Articles | Volume 11, issue 12
https://doi.org/10.5194/gmd-11-4873-2018
https://doi.org/10.5194/gmd-11-4873-2018
Model evaluation paper
 | 
06 Dec 2018
Model evaluation paper |  | 06 Dec 2018

Global sensitivity analysis of parameter uncertainty in landscape evolution models

Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock

Related authors

Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David J. Milan, Robert E. Thomas, and Daniel R. Parsons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2132,https://doi.org/10.5194/egusphere-2024-2132, 2024
Short summary
Testing the sensitivity of the CAESAR-Lisflood landscape evolution model to grid cell size
Christopher J. Skinner and Thomas J. Coulthard
Earth Surf. Dynam., 11, 695–711, https://doi.org/10.5194/esurf-11-695-2023,https://doi.org/10.5194/esurf-11-695-2023, 2023
Short summary
Flash Flood!: a SeriousGeoGames activity combining science festivals, video games, and virtual reality with research data for communicating flood risk and geomorphology
Chris Skinner
Geosci. Commun., 3, 1–17, https://doi.org/10.5194/gc-3-1-2020,https://doi.org/10.5194/gc-3-1-2020, 2020
Short summary
Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020,https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Taking a Breath of the Wild: are geoscientists more effective than non-geoscientists in determining whether video game world landscapes are realistic?
Rolf Hut, Casper Albers, Sam Illingworth, and Chris Skinner
Geosci. Commun., 2, 117–124, https://doi.org/10.5194/gc-2-117-2019,https://doi.org/10.5194/gc-2-117-2019, 2019
Short summary

Related subject area

Numerical methods
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A Joint Reconstruction and Model Selection Approach for Large Scale Inverse Modeling
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot Miller, and Arvind Saibaba
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-90,https://doi.org/10.5194/gmd-2024-90, 2024
Revised manuscript accepted for GMD
Short summary

Cited articles

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017.
Andersen, J. L., Egholm, D. L., Knudsen, M. F., Jansen, J. D., and Nielsen, S. B.: The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep, Earth Surf. Dynam., 3, 447–462, https://doi.org/10.5194/esurf-3-447-2015, 2015.
Armitage, J. J., Whittaker, A. C., Zakari, M., and Campforts, B.: Numerical modelling of landscape and sediment flux response to precipitation rate change, Earth Surf. Dynam., 6, 77–99, https://doi.org/10.5194/esurf-6-77-2018, 2018.
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., and Roberts, G. P.: Modelling fluvial incision and transient landscape evolution: Influence of dynamic Channel adjustment, J. Geophys. Res.-Earth, 113, 1–16, https://doi.org/10.1029/2007JF000893, 2008.
Download
Short summary
Landscape evolution models are computer models used to understand how the Earth’s surface changes over time. Although designed to look at broad changes over very long time periods, they could potentially be used to predict smaller changes over shorter periods. However, to do this we need to better understand how the models respond to changes in their set-up – i.e. their behaviour. This work presents a method which can be applied to these models in order to better understand their behaviour.