Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3221-2020
https://doi.org/10.5194/gmd-13-3221-2020
Methods for assessment of models
 | 
15 Jul 2020
Methods for assessment of models |  | 15 Jul 2020

The Sailor diagram – A new diagram for the verification of two-dimensional vector data from multiple models

Jon Sáenz, Sheila Carreno-Madinabeitia, Ganix Esnaola, Santos J. González-Rojí, Gabriel Ibarra-Berastegi, and Alain Ulazia

Related authors

Changes in the simulation of atmospheric instability over the Iberian Peninsula due to the use of 3DVAR data assimilation
Santos J. González-Rojí, Sheila Carreno-Madinabeitia, Jon Sáenz, and Gabriel Ibarra-Berastegi
Hydrol. Earth Syst. Sci., 25, 3471–3492, https://doi.org/10.5194/hess-25-3471-2021,https://doi.org/10.5194/hess-25-3471-2021, 2021
Short summary
Multilinear approach to the precipitation–lightning relationship: a case study of summer local electrical storms in the northern part of Spain during 2002–2009 period
I. Herrero, A. Ezcurra, J. Areitio, J. Diaz-Argandoña, G. Ibarra-Berastegi, and J. Saenz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-6467-2013,https://doi.org/10.5194/nhessd-1-6467-2013, 2013
Revised manuscript not accepted
Daily scale wintertime sea surface temperature and IPC-Navidad variability in the southern Bay of Biscay from 1981 to 2010
G. Esnaola, J. Sáenz, E. Zorita, A. Fontán, V. Valencia, and P. Lazure
Ocean Sci., 9, 655–679, https://doi.org/10.5194/os-9-655-2013,https://doi.org/10.5194/os-9-655-2013, 2013
Variability in the air–sea interaction patterns and timescales within the south-eastern Bay of Biscay, as observed by HF radar data
A. Fontán, G. Esnaola, J. Sáenz, and M. González
Ocean Sci., 9, 399–410, https://doi.org/10.5194/os-9-399-2013,https://doi.org/10.5194/os-9-399-2013, 2013

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011. a
Barnett, T. P. and Preisendorfer, R.: Origins and Levels of Monthly and Seasonal Forecast Skill for United States Surface Air Temperatures Determined by Canonical Correlation Analysis, Mon. Weather Rev., 115, 1825–1850, https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2, 1987. a
Boer, G. J. and Lambert, S. J.: Second order space-time climate difference statistics, Clim. Dynam., 17, 213–218, https://doi.org/10.1007/PL00013735, 2001. a
Breaker, L. C., Gemmill, W. H., and Crosby, D. S.: The application of a technique for vector correlation to problems in Meteorology and Oceanography, J. Appl. Meteor., 33, 1354–1365, https://doi.org/10.1175/1520-0450(1994)033<1354:TAOATF>2.0.CO;2, 1994. a
Bretherton, C. S., Smith, C., and Wallace, J. M.: An Intercomparison of Methods for Finding Coupled Patterns in Climate Data, J. Climate, 5, 541–560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2, 1992. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A new diagram for the verification of vector variables (wind, current, etc.) generated by multiple models against a set of observations is presented in this package. It has been designed as a generalization of the Taylor diagram for two-dimensional quantities. It is based on the analysis of the two-dimensional structure of the mean squared error matrix between model and observations, and it allows for an easy assessment of both bias and directional errors as well.