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Abstract. A new diagram is proposed for the verification of
vector quantities generated by multiple models against a set
of observations. It has been designed with the objective, as
in the Taylor diagram, of providing a visual diagnostic tool
which allows an easy comparison of simulations by multiple
models against a reference dataset. However, the Sailor dia-
gram extends this ability to two-dimensional quantities such
as currents, wind, horizontal fluxes of water vapour and other
geophysical variables by adding features which allow us to
evaluate directional properties of the data as well. The dia-
gram is based on the analysis of the two-dimensional struc-
ture of the mean squared error matrix between model and ob-
servations. This matrix is separated in a part corresponding
to the bias and the relative rotation of the two orthogonal di-
rections (empirical orthogonal functions; EOFs) which best
describe the vector data. Since there is no truncation of the
retained EOFs, these orthogonal directions explain the total
variability of the original dataset. We test the performance of
this new diagram to identify the differences amongst the ref-

erence dataset and a series of model outputs by using some
synthetic datasets and real-world examples with time series
of variables such as wind, current and vertically integrated
moisture transport. An alternative setup for spatially varying
time-fixed fields is shown in the last examples, in which the
spatial average of surface wind in the Northern and South-
ern Hemisphere according to different reanalyses and realiza-
tions from ensembles of CMIP5 models are compared. The
Sailor diagrams presented here show that it is a tool which
helps in identifying errors due to the bias or the orientation
of the simulated vector time series or fields. The R imple-
mentation of the diagram presented together with this paper
allows us also to easily retrieve the individual diagnostics of
the different components of the mean squared error and ad-
ditional diagnostics which can be presented in tabular form.
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1 Introduction

It has been a long time since visual tools were recognized
as an easy way to analyse different properties of datasets.
This appreciation is at the root of simple and effective vi-
sualizations for exploratory data analysis such as the well-
known Hovmöller diagram (Hovmöller, 1949) and the box
plot (McGill et al., 1978). A visual tool for presenting tem-
perature anomalies has also been recently recognized as a
very effective way of presenting information regarding the
evolution of climate to general audiences (Hawkins et al.,
2019). Visual tools are very helpful in scientific inquiry; see,
for instance, Peirce’s diagrammatic thinking (Dörfler, 2005).
Furthermore, the visualization via diagrammatic representa-
tions does not only constitute a way of interpretation. Peirce’s
theory of signs and other studies on scientific creative think-
ing show that diagrams, together with analogy or extreme
thinking, also constitute a way of reasoning and knowledge
generation (Dörfler, 2005; Ulazia, 2016).

Visual representation of data allows a fast and intuitive
interpretation of many of their characteristics. This has led
to the development of many special types of diagrams par-
ticularly in the field of model verification. These diagrams
present different measures of forecast quality as in the case
of the well-known relative operating characteristic curve
(Wilks, 2006) and a combination of success ratio and proba-
bility of detection (Roebber, 2009) to name a few.

Boer and Lambert (2001) designed a diagram based on
second-order space–time differences between model simula-
tions and observations as a tool to diagnose the performance
of climate models. Their diagram was based on simple quan-
tities such as mean square differences, variances and Pear-
son’s correlation coefficient between observations and model
runs. They used the analytical relationship between the stan-
dard deviation of the datasets, their common correlation coef-
ficient and the squared difference between the datasets. They
also showed that the diagram could be used for the evaluation
of model ensembles.

Following a similar reasoning, Taylor (2001) presented a
diagram which has become a well-known and popular tool
for the evaluation of model simulations against observed data
(in general, a reference dataset). In the so-called Taylor dia-
gram, the horizontal axis represents the standard deviation of
the reference dataset, the radial distance represents the stan-
dard deviation ratio of the forecast against the reference and
the angular distance from the x axis is related to the correla-
tion coefficient between the reference dataset (also referred
to as observations) and every model run. The distance from
the point assigned to a model in the diagram to the point rep-
resenting the reference dataset is related to the centred root
mean squared error (RMSE). In the Taylor diagram, every
model tested is represented by a point in the diagram, and
visual inspection allows us to easily determine which points
are closer (i.e. present lower error) to observations. This ap-
proach works for any number of models, and, therefore, com-

paring models using the Taylor diagram is in general faster
and easier than using an equivalent table listing the different
error measures. This explains the success of the diagram, as
shown by the fact that the paper describing it has been cited
more than 2300 times at the time of writing this contribution.
This diagram is a tool that helps in the fast diagnosis of the
relative merits of the models. Aspects such as under- or over-
estimated variance, incorrect phasing of the seasonal cycle
and many others are reflected in the relative position of the
points characterizing a model in the diagram. The diagram
is flexible enough so that it can be extended to ensembles of
models. More specific developments such as incorporating
bootstrap techniques for the estimation of confidence inter-
vals can be easily done (González-Rojí et al., 2018; Ulazia
et al., 2017), which stresses the idea of flexibility associated
with the Taylor diagram. Finally, since observed data also
suffer from errors, an estimation of the relevance of these ob-
servational errors in different datasets can also be achieved
by checking alternative measured datasets against the same
reference as if they were models too (Fernández et al., 2007).
Thus, the dispersion amongst observational datasets yields
an estimate of the uncertainty of the observations (González-
Rojí et al., 2019).

Pearson’s correlation coefficient between two scalars plays
a fundamental role in the design of Taylor diagrams, but a
single universally accepted definition of the correlation co-
efficient in two dimensions does not exist. Jupp and Mar-
dia (1980) recognized that any multivariate definition of a
correlation coefficient equivalent to Pearson’s one must be
invariant to rotation, close to zero for independent datasets,
smaller than or equal to a constant, and equal to that constant
only if the datasets are related to each other by means of a
function. Since they based their definition on these proper-
ties, they found that the sum of the squared canonical corre-
lations was a potential definition of the squared correlation
coefficient that met the previous requisites. In a previous pa-
per, Cramer (1974) defined the two-dimensional correlation
coefficient by means of the product of the canonical correla-
tions. In this case, a low canonical correlation yields a low
correlation coefficient because of the use of the product.

Stephens (1979) defined two versions of correlation be-
tween vectors by means of functions which satisfy the re-
quirement that two perfectly correlated vector sets can be re-
lated by means of an orthogonal transformation. In this case,
the vectors are assumed to share a common centre and to be
unit vectors so that this measure cannot be used to identify bi-
ases between datasets or different standard deviations. In any
case, the author correctly asserted that invariance to rotation
does not lead to a unique definition of correlation coefficient
for multivariate datasets.

Robert et al. (1985) presented an interesting review of dif-
ferent alternatives to compute the correlation coefficient for
vector quantities. They recognized that two approaches to the
problem exist. The first one is based on the use of canonical
correlations between multivariate datasets. In the second ap-
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proach, the definition of a two-dimensional correlation coef-
ficient for vector datasets is based on functions which satisfy
some desirable properties, such as the invariance of the corre-
lation to the rotation of the original datasets or the existence
of a limit constant for linearly related vectors as earlier sug-
gested by Jupp and Mardia (1980).

Despite these many previous studies, it is a fact that up to
today, several alternative versions of correlation coefficients
between vectors exist. The fact that the definition of a two-
dimensional correlation coefficient must satisfy the proper-
ties mentioned before was also followed by Crosby et al.
(1993), who presented an in-depth review of previous defi-
nitions in oceanography and meteorology such as by Kundu
(1976). Crosby et al. (1993) also stated different possible def-
initions of the correlation coefficient. Amongst them, they
proposed a definition similar to the one used by Jupp and
Mardia (1980). This definition was later applied to real ma-
rine and atmospheric datasets by Breaker et al. (1994) and
Cosoli et al. (2008), for instance. A similar result is obtained
in the case of complex correlation coefficients (Schreier,
2008). In this case, too, the literature (Hanson et al., 1992;
Schreier, 2008) shows that there is not a unique definition
of the complex correlation coefficient. One of the potential
definitions is the one based on canonical correlation analy-
sis, which is connected to the minimum squared error and
highest mutual information in the signals being compared.
This result is consistent with the definition of R2 by Jupp
and Mardia (1980) and Crosby et al. (1993).

However, the diagram designed by Taylor (2001) for scalar
variables is being used by modellers when comparing vec-
torial quantities of model output with observations. For ex-
ample, Lee et al. (2013) presented a comparison of CMIP3,
CMIP5, reanalysis and satellite-based estimations of wind
stress by means of the average of the Taylor diagrams for
the zonal and meridional components of the wind stress as a
way to apply Taylor diagrams to vector quantities. A differ-
ent strategy is followed, for instance, in Jiménez et al. (2010).
In this case, the behaviour of several models for the zonal
and meridional components is not the same in terms of the
identification of the model rankings. The best model for the
zonal component in terms of its Taylor diagram is not the best
one for the meridional component (see their Fig. 6). This is a
typical problem which arises when using the Taylor diagram
with vector data as also shown in a study about currents mea-
sured by means of an high-frequency (HF) radar (Lorente
et al., 2015). It also appears in the evaluation of global cli-
mate models using zonal and meridional components of wind
speed (The HadGEM2 Development Team, 2011) and in an
analysis of moisture fluxes (Ibarra-Berastegi et al., 2011). A
last example appears when wind stress components are anal-
ysed (Chaudhuri et al., 2013). A different alternative which
allows the use of the Taylor diagram for verification of wind
estimations against observations is to use it as a tool to verify
the magnitude of the wind (Ulazia et al., 2016, 2017; Rabanal
et al., 2019). However, even in this case, the results are lim-

ited since the information regarding errors in the direction of
the vectors is lost.

In a recent paper, Xu et al. (2016) proposed a new method
to overcome the deficiencies of the Taylor diagram for vector
datasets and produced a new type of diagram visually equal
to the original Taylor diagram but which can be used for vec-
tor quantities. It is constructed on the basis of pattern similar-
ities of vector observations and model runs, and they call it a
vector field evaluation (VFE) diagram. It is constructed from
both components of the vectors which appear in the vector
datasets that are used for the verification. In order to arrive at
the same structure as the Taylor diagram, the authors apply
some normalization to the original two-dimensional vector
quantities.

However, in the original paper by Crosby et al. (1993),
the authors demonstrate that two-dimensional fields show-
ing a perfect correlation according to their definition do not
have to be simple two-dimensional counterparts of what we
expect in the one-dimensional case (see their Fig. 3). Thus,
instead of trying to simply replicate the structure of the origi-
nal Taylor diagram, we have decided to follow a new approx-
imation which gives more information about the structure of
the two-dimensional errors between vector quantities derived
from models and their observational counterpart (reference
dataset). In order to achieve this goal, we have based our def-
inition on the analysis of the two-dimensional structure of
the mean squared error between both vectorial datasets. This
does not allow us to reduce our diagram to the well-known
Taylor diagram used for scalars as the one produced by Xu
et al. (2016) does. However, we hope that our diagram will
be considered a valuable contribution to the set of techniques
used for the evaluation of models as it visually explores other
properties of the error between the vector datasets, such as
the relative rotation of the major axes of variability and the
underestimation (or overestimation) of variance along each
principal axis of the covariance matrix. As will be shown in
this contribution, this is an important diagnostic error which
would otherwise be lost.

Empirical orthogonal functions (EOFs) are commonly
used in the literature for the decomposition of geophysi-
cal fields in their temporal and spatial variability (Hannachi
et al., 2007). The use of an EOF-based decomposition of
a geophysical field is particularly relevant because it pro-
duces linear combinations of the original variables (principal
components) which are uncorrelated, thus leading to better
basis for subsequent stages of the analysis. These uncorre-
lated principal components are important bricks in the de-
velopment of statistical analyses based on canonical correla-
tion or multiple regression models, for instance (Barnett and
Preisendorfer, 1987; Bretherton et al., 1992). Besides that,
these linear combinations are also able to explain decreasing
fractions of variance so that the EOFs form an interesting or-
thogonal basis for data compression and dimensionality re-
duction (Monahan et al., 2009). However, the reduction in
variance is achieved by truncating the amount of EOFs that
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are kept for the analysis to a number of EOFs lower than the
rank of the corresponding covariance matrix. In the case of
our paper, as will be discussed later, the original 2× 2 co-
variance matrix is expressed by two EOFs so that there is no
truncation in the process, as discussed in detail in Sect. 3.1.

It is the authors’ need to find a solution to problems found
in the past when using the Taylor diagram for vector quanti-
ties that inspired this proposal. The Sailor diagram provides
a full analysis of the two-dimensional covariance matrix of
the observed and simulated vector fields, and, at the same
time, it yields exact numerical estimations of the RMSE be-
tween those vector fields. Additional diagnostics presented
in this contribution such as the relative rotation of the princi-
pal axes can be obtained following our methodology. Thus,
this contribution provides a useful tool for the verification of
simulated vector fields.

We propose the name Sailor diagram as a joke due to the
fact that it is a diagram which can be used for winds and cur-
rents (properties of geophysical fluid dynamics that sailors
need to know about) and because this name is very similar to
the original Taylor diagram. Thus, the name can be derived
from the original Taylor just by changing two letters in the
word (two letters equal the number of dimensions used in
the diagram) following the idea behind Lewis Carroll’s word
ladder puzzles.

Section 2 presents the datasets that we have used as ex-
amples of the application of our Sailor diagram. Section 3
explains the methodology that we follow to build the two-
dimensional diagram. Results are included in Sect. 4, fol-
lowed by some concluding remarks in Sect. 5.

2 Data

In order to show that the diagram that we propose is of gen-
eral interest and can be applied in different studies involving
vector magnitudes, we have selected some examples ranging
from evident variables (wind or ocean currents) to additional
post-processed quantities such as vertically integrated mois-
ture transports.

2.1 Wind data

The first wind dataset that will be used in this paper corre-
sponds to a 1-year-long dataset of hourly wind (zonal and
meridional components) from ERA5 reanalysis at the point
38◦ N and −124◦W, by Los Angeles, and we will refer to
it as reference (Ref) onwards. In order to produce synthetic
models which are affected by individual sources of error, we
have prepared a perturbed version of this dataset which we
refer to as MOD1 and for which we have just added a con-
stant bias of (4.8,−6.8) m s−1 to the zonal and meridional
components of the wind, respectively. In order to address a
second source of error (a change in the simulated direction),
we have applied a counterclockwise rotation of 30◦ to the

original dataset in order to produce MOD2. The rotation pro-
duces a change in the principal axes of the distribution of
zonal and meridional wind and a new bias too since it ro-
tates the original averaged wind. A third source of error (lack
of temporal correlation) is addressed by resampling (without
repetition) the original Ref dataset to produce MOD3, which
is characterized by perfect mean wind (no bias) and direction
of major and minor axes of the distribution of wind but no
correlation of wind events. A final synthetic dataset (MOD4)
is produced by scaling the wind distribution with a constant
factor (2) so that both the mean and the standard deviations
of wind are affected.

Next, offshore wind data are also used as our first ex-
ample of a Sailor diagram constructed with realistic data.
The wind dataset (zonal and meridional components) ex-
tends from 1 January 2009 to 1 January 2015 and includes
five sources (Ulazia et al., 2017). Two Weather Research and
Forecasting (WRF) model simulations around the Iberian
Peninsula are used, one with 3DVAR data assimilation every
6 h (experiment D) and the second one without data assimi-
lation (experiment N). ERA-Interim (ERAI) data (Dee et al.,
2011) were also used to nest the two (N and D) WRF runs,
and these data are also compared with observations. Fully as-
similated level 3 wind analysis data from the second version
of Cross-Calibrated Multi-Platform (CCMPv2) are also used
(Hoffman et al., 2003; Atlas et al., 2011) for the evaluation.
The previous sources will be validated against in situ obser-
vations provided by the buoy in Dragonera, near the Balearic
Islands, a buoy which is managed by Spanish National Ports
Authority Puertos del Estado (2015).

2.2 Ocean currents

Three different data sources of ocean surface horizontal vec-
torial currents are also compared with in situ data. They
cover the Bay of Biscay area and include in situ obser-
vations from a deepwater buoy, remotely sensed surface
HF radar currents and an ocean modelling product. Obser-
vational products, both an in situ buoy (named DONOS-
TIA buoy) and remotely sensed radar currents, belong to
the Basque Meteorological Agency (EUSKALMET) and
were obtained from https://www.euskoos.eus (last access:
3 July 2020). They provide hourly data that are punctual in
the case of the buoy (approx. location 43.6◦ N and 2.0◦W).
In the case of the HF radar dataset, the data consist of a
gridded dataset which covers the corner of the Bay of Bis-
cay (approx. location 43.5–44.7◦ N and 3.2–1.3◦W) with
5 km spatial resolution (Rubio et al., 2011, 2013; Solabar-
rieta et al., 2014). The ocean modelling product used in
this example is the global analysis and forecast product
of the Copernicus Marine Environment Monitoring Ser-
vice (CMEMS), available through their data portal (iden-
tifier GLOBAL_ANALYSIS_FORECAST_PHY_001_024)
(Madec and the NEMO team, 2008; Lellouche et al., 2018).
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2.3 Vertically integrated water vapour transports

Zonal and meridional components of vertically integrated
water vapour transports were calculated or downloaded from
different sources. First, observations were obtained from the
sounding data for A Coruña (station ID 08001; 43.36◦ N and
−8.41◦ E) with a temporal resolution of 12 h for the period
2010–2014. Both components of vertically integrated mois-
ture transport from ERAI in the original vertical levels of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) model were downloaded by means of the Meteo-
rological Archival and Retrieval System (MARS) repository
at ECMWF for the nearest point to A Coruña.

Both moisture transport components were also calculated
using the moisture and wind data from the previously men-
tioned N and D simulations created with the WRF model
over the Iberian Peninsula as described by González-Rojí
et al. (2018). The components of the moisture transport were
calculated at the nearest point in WRF’s grid by means of
the vertical integration of the specific humidity (Sáenz et al.,
2019a) and the zonal and meridional winds over the original
51 η levels of the WRF model.

2.4 Verification of spatial vector fields

An important application of the Taylor diagram is the veri-
fication of climate models, and, as such, it is often used to
verify the spatial structure of climate model outputs. In order
to show that the Sailor diagram proposed in this paper can
also be applied for this purpose, some reanalyses are com-
pared. The original NCEP/NCAR first generation reanalysis
(Kalnay et al., 1996) is compared to more modern reanalyses
such as MERRA2 (Gelaro et al., 2017), CFSv2 (Saha et al.,
2014), ERAI and ERA5 (Hersbach et al., 2018). In all those
cases, we have analysed the January average of the monthly
values covering a common period (2011–2018), regridded by
means of bilinear interpolation to the grid corresponding to
the NCEP/NCAR reanalysis case (2.5◦× 2.5◦).

Finally, in terms of the application of the diagram to a
typical case in the analysis of climate models, we use time-
averaged wind speed over the Southern Hemisphere (1979–
2005). This case example uses the time average of surface
wind obtained from ERA5 as the reference dataset. In order
to check the behaviour of the diagram when analysing en-
sembles of multimodels, we have also downloaded surface
wind fields of the historical forcing experiment contributed
by three models from the CMIP5 repository for the same pe-
riod. The first set includes six realizations by the IPSL model
developed at the Institute Pierre-Simon Laplace (Dufresne
et al., 2013). The second one (including five realizations)
derives from the MIROC model (Watanabe et al., 2010).
The third case includes four realizations integrated using the
HadGEM2-ES model (Collins et al., 2011) from the Hadley
Centre. All the models and ERA5 reanalysis gridded fields
have been bilinearly interpolated to a common 1.25◦× 1◦

regular longitude–latitude grid. This example is selected to
illustrate the way the diagram can be applied to the analysis
of ensemble data even if the number of realizations for each
model is different.

3 Methodology

In this section, we present the derivation of the 2×2 squared-
error matrix that is the basis of the definition of the diagram
that is proposed later. The two-dimensional squared error
matrix is decomposed in the empirical orthogonal functions
(EOFs) corresponding to the covariance matrix defined by
the zonal and meridional components of observations (and
similarly for the covariance matrix defined by each model).
Section 3.1 describes the decomposition of the matrix U
corresponding to the reference dataset (observations) in its
EOFs. A similar notation will be used later for the decompo-
sition of the matrix V corresponding to the zonal and merid-
ional components of every model which is being compared
to observations. Later, the expansion of the V matrix corre-
sponding to the model is expressed as a rotation from the
EOFs derived from observations (Sect. 3.2).

3.1 Decomposition of U in its EOFs

We consider a time series or spatial field of a two-
dimensional vectorial variable such as horizontal wind, ver-
tically integrated moisture transport or horizontal currents,
for instance. It has been measured at an observatory or buoy
(time series), or it is a time average over a grid (the case of the
evaluation of a climatology derived from climate models). By
now, we will consider that we are evaluating a time series of
N samples, but later we will present results where theN rep-
resents the number of grid points where a time-averaged field
is defined. Note that in the following presentation, U includes
the zonal and meridional components of observations and so
does V for a simulated dataset. The observational dataset is
formed by the two-dimensional (zonal and meridional) com-
ponents of vector measurements ui , with i = 1. . .N arranged
as rows in an N × 2 matrix U. The average u of the ui time
series will be repeated as constant rows in an N × 2 matrix
U. The 2× 2 covariance matrix from the zonal and merid-
ional components of velocity anomalies in the observations
is given by

Su =
1
N

(
U−U

)T (
U−U

)
=

(
Sxx Sxy
Sxy Syy

)
. (1)

According to the traditional use of the EOF decomposition
of geophysical fields, the eigenvalues and eigenvectors of the
covariance matrix from observations U can be computed by
means of the expression

Sueui = λuieui, (2)

with Su the covariance matrix in Eq. (1), eui the ith eigenvec-
tor of the observational vector field and λui the corresponding

https://doi.org/10.5194/gmd-13-3221-2020 Geosci. Model Dev., 13, 3221–3240, 2020



3226 J. Sáenz et al.: Sailor diagram

ith eigenvalue so that

fui =
λui∑r
i=1λui

(3)

represents the fraction of variance in observations explained
by the linear combination of the original variables defined
by the ith eigenvector of the covariance matrix (Monahan
et al., 2009). In the general case of the EOF analysis in cli-
matological analyses, the rank of the covariance matrix r in
Eq. (3) extends to (at most) the minimum between the num-
ber of grid points (Ng) and the number of samples in the
dataset (N ). In the general case, in order to achieve a trunca-
tion of the original dataset, a number t of EOFs lower than
the rank of the covariance matrix (t < r) is selected so that
the signal in the subspace that can not be spanned by eigen-
vectors euj with j = t+1. . .r becomes the part of the original
dataset which is truncated. However, in our use of EOFs be-
low, the original covariance matrix as defined in Eq. (1) is
of rank 2 or full rank for any realistic non-linear flow. Since
two EOFs (t = r = 2) will be used in the expansion of the
datasets, no truncation is applied and the full variance in the
original dataset will be analysed in the equations that follow.

Thus, the U matrix can be expressed by means of the two
empirical orthogonal functions of the original vector data
(which constitute a complete basis of the horizontal plane)
by using the expression

U= U+P∗u6uETu = U+PuETu , (4)

with P∗u (an N×2 matrix) the standardized principal compo-
nents of the U data, 6u (2×2 matrix) the standard deviations
(σ1u and σ2u) of the leading and second EOFs of the U field,
Eu (2× 2 matrix) the matrix holding the orthogonal rotation
matrix leading to the empirical orthogonal functions of the
U field arranged as columns, and Pu = P∗u6u (N ×2 matrix)
the variance-holding principal components. Please note that
when the standardized principal components P∗u are used, this
matrix is always multiplied by the corresponding standard
deviations so that no variance is lost in the process. Thus, the
anomalies of wind are computed without any loss of variance
as

U−U= P∗u6uETu = PuETu , (5)

the corresponding principal components as

Pu = P∗u6u =

(
U−U

)
Eu, (6)

and their standardized counterparts as

P∗u =
(

U−U
)

Eu6−1
u . (7)

Unless the wind (current) time series is completely arranged
across a straight line (something which is very unlikely in

observed vector variables unless the flow is stationary and
laminar), 6u is a full-rank diagonal matrix:

6u =

(
σ1u 0
0 σ2u

)
, (8)

with σ1u > σ2u. Due to the fact that the rotation matrix is al-
ways full rank (in the two-dimensional space spanned by the
zonal and meridional components, given enough samples),
the Eu matrix can also be interpreted geometrically as a rota-
tion matrix expressed as a function of the angle θu formed by
the leading (second) EOF with the zonal (meridional) axis as
follows:

Eu =
(

cosθu −sinθu
sinθu cosθu

)
. (9)

The first column of the Eu matrix is the first eigenvector of
observations in the horizontal plane, eu1. Similarly, the sec-
ond column of Eu corresponds to eu2, the second eigenvector
of the observational covariance matrix.

The principal components and EOF rotation matrices fulfil
the well-known orthogonality properties

PuPTu =62
u, (10)

as do the standardized principal components,

P∗uP∗Tu = 1, (11)

and eigenvectors (EOFs) in the horizontal plane,

EuETu = ETuEu = 1. (12)

Figure 1a illustrates in a scatterplot the distribution of
measurements of zonal and meridional wind components in
the Ref dataset and is presented to make the next step in
the derivation of the Sailor diagram easily understandable.
Figure 1b shows on top of the previous scatterplot the el-
lipses centred on the mean of the reference dataset applied
in the Sailor diagrams by using the semi-major and semi-
minor axes as defined by the EOF decomposition of the two-
dimensional covariance matrix of the zonal and meridional
components of the original vector field, the directions of the
principal axes (matrix Eu), and the standard deviations cor-
responding to the principal components Pu. From Eqs. (7)
and (11), the quadratic form leading to the ellipses in the di-
agram can be obtained by applying the Frobenius norm to
Eq. (11) as

||P∗uP∗Tu ||F = ||
(

U−U
)

Eu6−2
u ETu

(
U−U

)T
||F = 1. (13)

The principal components are combined according to the
quadratic form in Eq. (13). This shows that the ellipse pro-
duced from the EOF decomposition of the two-dimensional
covariance matrix is a good way to make a simple and clear
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Figure 1. Scatterplot of wind in dataset Ref (a) and its decomposition in terms of the principal axes corresponding to the covariance matrix
of the zonal and meridional components (b) as defined in Eq. (4).

representation of the original scatterplot. The eccentricity of
the ellipse,

εu =

√
1−

σ 2
2u

σ 2
1u
, (14)

is an interesting indicator for additional diagnostics designed
for testing the reliability of rotation angles due to the degen-
eracy of the eigenvalues.

Following similar notation to the one used for the obser-
vations (U matrix), the time series (or time-averaged con-
stant field over N points in a grid) of simulated wind (cur-
rent, wave energy flux, vertically integrated moisture trans-
port, etc.) at the same observatory (or the closest grid point)
formed by the two-dimensional (zonal and meridional com-
ponents) simulations vi , with i = 1. . .N , will be arranged as
rows in an N × 2 matrix V. The average vector from model
data v is arranged as constant rows in an N × 2 matrix V.
The V matrix (and its anomalies) can be expressed, as was
done for observations in Eqs. (4) and (5) above, by means
of the empirical orthogonal functions of the two-dimensional
covariance matrix from simulated zonal and meridional com-
ponents of wind (current, moisture transport, etc.) data:

V= V+P∗v6vETv = V+PvETv ⇔

V−V= P∗v6vETv = PvETv , (15)

with equivalent interpretations and equal ranks for P∗v , 6v ,
Ev and Pv = P∗v6v as presented before for observations.

3.2 Expansion of the matrix V in the EOFs defined by
observations

In general, the mean values and EOFs derived from obser-
vations (U) and simulations (V) will not be the same. This
is shown in Fig. 2, with panel (a) clearly showing a change
in the bias between both datasets and a counterclockwise ro-
tation in the case of panel (b), as is expected from the way
these synthetic datasets were produced. It is clearly seen that
in the case of MOD1 the structure of the covariance matrix
has not changed, whilst a different orientation (but no scaling
of the semi-major and semi-minor axes) appears in the case
of MOD2.

In order to identify these kinds of errors (derived from ro-
tations of the axes), the orthonormal EOFs in the Ev matrix
can be expressed as the result of a rotation applied to the
EOFs derived from the observations (accepting these as true
EOFs). Thus, the rotation matrix Rvu is defined by an angle
θvu = θv − θu as

Rvu =
(

cosθvu −sinθvu
sinθvu cosθvu

)
, (16)

so that

Ev = RvuEu, (17)

V= V+PvETuRTvu, (18)

and the corresponding principal components can be ex-
panded as

Pv =
(

V−V
)

RvuEu = ṼEu, (19)
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Figure 2. Scatterplot of wind in datasets Ref (panel a, black circles) and MOD1 (panel a, grey crosses) and their decomposition in terms
of the principal axes corresponding to the covariance matrix of the zonal and meridional components of each dataset as defined in Eqs. (12)
and (15). The comparison of the reference dataset (black circles) with model MOD2 (grey crosses) is shown in panel (b).

with Ṽ=
(

V−V
)

Rvu representing the model-based V
anomalies rotated to the basis given by the EOFs correspond-
ing to observations.

Since both eu1 and −eu1 are solutions of the eigenvalue
equation when the diagonalization of the two-dimensional
covariance matrix is performed (the same happens with ev1
and−ev1 for model data), θvu may make it difficult to under-
stand values even for eigenvectors which span similar sub-
spaces. This is due to the fact that both θvu = 0 and θvu = π
refer to eigenvectors that point in perfect directions. In order
to provide an easier to interpret diagnostic of the adequacy
of the EOFs from observations and the model, the absolute
value of the congruence coefficient (Cheng et al., 1995) can
also be used. It is defined as

gii = |eui · evi |, (20)

and it measures the agreement between the pairs of EOFs
from observations (eui) and models (evi). Since this coeffi-
cient equals the cosine of the angle between both directions
and since the absolute value is used, the closer its value is
to 1, the better the agreement will be between eui and evi .
Due to the orthogonality relationship between the EOFs, only
the congruence coefficient for EOF1 is computed since it is
equal to the one computed using EOF2 (matrices Eu and Ev
are orthonormal).

3.3 Expansion of the mean squared error

The (2×2) matrix that represents the mean squared error be-
tween the U and V datasets is given by

12
uv =

1
N
(V−U)T (V−U) , (21)

and the aggregated scalar mean squared error of both com-
ponents of the vector dataset is given by its Frobenius norm

ε2
= ||12

uv||F . (22)

Substituting Eqs. (4) and (15) into Eq. (21), it can be
shown that

12
uv =

1
N

B2
uv +

1
N

(
STuv +Suv

)
+

1
N

Duv

=
1
N

B2
uv +

1
N

Cuv +
1
N

Duv, (23)

with

B2
uv =

(
V−U

)T (
V−U

)
, (24)

Suv =
(

Ev6vP∗Tv −Eu6uP∗Tu
)(

V−U
)

=

(
EvPTv −EuPTu

)(
V−U

)
, (25)

and

Duv = Eu62
uETu +Ev62

vETv

−

(
Eu6uP∗Tu P∗v6vETv +Ev6vP∗Tv P∗u6uETu

)
, (26)
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Figure 3. Scatterplot of wind in datasets Ref (panel a, black circles) and MOD3 (panel a, grey crosses) and their decomposition in terms of
the principal axes corresponding to the covariance matrix of the zonal and meridional components of each dataset. The comparison of the
reference dataset (black circles) with model MOD4 (grey crosses) is shown in panel (b).

which can also be written using non-standardized Pu and Pv
principal components as

Duv = Eu62
uETu +Ev62

vETv

−

(
EuPTu PvETv +EvPTv PuETu

)
. (27)

B2
uv represents the part of the squared error which is due to

the magnitude of the bias vector (difference of both means)
between both vector datasets.

The (symmetric) matrix Cuv = STuv+Suv reflects the error
which is due to the projection of the bias onto the differences
of vector anomalies. Since the bias matrices are constant, the
sum of the projections become the sum of anomalies, and, as
such, they become zero. This interpretation is clear if Eq. (5)
and the corresponding one for the model anomalies are sub-
stituted into the definition of the matrix Suv in Eq. (25), yield-
ing

Suv =
((

V−V
)
−

(
U−U

))T (
V−U

)
= (V−U)T

(
V−U

)
−

(
V−U

)T (
V−U

)
= 0. (28)

Since this matrix is zero, Cuv will also be zero.
Finally, the matrix Duv is related to the covariance ma-

trix of anomalies which is also clearly seen if Eq. (5) and
the corresponding one for simulated data are substituted into
Eq. (27).

In order to improve the graphical interpretation of the com-
ponents of the error, the expression of the empirical orthog-
onal functions of V as a rotation of the true ones (derived

from observations U) is used. Thus, considering Eq. (17), the
matrix Duv above can be rewritten in terms of the EOFs cor-
responding to observations as

Duv = Eu62
uETu +RvuEu62

vETuRTvu

−

(
EuPTu PvETuRTvu+RvuEuPTv PuETu

)
. (29)

If 0vu = PTu Pv is proportional to the covariance between
both datasets’ principal components, the above expression
can be written as

Duv = Eu62
uETu +RvuEu62

vETuRTvu

−

(
Eu0vuETuRTvu+RvuEu0TvuETu

)
. (30)

The interpretation of this expression is that all the matrices
involved in the mean squared error can be expressed in the
axes defined by the leading and second EOFs of the U (obser-
vational) dataset. Thus, using the axes corresponding to the
observational dataset U, we can produce a diagram which
gives us a fast visual impression of the structure of the er-
ror in two-dimensional variables in the same way the Taylor
diagram performs for univariate datasets. Therefore, the dia-
gram presented in this contribution includes not only scalar
information in the estimation of the error but also informa-
tion regarding the main directions of variability of the vec-
tors and their differences by means of the characteristics of
the ellipses defined by Eq. (19) from the different datasets.

Figure 3 presents two interesting cases. The first case,
MOD3, is implausible from the point of view of a real model,
but it constitutes an interesting case study to analyse the
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Table 1. Individual components of the error for the synthetic datasets used for the illustration of the methodology. σ 2 represents the total
variance (m2 s−2) of every dataset as computed from the original zonal and meridional components.

∑
iσ

2
i

represents the variance (m2 s−2)
of wind for every dataset (reference or model) as computed from the EOF decomposition (axes of the ellipses in the diagrams). θu and θv
represent the angles (radians) of the semi-major axes of the ellipses calculated for reference and models. θvu (radians) represents the relative
rotation of the semi-major axis of the model data with respect to the observations. R2 represents the two-dimensional squared correlation
coefficient (sum of the squared canonical correlations). |bias| represents the magnitude of the bias (m s−1). RMSE lists the root mean squared
errors (m s−1). The eccentricity of the ellipses (ε) is the same for all the synthetic datasets because of the way they have been built. Finally,
g11 represents the congruence coefficient (Eq. 20) for EOF1 of all models with respect to EOF1 as derived from observations.

Model σ 2 ∑
iσ

2
i

θu θv θvu R2
|bias| RMSE ε g11

Ref 47.56 47.56 1.93 0.92
MOD1 47.56 47.56 1.93 0.00 2.00 8.34 5.56 0.92 1.00
MOD2 47.56 47.56 2.46 0.52 2.00 2.88 8.69 0.92 0.87
MOD3 47.56 47.56 −1.21 0.72 0.00 0.00 1.52 0.92 1.00
MOD4 190.24 190.24 1.93 0.00 2.00 5.56 11.76 0.92 1.00

properties of the diagram. In MOD3, a simple random per-
mutation of the original observations has been performed.
Thus, there are neither biases nor rotations of the princi-
pal axes. From the point of view of the graphical example
shown, it seems that the model is perfect, but it is not due
to the lack of temporal correlation between model and ob-
servations. This is only apparent if the full RMSE is taken
into account, as shown in Table 1. Thus, a legend with the
RMSEs as defined in Eq. (22) must be added to the plot in
order to arrive at a precise comparison of datasets. The com-
parison of columns σ 2 and

∑
iσ

2
i in Table 1 shows that the

full variance of the datasets is taken into account in the EOF
decomposition as both columns present the same values.

On the other side, panel (b) in Fig. 3 shows that for the
scaled dataset (MOD4), the sizes of the major and minor
axes of the ellipses allow a fast visual detection of the scal-
ing present in the dataset. The individual components of the
error for all the synthetic datasets used in the description of
the methodology are also presented in Table 1. The eighth
column shows in full the RMSEs between vector fields. It is
apparent from this aggregated estimation of error that it prop-
erly evaluates the differences due to the lack of correlation
that have been mentioned in the case of MOD3 (no bias and
perfect orientation and axes of the ellipses) too. The rotation
angle (column θvu in radians) correctly identifies the way the
errors have been introduced in the different synthetic mod-
els. Despite the rotation of the ellipses apparent in columns
θu and θv (the case of MOD2), the fact that the semi-axes
are of the same relative length is clearly seen by the value of
the eccentricity ε, which also supports the way the ellipses
are presented in Figs. 1–3. On the other side, the interpre-
tation of the angles is complicated by the fact that both eui
and −eui are a correct solution to the eigenvalue problem in
Eq. (2). This is apparent in the case of MOD3, in which the
eigenvalue problem yields eigenvectors pointing in the same
direction with a different sign so that θv =−1.21+π yields
the same value as θu. The orientation of both eigenvectors is
the same for all models except MOD2, as effectively shown

by column g11 in Table 1, which holds the absolute value of
the congruence coefficient.

The different properties of the synthetic datasets presented
so far can be abbreviated in Fig. 4, which presents in pan-
els (a) and (b) uncentred and centred (respectively) versions
of the Sailor diagram. In the uncentred version of the Sailor
diagram, each ellipse, as defined by Eq. (13), is centred on
its own average. This allows an easy interpretation of the
bias term. In order to improve the interpretability of the ro-
tation and scaling parameters of the ellipses (semi-major and
semi-minor axes and standard deviations), the ellipse corre-
sponding to observations is also drawn in grey centred on
the same average of every model. In this way, the rotations
and scalings of the vectors produced by models can easily be
compared against the ones drawn from observations. How-
ever, in some cases (depending on the relative values of the
bias and the standard deviations), it might be more interest-
ing to plot all the ellipses centred on the mean corresponding
to the observations and identify the bias using coloured dots,
as shown in the centred version of the diagram (panel b in
Fig. 4).

An additional reason which supports the Sailor diagram
introducing powerful diagnostics for vector data is properly
shown in Table 1. According to the column which shows
the squared correlation coefficient, all models show a per-
fect match (R2

= 2) for the two-dimensional correlation co-
efficient except the one built by randomly resampling the
data (MOD3). However, Figs. 2 and 4 clearly show that the
wind data in MOD2 is rotated with respect to the reference
dataset. This is not detected by R2 because it yields perfect
results by design when there is a linear relationship between
both vector datasets (Crosby et al., 1993). However, an anal-
ysis based on the full components of the RMSE, as the one
performed in the Sailor diagram does (Fig. 4 and Table 1),
clearly highlights these directional problems. The squared
two-dimensional correlation R2

= 2 reflects that there is a
perfectly linear relationship (rotation in this case). However,
a full diagnostic of the differences between observations and
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Figure 4. Uncentred (a) and centred (b) versions of the Sailor diagram after placing the ellipses from all the synthetic datasets on the same
plot.

model data (such as finding the rotation angle previously
mentioned) must involve a full analysis of the directional er-
ror.

3.4 Extension of the methodology to spatial fields

In the case of the analysis of the ability of models to repre-
sent the spatial distribution of an averaged field (a typical use
of the Taylor diagram in climatology, for instance), there is
no change needed to the diagram defined so far. Instead of
using the T mode of principal components (covariance ma-
trix defined by temporal covariances), we can just use the
S mode in the traditional terminology of principal compo-
nents (Compagnucci and Richman, 2008). Thus, in the pre-
vious description, N will run along the grid points, and the
two-dimensional biases and covariances are computed in the
spatial domain, but the error analysis is still being performed
onto two-dimensional vectors. As an example of this very
common case in the application of Taylor diagrams to cli-
matology, we present an example including the comparison
of multi-year averages of Northern Hemisphere surface wind
vectors. In the case of spatial grids, an external standard area
weighting by means of factors given by

√
cosφ with φ lati-

tude (North et al., 1982) is commonly applied to the data in
order to avoid an excessive weight in the results of points in
polar latitudes which represent a much lower area in a regular
longitude–latitude grid.

3.5 Use of the diagram with ensembles of models

As a final example, the use of the diagram with a multimodel
ensemble is shown. In this case, the long-term (27 years) cli-
matologies of surface wind over the Southern Hemisphere
from three models with a different number of realizations are
compared with the corresponding climatology from ERA5.
As described above, since this also involves a comparison of
data on a regular longitude–latitude grid, the covariance ma-
trix is built over the spatial points and the external weights
given by

√
cosφ with φ latitude (North et al., 1982) are ap-

plied to avoid an overrepresentation of polar regions in the
results.

3.6 R package implementing the methodology

The authors have created an R package called SailoR
which is freely available in the Comprehensive R Archive
Network (CRAN). The package has been used to produce
the plots presented in Sect. 4, and the code to prepare some
of these plots and tables is provided as examples in the man-
ual of the package. Besides producing the diagrams shown as
examples in this paper, the package also computes all the in-
dividual terms used in the analysis of the RMSE as described
in Sect. 3. Thus, different aspects of the main principal axes,
their relative rotation, the two-dimensional correlation coef-
ficient and the combined RMSEs can be readily analysed for
different vector datasets and exported to tables which can be
presented in publications.
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Figure 5. Sailor diagram with default parameters (a) and ellipses with a scale factor of 0.025 to improve visibility of the directional error (b)
for the wind observed and simulated in Dragonera (buoy in the Mediterranean).

4 Use of the elements in the error matrix in the
diagram

4.1 Wind over a Mediterranean location

The first example of a Sailor diagram built using real data is
shown in Fig. 5 (panel a). In it, the x axis represents the zonal
component of wind and the y axis its meridional component.
The mean 2D vector corresponding to each of the datasets
is represented by a coloured circle except for the reference
dataset, which uses a grey square. The leading EOF of the
two-dimensional covariance matrix of zonal and meridional
components of every dataset is represented by the direction
corresponding to the semi-major axis of the ellipse that is
plotted centred on every model’s mean value (same colour
as the one used to represent the model’s mean). The second
EOF of each model is perpendicular to the previous direction
by design due to the orthonormality constraint in Eq. (12).
The grey ellipse centred on each model’s mean represents
the EOF from the reference dataset (observations). Thus, the
angle between the coloured and grey semi-major axes rep-
resents the relative rotation (θvu) between EOFs from obser-
vations and simulations. The lengths of the semi-major and
semi-minor axes (colour and grey) show the variances ex-
plained by each EOF (model and reference) at their principal
axes. The comparison of these lengths between coloured and
grey ellipses allows us to address the question of whether
the model underestimates or overestimates the variances at
each of the principal axes. In this particular example, since
the model versus observation biases are much lower than the
variance explained by the principal axes defined by the EOFs,
the interpretation of this diagram is not very easy. However,

it is already showing the main directions of the error ma-
trices, their biases and the position of the reference dataset.
The legend in the lower-right corner shows the total RMSEs
given by Eq. (22) in Sect. 3, which takes into account both
the contribution from the bias (distance of the points to the
reference dataset’s mean) and the different orientation and
lengths of the major and minor axes (EOFs).

In order to show that different designs optimize the infor-
mation transmitted by the diagram, in the second diagram
prepared using the data from the same example, the ranges
of both axes are limited and the ellipses corresponding to the
main directions of the error matrix are accordingly scaled
by means of a small scale factor (0.025). The brown square
in panel (a) shows the area which is amplified in panel (b),
and it illustrates the role played by the scale factor, which
reduces (or amplifies) the size of the axes of the ellipses,
thus making it easier to appreciate the relative differences
in biases while still making it possible to get access to the
information relative to the rotation of the principal axes. In
the scaled version of the diagram (Fig. 5, panel b), it can be
seen that the distance between every coloured point corre-
sponding to a given model to the grey square represents the
bias amongst the datasets, and they can effectively be visu-
ally compared. On the other hand, the grey ellipses and their
semi-major and semi-minor axes show the main structure of
the variability of the reference dataset. This grey ellipse is
plotted centred on the point representing the mean of every
model, where the EOFs corresponding to that model are also
shown for comparison. Both ellipses (the one corresponding
to the model being analysed and the one corresponding to
the reference dataset) are scaled by the same scale factor so
that they are not deformed during the scaling process. The
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use of ellipses and their major and minor axes allows us to
easily compare the main directions of variability of the ob-
served (grey) and modelled (coloured) winds. It shows that
the ones corresponding to the WRF model are the closest
ones to observations. It can be seen that both WRF simu-
lations show a smaller rotation of their major axes with re-
spect to the one from observations. The model EOFs are al-
most orthogonal from the ones in observations in the cases of
ERAI and CCMPv2 (CCMP_SAT in legend). The legend in
the lower-right corner, in any case, presents the real RMSEs
without scaling their values.

In this particular case, it might seem sensible to think that
the fact that the variances of the major and minor axes are
very close points to a weakness in the diagram since, in that
case, the determination of the angle of the axes will be ar-
bitrary. However, it has to be considered that the final index
of agreement would still be the RMSE, which does not de-
pend on the eigenvectors of the covariance matrix. Thus, the
results in terms of direction might not be very reliable in a
case when the eigenvalues are degenerated, but the RMSE is
not affected by this problem. Thus, the use of the eccentricity
of the ellipses (provided as an output in our R package) can
be useful in diagnosing those cases (in which eccentricity is
very low) that make estimations of relative rotations difficult.
For a more precise determination of the reliability of the rota-
tion angle, a bootstrap analysis of the rotation angles can also
be conducted, if needed, since the evaluation of the angles is
independent of the production of the diagram.

4.2 Surface current in the Bay of Biscay

Figure 6 (panel a) shows an alternative version of the Sailor
diagram. In this particular case, the bias is relatively low.
Thus, in order to ease the interpretation of the structure of the
errors, the ellipses representing the first and second EOFs are
drawn on top of the point corresponding to observations. The
fact that the bias is small only affects the part of the RMSE
derived from the term B2

uv in Eq. (23). As in the previous
case, they are scaled (4 times larger) in order to improve their
visibility. It is clear that the relevant part in terms of the errors
of models versus observations is not the bias but the way the
variability is represented, instead. The HF radar data’s lead-
ing EOF (observational data, actually) is closer to the one
from in situ observations, as could be expected since both
cases represent observational (in situ versus remote) estima-
tions of currents. In this case, the ellipses clearly show not
only the difference in the orientation of the EOFs but also the
underestimation of the variability present both in radar data
and especially in the case of model data. As in the previous
case, the legend in the lower-right corner shows unscaled to-
tal RMSEs.

4.3 Vertically integrated water vapour transport

The Sailor diagram for the vertically integrated water vapour
transport can be seen in Fig. 6 (panel b). In this case, the
errors associated with the bias are smaller than the error as-
sociated with the covariance. However, since the errors in the
anomalies are not very large, the visibility of the diagram has
been increased by plotting all of the ellipses on top of the ob-
servational point (centred diagram). In this way, the errors in
direction can be easily identified. For clarity, the ellipses are
again scaled with a scale factor of 0.1. It can be seen that the
estimation of the EOFs is closer in the case of the simulation
with data assimilation, both in direction and, particularly, in
the amount of variance represented since WRF N and ERAI
slightly overestimate the water vapour fluxes.

A selection of the tabular results corresponding to the
RMSE between observed and modelled vertically integrated
water vapour transport is presented in Table 2. Different as-
pects of the main principal axes such as their semi-major and
semi-minor axes, their relative rotation, the two-dimensional
correlation coefficient, and the combined RMSE can be read-
ily analysed for the water vapour transport vectors. The two-
dimensional correlation coefficient R2 and the RMSE are
better for WRF D than for the other models. There is good
agreement in the overall orientation of the leading EOF for
all datasets, with the bias being smallest for ERAI.

4.4 Spatial distribution of seasonally averaged surface
wind

As an example of the potential uses of the Sailor diagram,
Fig. 7 (panel a) represents in an uncentred version of the
Sailor diagram the agreement of the January-averaged North-
ern Hemisphere surface wind from different reanalyses using
a scale factor of 0.15. In order to show that the use of different
linestyles and colours can lead to diagrams which can be bet-
ter interpreted, panel (a) is presented with different linestyles.
On the other side, Fig. 7 (panel b) shows the agreement of the
January-averaged Northern Hemisphere surface wind from
different reanalyses using a scale factor of 0.15 in a centred
version of the Sailor diagram. In these cases, we are assum-
ing that ERA5 corresponds to the “perfect” dataset (obser-
vations). The selection of a reanalysis as a perfect model is
quite arbitrary, but we are performing this comparison for the
sake of showing the ability of the Sailor diagram to evaluate
spatial fields as was done in the initial design of the Tay-
lor diagram. In panel (b), a black-and-white version of the
diagram is used, to show that it can also be used without dif-
ferent colours if the linestyle and character used for the ref-
erence points are changed. In the black-and-white version,
a centred version of the diagram is used. Since all the el-
lipses corresponding to the different models are plotted on
top of the observational average point, the number of ellipses
to be used is smaller and the diagram better reflects the di-
rectionality problems and the under- or overestimations of
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Figure 6. Sailor diagram representing the structure of errors between HF radar estimations of currents (rad) and model results (mod) with
variances corresponding to EOFs scaled with a scale factor of 4 (a). Sailor diagram derived from vertically integrated water vapour trans-
port (b) with a scale factor of 0.1.

Table 2. Agreement of simulations by different models with observed vertically integrated water vapour transport from soundings. σx and
σy represent the semi-major and semi-minor axes of the ellipses (kg m−1 s−1). The R2 column represents the value of the two-dimensional
correlation coefficient following Crosby et al. (1993) (R2

= 2 for a perfect model). The differences between the datasets described by the
bias |U−V| (kg m−1 s−1) and total root mean squared error (kg m−1 s−1) are also shown. Finally, the eccentricity of the ellipses (ε) and the
congruence coefficient g11 of the EOF1 of every model with the one derived from observations are also shown. The congruence coefficient
g11 represents the absolute value of the cosine of the relative rotation of model ellipses with respect to the observational one (Sect. 3.2).

Model σx σy R2
|U−V| RMSE ε g11

1 OBS 183.45 107.83 0.81
2 WRF N 195.53 118.21 1.57 15.41 261.98 0.80 0.99
3 WRF D 173.47 100.19 1.94 5.65 257.53 0.82 1.00
4 ERAI 196.99 111.18 1.92 4.69 272.94 0.83 1.00

variances with fewer lines. It is clearly shown that the re-
analyses produced by the ECMWF (ERA5 and ERAI) show
the closest agreement in terms of both the smallest bias and
better matching of the corresponding EOFs. The other re-
analyses (CFSRv2, MERRA2 and NNRA) group along the
same semi-major axis, but they overestimate the variability
when compared with ERA5. In terms of the bias as well,
it can be seen that the lowest bias is the one corresponding
to ERAI. The easiest way to arrive at a numerically precise
overall diagnostic is presented in the legend, where the ag-
gregated RMSE is shown.

4.5 Application to multimodel ensembles

In this case, we propose defining the average of all the M
ensemble members of every model as the vector V (Rougier,
2016). On the other side, the principal components and the
associated variances and eigenvectors can be estimated from

an extended data matrix Ve (with dimensions NM × 2),
which is built by joining all the realizations together in a sin-
gle dataset. This means that the observational matrix U must
also be extended to a Ue matrix (sized NM × 2). This can
be done by repeating the observations M times to produce
the Ue dataset. This ensures that the algorithm will work be-
cause the covariance matrices involved will still be of full
rank. However, it has to be considered that, in this case, the
number of effective degrees of freedom (Bretherton et al.,
1999) in both Ue and V datasets will not be the same. This
would also be a problem for different models Vi and Vj if
the number of members in their ensembles are not the same,
such as in the CMIP set of runs, for instance.

As shown in Fig. 8 (panel a), prepared using a scale fac-
tor of 0.2, the Sailor diagram shows interesting features. The
three models studied agree quite well in the simulation of
the spatial variability of the field (the EOFs and major/minor
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Figure 7. Sailor diagram representing the structure of errors in surface wind in January over the Northern Hemisphere for different reanalyses:
uncentred version (a, scale factor 0.15) and centred version (b, scale factor 0.15).

Figure 8. Sailor diagram representing the agreement between the Southern Hemisphere wind field as simulated by three models from the
CMIP5 repository with ERA5 data when the reference dataset is repeated in an extended matrix. An uncentred version of the diagram (a) is
compared with a centred version of the diagram (b).

axes in the ellipse represent the spatial variability of the
field). The direction of the EOFs in this case do not rep-
resent the physical direction of wind in the hemisphere but
the orientation of the leading EOFs. That is, the main axis
of spatial variability in the zonal and meridional directions
over the hemisphere (in this case, the diagram represents a
time-mean-averaged field in a T mode EOF decomposition).
The analysis of the biases shows that both MIROC and IPSL

models underestimate zonal average winds when compared
with ERA5, whilst HadGEM2-ES shows a slightly higher
zonal mean wind. This information can be obtained from the
structure of the biases alone. The zonal component of the
mean winds, as represented by points (square for the refer-
ence), is close to zero for MIROC and IPSL, but it is posi-
tive for ERA5 and HadGEM2-ES. Conversely, MIROC tends
to overestimate the mean meridional circulation (red point
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Figure 9. Sailor diagram representing the agreement between the Southern Hemisphere wind field as simulated by three models from the
CMIP5 repository with ERA5 data when the reference dataset is repeated in an extended matrix (a) or when the individual realizations of the
ensemble are taken as independent datasets (b).

placed higher than ERA5), and HadGEM2-ES (green point)
and IPSL (blue point) underestimate it. In order to show a
clearer picture, Fig. 8 (panel b) presents a centred version of
the Sailor diagram. The use of centring adds an interesting
degree of freedom for the user to enhance the visibility of
different aspects of the diagram such as the rotation of the
EOFs. For centred diagrams, the ellipses are drawn on top of
the mean hemispheric wind. Thus, only one instance of the
observational ellipse is plotted. The analysis of the position
of the average points leads to the same conclusions regard-
ing the biases as before. Panel (b) in Fig. 8 shows that cli-
mate models slightly underestimate the spatial variations of
the Southern Hemisphere winds (their semi-major and semi-
minor axes are shorter). However, the leading EOF of the
spatial variability is very close in all models, as should be
expected from the horizontal structure of long-term winds
(trades in tropical regions, westerlies in the extratropics).
These features are properly simulated by climate models for
the long-term average fields.

The second option for ensembles (same scale factor) is
shown in Fig. 9 (panel a). It consists of the use of every single
realization of the ensemble as a single model. This case is not
of a great scientific interest, but we are presenting it in order
to show the behaviour of the diagram with a high number of
models (15 realizations in this case). The diagram leads to a
neat comparison of the relative performance of the different
members of the ensemble. This information might be inter-
esting because of scientific reasons such as that the initial-
ization of the members of the ensemble uses different tech-
niques which need testing, for instance. In the case shown,
the conclusion is quite clear: the averaged bias is relatively

independent of the realization, and the averages correspond-
ing to every model tend to cluster at the same position with
very low biases. The inter-model variability is very low, as
could be expected from long-term (27 years) time-averaged
fields from climate models. Besides that, the intra-ensemble
variance of properties such as the spatial variability of the
field is also quite low so that the ellipses derived from differ-
ent realizations in the same model almost completely over-
lap. Thus, in the analysis performed here, all the realizations
of every model in the ensemble are very close to the reference
dataset. In order to illustrate the possibility of playing with an
additional degree of freedom (scale parameter), panel (b) of
Fig. 9 represents the same ellipse with a very small scale fac-
tor. It can be seen that all the realizations by HadGEM2-ES
are still more or less on top of each other, whilst the ellipses
drawn for the realizations from other models start to sepa-
rate. However, even in this extreme case, the analysis of the
directionality of the leading EOF for 15 realizations is still
possible since every ellipse can be compared with the refer-
ence one corresponding to observations. The legend showing
the RMSE supports the conclusion that both the inter-model
and intra-model variabilities are very low, as can be expected
from a long-term (27 year) averaged hemispheric wind.

The final decision on the use of one approach (Fig. 8) or
the other (Fig. 9) for the analysis of ensemble integrations is
open to the reader since one or the other will be used by ex-
perts to answer different questions, such as whether the inter-
nal variability of the ensemble (in terms of bias and principal
directions) is high or low. This might be important in some
cases such as operational forecasting but not in others, such
as long-term averaged spatial fields.
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5 Conclusions

A new diagram for the fast evaluation of the quality of mod-
els forecasting two-dimensional vector fields or time series
has been presented. As Taylor (2001) properly stated in his
seminal paper, a new diagram will only be accepted by users
if it helps in the fast and efficient intercomparison of model
results against observational datasets. The authors of this pa-
per developed the Sailor diagram in order to fill a gap that
we detected when comparing two or more vector fields in our
own work. In our previous papers in which we worked with
vector fields (Ibarra-Berastegi et al., 2015, 2016), we solved
this problem by duplicating the Taylor diagram once for each
component. The Sailor diagram merges the same information
and allows a straightforward visual comparison while rigor-
ously providing the numeric values of the RMSE. It provides
additional diagnostics which allow a complete analysis of the
errors in the simulated directions too.

The authors hope that the results presented so far demon-
strate that the Sailor diagram achieves that goal. First, the di-
agram relies on the partition of the two-dimensional RMSE
in its bias and covariance parts. Those two terms are pre-
sented in the diagram separately. Thus, those two compo-
nents of the error can be easily identified for the different
datasets. Second, the covariance part is decomposed in terms
of the corresponding principal components (empirical or-
thogonal functions). The structure of the covariance matrix
of models and observations can also be effectively compared
in the presented diagram, both in terms of the length of their
semi-axes (fraction of variance) and in the relative rotation of
every model against the reference dataset. This allows us to
easily identify in the diagram if the models under- or overes-
timate the variance along any of the main axes and whether
the main directions of variability in models and observations
are relatively rotated or not. Thus, both two-dimensional bias
and covariance can be visually identified from the diagram.
Since the decomposition of the horizontal vector field is per-
formed by means of two EOFs, there is not a loss in the vari-
ance of the observed or simulated datasets which are being
compared.

The diagram might provide inaccurate estimations of the
relative rotations of the principal axes of the distribution of
vector components in cases in which both eigenvalues were
degenerated and the eigenvectors were affected by substan-
tial sampling uncertainty. In any case, through a diagnostic
produced by the package we provide, the eccentricity of the
ellipses, Eq. (13) can be used to detect this risk. Nevertheless,
even if the eigenvalues were degenerated, the final classifica-
tion of models is performed in terms of the RMSE, which is
a measure of error that is not affected by this degeneracy.

The diagram is easily customizable in order to increase
the ability to identify features of the datasets being verified
by means of the use of scale factors for the ellipses (compare
both panels in Fig. 5). The diagram can also be customizable
by centring all of the ellipses on top of the average corre-

sponding to the reference dataset instead of plotting all of
them on top of every model being used. Thus, researchers
can design a diagram that best suits their needs. In any case,
if the number of models being tested is very high, many lines
will appear, which will make it difficult to interpret uncen-
tred diagrams. Thus, the option to separately use centred or
uncentred diagrams and different scale factors allows us to
customize the diagram to increase the ability to discriminate
between similar biases (use smaller scale factors) or rotation
angles (use centred diagrams). In any case, the error scores
provided by our implementation (total RMSE, rotation an-
gle, fractions of variance, R2 and many others), as described
in Sect. 3, can also be used in tabular form for a pre-screening
of the multimodel dataset. Then, as a final step, only the most
interesting models might be presented. Thus, the combina-
tion of centring and scaling strategies and tabular indices as
described in Sect. 4 will lead to an effective verification of
vector fields.

The analysis of ensembles can also be performed by means
of the diagram. As shown in Sect. 4.5, the diagram can ac-
commodate this case by using two different policies. In the
first case, all the M members of the ensemble belonging to
a single model can be mixed in a unique dataset, but this in-
volves repeating the block of observations M times (Fig. 8).
This implies that the analysis of the results presented in the
diagram in this case must consider the different number of
effective degrees of freedom very carefully, and further re-
search should be performed to analyse the impact of this
in the application of the Sailor diagram to model ensem-
bles. However, in the second case, all the ensemble members
are analysed as independent realizations of the same dataset
(Fig. 9). This tends to clutter the diagram, but these results
are not affected by problems related to the number of effec-
tive degrees of freedom in the different datasets used to build
the diagram. The decision on the use of one or the other de-
pends on the application intended by the user.

As a conclusion, we hope that the diagram presented here,
together with an R implementation of it freely available in
CRAN, will ease the verification of vector fields derived from
geoscientific models in the future.

Code and data availability. The code used to prepare the figures
in this paper is described in the examples of the manual of the R
package SailoR available from CRAN https://cran.r-project.org/
package=SailoR (last access: 5 July 2020). The data used to pro-
duce these figures are also distributed with the package. The version
of the package used to prepare the figures in this paper can be found
at https://doi.org/10.5281/zenodo.3543716 (Sáenz et al., 2019b).
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