Model(CESM1.3.1) on the Sunway TaihuLight supercomputer
(Version cesm_sw_1.0.1), Zenodo,
https://doi.org/10.5281/zenodo.3637771, 2020.
Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T.,
Nukada A., Maryuama, N., and Matsuoka, S.: An 80-fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather model ASUCA production code, in:
Proceedings of the 2010 acm/ieee international conference for high
performance computing, networking, storage and analysis, ACM/IEEE, 1–11, 2019.
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F.,
Caron, J., Dennis, J., Gent, P., Hsu, H. M., Jochum, M., Lawrence, D.,
Muñoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng,
Y. H., and Vertenstein, M.: A new synoptic scale resolving global climate simulation using the Community Earth System Model, J. Adv.
Model. Earth Sy., 6, 1065–1094, 2014.
Vazhkudai, S. S., de Supinski, B. R., Bland, A. S., Geist, A., Sexton, J.,
Kahle, J., Zimmer, C.J., Atchley, S., Oral, S., Maxwell, D. E., Larrea,
V. G. V., Bertsch, A., Goldstone, R., Joubert, W., Chambreau, C., Appelhans,
D., Blackmore, R., Casses, B., Chochia, G., Ezell, M. A., Gooding, T.,
Gonsiorowski, E., Grinberg, L, Hanson, B., Harner, B., Karlin, I., Leininger,
M. L., leverman, D., Ohmacht, M., Pankajakshan, R., Pizzano, F., Rogers,
J. H., Rosenburg, B., Schmidt, D., Shankar, M., Wang, F., Watson, P., Walkup,
B., Weems, L. D., and Yin, J.: The design, deployment, and evaluation of the
coral pre-exascale systems, in: Proceedings of the international conference
for high performance computing, networking, storage, and analysis, ACM/IEEE, p. 52,
2018.
Vu, V., Cats, G., and Wolters, L.: Graphics processing unit optimizations
for the dynamics of the HIRLAM weather forecast model, Concurrency and Computation, Practice and Experience, 25, 1376–1393, 2013.
Wang, Z., Xu, X., Xiong, N., Yang, L. T., and Zhao, W.: GPU Acceleration
for GRAPES Meteorological Model, in: 2011 ieee 13th international conference on High performance computing and communications (hpcc), IEEE, 365–372,
2011.
Xiao, H., Sun, J., Bian, X., and Dai, Z.: GPU acceleration of the WSM6
cloud microphysics scheme in GRAPES model, Comput. Geosci., 59,
156–162, 2013.
Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015.
You, Y., Fu, H., Huang, X., Song, G., Gan, L., Yu, W., and Yang, G.:
Accelerating the 3D elastic wave forward modeling on gpu and mic, in: 2013
ieee international symposium on parallel & distributed processing,
workshops and phd forum, IEEE, 1088–1096, 2013.
Zhang, S.: Data of Pre-industrial
control simulation (310 years, 0021-0330) and
High_&Low_Resolution CESM HighResMIP contribution (100 years, 0031-0131), available at: http://ihesp.qnlm.ac/data, last access: 5 February 2020.
Zhang, J., Zhou, C., Wang, Y., Ju, L., Du, Q., Chi, X., Xu, D. Chen, D.,
Liu, Y., and Liu, Z.: Extreme-scale phase field simulations of coarsening
dynamics on the sunway taihulight supercomputer, in: Proceedings of the
international conference for high performance computing, networking,
storage and analysis, ACM/IEEE, p. 4, 2016.
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Science advancement and societal needs require Earth system modelling with higher resolutions...