Articles | Volume 12, issue 8
Geosci. Model Dev., 12, 3725–3743, 2019
https://doi.org/10.5194/gmd-12-3725-2019
Geosci. Model Dev., 12, 3725–3743, 2019
https://doi.org/10.5194/gmd-12-3725-2019

Model evaluation paper 26 Aug 2019

Model evaluation paper | 26 Aug 2019

Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1

Allison C. Michaelis et al.

Related subject area

Climate and Earth System Modeling
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021,https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021,https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021,https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021,https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021,https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary

Cited articles

Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014. 
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the convection-resolving regional climate modeling approach in decade long simulations, J. Geophys. Res-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. 
Bell, R., Strachan, J., Vidale, P. L., Hodges, K., and Roberts, M.: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model, J. Climate, 26, 7966–7980, https://doi.org/10.1175/JCLI-D-12-00749.1, 2013. 
Booth, J. F., Thompson, L., Patoux, J., and Kelly, K. A.: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream, Mon. Weather Rev., 140, 1241–1256, https://doi.org/10.1175/MWR-D-11-00195.1, 2012. 
Brayshaw, D. J., Hoskins, B., and Blackburn, M.: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography, J. Atmos. Sci., 66, 2539–2558, https://doi.org/10.1175/2009JAS3078.1, 2009. 
Download
Short summary
We present a novel set of atmospheric simulations designed to address changes in high-impact weather events. We simulate 10 years under current and projected late 21st century climate conditions. Our model reasonably replicates present-day climate features, reproduces features of climate change that are expected from global climate models, and captures smaller-scale, high-impact weather events. We anticipate these simulations will have great value in understanding changes in extreme weather.