Articles | Volume 11, issue 10
https://doi.org/10.5194/gmd-11-4085-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-4085-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and evaluation of a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0
Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, USA
William J. Riley
Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, USA
Glenn E. Hammond
Applied Systems Analysis and Research Department, Sandia National Laboratories, Albuquerque, NM 87185-0747, USA
David M. Lorenzetti
Sustainable Energy Systems Group, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, USA
Related authors
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025, https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
Short summary
Flow depth and velocity determine various river functions, but their high-resolution simulations are expensive. Here, we developed a downscaling approach that can provide fast and accurate estimation of high-resolution river hydrodynamics. The 84-fold acceleration achieved by the method makes reliable flood risk analysis that needs hundreds or thousands of model runs feasible. More importantly, it provides an opportunity to couple large-scale hydrodynamics with local processes in river models.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025, https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
Short summary
Flow depth and velocity determine various river functions, but their high-resolution simulations are expensive. Here, we developed a downscaling approach that can provide fast and accurate estimation of high-resolution river hydrodynamics. The 84-fold acceleration achieved by the method makes reliable flood risk analysis that needs hundreds or thousands of model runs feasible. More importantly, it provides an opportunity to couple large-scale hydrodynamics with local processes in river models.
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Elsa Abs, Christoph Keuschnig, Pierre Amato, Chris Bowler, Eric Capo, Alexander Chase, Luciana Chavez Rodriguez, Abraham Dabengwa, Thomas Dussarrat, Thomas Guzman, Linnea Honeker, Jenni Hultman, Kirsten Küsel, Zhen Li, Anna Mankowski, William Riley, Scott Saleska, and Lisa Wingate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1716, https://doi.org/10.5194/egusphere-2025-1716, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Meta-omics technologies offer new tools to understand how microbial and plant functional diversity shape biogeochemical cycles across ecosystems. This perspective explores how integrating omics data with ecological and modeling approaches can improve our understanding of greenhouse gas fluxes and nutrient dynamics, from soils to clouds, and from the past to the future. We highlight challenges and opportunities for scaling omics insights from local processes to Earth system models.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023, https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Cited articles
Alkhaier, F., Flerchinger, G. N., and Su, Z.: Shallow groundwater effect on
land surface temperature and surface energy balance under bare soil
conditions: modeling and description, Hydrol. Earth Syst. Sci., 16,
1817–1831, https://doi.org/10.5194/hess-16-1817-2012, 2012.
Alley, W. M.: Ground Water and Climate, Ground Water, 39, 161–161,
2001.
Amenu, G. G. and Kumar, P.: A model for hydraulic redistribution
incorporating coupled soil-root moisture transport, Hydrol. Earth Syst.
Sci., 12, 55–74, https://doi.org/10.5194/hess-12-55-2008, 2008.
Anyah, R. O., Weaver, C. P., Miguez-Macho, G., Fan, Y., and Robock,
A.: Incorporating water table dynamics in climate modeling: 3. Simulated
groundwater influence on coupled land-atmosphere variability, J.
Geophys. Res.-Atmos., 113, D07103, https://doi.org/10.1029/2007JD009087, 2008.
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D.,
Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., Zampini, S., Zhang,
H., and Zhang, H.: PETSc Users Manual, Argonne National LaboratoryANL-95/11
– Revision, 3.7, 1–241 pp., 2016.
Banks, E. W., Brunner, P., and Simmons, C. T.: Vegetation controls
on variably saturated processes between surface water and groundwater and
their impact on the state of connection, Water Resour. Res., 47,
W11517, https://doi.org/10.1029/2011WR010544, 2011.
Bense, V. F., Kooi, H., Ferguson, G., and Read, T.: Permafrost
degradation as a control on hydrogeological regime shifts in a warming
climate, J. Geophys. Res.-Earth Surf., 117, F03036, https://doi.org/10.1029/2011JF002143, 2012.
Bernhardt, M., Schulz, K., Liston, G. E., and Zängl, G.: The
influence of lateral snow redistribution processes on snow melt and
sublimation in alpine regions, J. Hydrol., 424–425, 196–206,
2012.
Beven, K. J. and Kirkby, M. J.: A physically based, variable
contributing area model of basin hydrology/Un modèle à base
physique de zone d'appel variable de l'hydrologie du bassin versant,
Hydrol. Sci. Bull., 24, 43–69, 1979.
Bisht, G., Huang, M., Zhou, T., Chen, X., Dai, H., Hammond, G. E.,
Riley, W. J., Downs, J. L., Liu, Y., and Zachara, J. M.: Coupling a
three-dimensional subsurface flow and transport model with a land
surface model to simulate stream-aquifer-land interactions (CP v1.0),
Geosci. Model Dev., 10, 4539–4562, https://doi.org/10.5194/gmd-10-4539-2017, 2017.
Bisht, G., Riley, W. J., Wainwright, H. M., Dafflon, B., Yuan, F., and
Romanovsky, V. E.: Impacts of microtopographic snow redistribution and
lateral subsurface processes on hydrologic and thermal states in an Arctic
polygonal ground ecosystem: a case study using ELM-3D v1.0, Geosci. Model
Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, 2018.
Bohrer, G., Mourad, H., Laursen, T. A., Drewry, D., Avissar, R.,
Poggi, D., Oren, R., and Katul, G. G.: Finite element tree crown
hydrodynamics model (FETCH) using porous media flow within branching
elements: A new representation of tree hydrodynamics, Water Resour.
Res., 41, W11404, https://doi.org/10.1029/2005WR004181, 2005.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous
media, Colorado State University, Fort Collins, CO, 1964.
Brown, J., Knepley, M. G., May, D. A., McInnes, L. C., and Smith, B.:
Composable Linear Solvers for Multiphysics, 2012 11th International
Symposium on Parallel and Distributed Computing, Munich,
55–62, https://doi.org/10.1109/ISPDC.2012.16, 2012.
Brunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg,
P., Lawrence, D. M., Leung, L. R., Niu, G.-Y., Troch, P. A., and Zeng, X.:
Implementing and Evaluating Variable Soil Thickness in the Community Land
Model, Version 4.5 (CLM4.5), J. Climate, 29, 3441–3461, 2016.
Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general
mass-conservative numerical solution for the unsaturated flow equation,
Water Resour. Res., 26, 1483–1496, 1990.
Chen, J. and Kumar, P.: Topographic Influence on the Seasonal and
Interannual Variation of Water and Energy Balance of Basins in North
America, J. Climate, 14, 1989–2014, 2001.
Chen, Y., Chen, Y., Xu, C., Ye, Z., Li, Z., Zhu, C., and Ma, X.:
Effects of ecological water conveyance on groundwater dynamics and riparian
vegetation in the lower reaches of Tarim River, China, Hydrol.
Process., 24, 170–177, 2010.
Chen, X. and Hu, Q.: Groundwater influences on soil moisture and
surface evaporation, J. Hydrol., 297, 285–300, 2004.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some
soil hydraulic properties, Water Resour. Res., 14, 601–604, 1978.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D.,
Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S.,
Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.: Improving the
representation of hydrologic processes in Earth System Models, Water
Resour. Res., 51, 5929–5956, 2015.
Collier, N., Hoffman, F. M., Lawwrence, D. M., Keppel-Aleks, G.,
Koven, C. D., Riley, W. J., Mu, M., and Randerson, J. T.: The International
Land 1 Model Benchmarking (ILAMB) System: Design, Theory, and
Implementation, J. Adv. Model. Earth Syst., in review, 2018.
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J.
Hydrometeorol., 3, 660–687, 2002.
Dams, J., Woldeamlak, S. T., and Batelaan, O.: Predicting land-use change and
its impact on the groundwater system of the Kleine Nete catchment, Belgium,
Hydrol. Earth Syst. Sci., 12, 1369–1385,
https://doi.org/10.5194/hess-12-1369-2008, 2008.
Dennis, J. M., Vertenstein, M., Worley, P. H., Mirin, A. A., Craig,
A. P., Jacob, R., and Mickelson, S.: Computational performance of
ultra-high-resolution capability in the Community Earth System Model, The
Int. J. High Perform. Comput. Appl., 26, 5–16,
2012.
E3SM Project: DOE, Energy Exascale Earth System Model,
Computer Software, available at: https://github.com/E3SM-Project/E3SM.git,
last access: 23 April 2018.
Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R., and Robock, A.:
Incorporating water table dynamics in climate modeling: 1. Water table
observations and equilibrium water table simulations, J. Geophys.
Res.-Atmos., 112, D10125, https://doi.org/10.1029/2006JD008111, 2007.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of
Groundwater Table Depth, Science, 339, 940–943, 2013.
Farthing, M. W., Kees, C. E., and Miller, C. T.: Mixed finite
element methods and higher order temporal approximations for variably
saturated groundwater flow, Adv. Water Resour., 26, 373–394, 2003.
Ferguson, I. M. and Maxwell, R. M.: Human impacts on terrestrial
hydrology: climate change versus pumping and irrigation, Environ.
Res. Lett., 7, 044022, https://doi.org/10.1088/1748-9326/7/4/044022, 2012.
Frampton, A., Painter, S., Lyon, S. W., and Destouni, G.:
Non-isothermal, three-phase simulations of near-surface flows in a model
permafrost system under seasonal variability and climate change, J.
Hydrol., 403, 352–359, 2011.
Ghimire, B., Riley, W. J., Koven, C. D., Mu, M., and Randerson, J.
T.: Representing leaf and root physiological traits in CLM improves global
carbon and nitrogen cycling predictions, J. Adv. Model.
Earth Syst., 8, 598–613, 2016.
Grant, R. F., Humphreys, E. R., and Lafleur, P. M.: Ecosystem CO2
and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse
Arctic landscape: 1. Modeling versus measurements, J. Geophys.
Res.-Biogeosci., 120, 1366–1387, 2015.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Wainwright, H. M.,
Graham, D., and Torn, M. S.: Mathematical Modelling of Arctic Polygonal
Tundra with Ecosys: 1. Microtopography Determines How Active Layer Depths
Respond to Changes in Temperature and Precipitation, J. Geophys.
Res.-Biogeosci., 122, 3161–3173, 2017.
Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M.,
Hiscock, K. M., Treidel, H., and Aureli, A.: Beneath the surface of global
change: Impacts of climate change on groundwater, J. Hydrol., 405,
532–560, 2011.
Gutmann, E. D. and Small, E. E.: The effect of soil hydraulic
properties vs. soil texture in land surface models, Geophys. Res.
Lett., 32, L02402, https://doi.org/10.1029/2004GL021843, 2005.
Hammond, G. E. and Lichtner, P. C.: Field-scale model for the
natural attenuation of uranium at the Hanford 300 Area using
high-performance computing, Water Resour. Res., 46,
W09527, https://doi.org/10.1029/2009WR008819, 2010.
Hilberts, A. G. J., Troch, P. A., and Paniconi, C.:
Storage-dependent drainable porosity for complex hillslopes, Water Resour.
Res., 41, W06001, https://doi.org/10.1029/2004WR003725, 2005.
Hoffman, F. M., Koven, C. D., Keppel-Aleks, G., Lawrence, D. M.,
Riley, W. J., Randerson, J. T., Ahlstrom, A., Abramowitz, G., Baldocchi, D.
D., Best, M. J., Bond-Lamberty, B., Kauwe, M. G. D.,
Denning, A. S., Desai, A. R., Eyring, V., Fisher, J. B., Fisher, R. A.,
Gleckler, P. J., Huang, M., Hugelius, G., Jain, A. K., Kiang, N. Y., Kim,
H., Koster, R. D., Kumar, S. V., Li, H., Luo, Y., Mao, J., McDowell, N. G.,
Mishra, U., Moorcroft, P. R., Pau, G. S. H., Ricciuto, D. M., Schaefer, K.,
Schwalm, C. R., Serbin, S. P., Shevliakova, E., Slater, A. G., Tang, J.,
Williams, M., Xia, J., Xu, C., Joseph, R., and Koch, D.: International Land
Model Benchmarking (ILAMB) 2016 Workshop Report, U.S. Department of Energy,
Office of Science, 159 pp., 2017.
Hou, Z., Huang, M., Leung, L. R., Lin, G., and Ricciuto, D. M.:
Sensitivity of surface flux simulations to hydrologic parameters based on an
uncertainty quantification framework applied to the Community Land Model,
J. Geophys. Res.-Atmos., 117, D15108, https://doi.org/10.1029/2012JD017521, 2012.
Hwang, T., Band, L. E., Vose, J. M., and Tague, C.: Ecosystem
processes at the watershed scale: Hydrologic vegetation gradient as an
indicator for lateral hydrologic connectivity of headwater catchments, Water
Resour. Res., 48, W06514, https://doi.org/10.1029/2011WR011301, 2012.
Ji, P., Yuan, X., and Liang, X.-Z.: Do Lateral Flows Matter for the
Hyperresolution Land Surface Modeling?, J. Geophys. Res.-Atmos.,
12077–12092, https://doi.org/10.1002/2017JD027366, 2017.
Jiang, X., Niu, G.-Y., and Yang, Z.-L.: Impacts of vegetation and
groundwater dynamics on warm season precipitation over the Central United
States, J. Geophys. Res.-Atmos., 114, D06109, https://doi.org/10.1029/2008JD010756, 2009.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling
of FLUXNET eddy covariance observations: validation of a model tree ensemble
approach using a biosphere model, Biogeosciences, 6, 2001–2013,
https://doi.org/10.5194/bg-6-2001-2009, 2009.
Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and
Outcalt, S. I.: Non-conductive heat transfer associated with frozen soils,
Global Planet. Change, 29, 275–292, 2001.
Kees, C. E. and Miller, C. T.: Higher order time integration methods
for two-phase flow, Adv. Water Resour., 25, 159–177, 2002.
Kim, H., Yeh, P. J. F., Oki, T., and Kanae, S.: Role of rivers in
the seasonal variations of terrestrial water storage over global basins,
Geophys. Res. Lett., 36, L17402, https://doi.org/10.1029/2009GL039006, 2009.
Kollet, S. J. and Maxwell, R. M.: Capturing the influence of
groundwater dynamics on land surface processes using an integrated,
distributed watershed model, Water Resour. Res., 44, W02402,
https://doi.org/10.1029/2007WR006004, 2008.
Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., and
Kumar, P.: A catchment-based approach to modeling land surface processes in
a general circulation model: 1. Model structure, J. Geophys.
Res.-Atmos., 105, 24809–24822, 2000.
Kundzewicz, Z. W. and Doli, P.: Will groundwater ease freshwater
stress under climate change?, Hydrol. Sci. J., 54, 665–675,
2009.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth,
A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem
exchange into assimilation and respiration using a light response curve
approach: critical issues and global evaluation, Global Change Biol., 16,
187–208, 2010.
Leng, G., Huang, M., Tang, Q., and Leung, L. R.: A modeling study of
irrigation effects on global surface water and groundwater resources under a
changing climate, J. Adv. Model. Earth Syst., 7,
1285–1304, 2015.
Leng, G., Leung, L. R., and Huang, M.: Significant impacts of
irrigation water sources and methods on modeling irrigation effects in the
ACMELand Model, J. Adv. Model. Earth Syst., 9, 1665–1683,
2017.
Leung, L. R., Huang, M., Qian, Y., and Liang, X.:
Climate–soil–vegetation control on groundwater table dynamics and its
feedbacks in a climate model, Clim. Dynam., 36, 57–81, 2011.
Levine, J. B. and Salvucci, G. D.: Equilibrium analysis of
groundwater–vadose zone interactions and the resulting spatial distribution
of hydrologic fluxes across a Canadian Prairie, Water Resour. Res.,
35, 1369–1383, 1999.
Liang, X., Xie, Z., and Huang, M.: A new parameterization for
surface and groundwater interactions and its impact on water budgets with
the variable infiltration capacity (VIC) land surface model, J.
Geophys. Res.-Atmos., 108, 8613, https://doi.org/10.1029/2002JD003090, 2003.
Lohse, K. A., Brooks, P. D., McIntosh, J. C., Meixner, T., and
Huxman3, T. E.: Interactions Between Biogeochemistry and Hydrologic Systems,
Ann. Rev. Environ. Resour., 34, 65–96, 2009.
Manoli, G., Bonetti, S., Domec, J.-C., Putti, M., Katul, G., and
Marani, M.: Tree root systems competing for soil moisture in a 3D
soil–plant model, Adv. Water Resour., 66, 32–42, 2014.
Marvel, K., Biasutti, M., Bonfils, C., Taylor, K. E., Kushnir, Y.,
and Cook, B. I.: Observed and Projected Changes to the Precipitation Annual
Cycle, J. Climate, 30, 4983–4995, 2017.
Maxwell, R. M. and Miller, N. L.: Development of a Coupled Land
Surface and Groundwater Model, J. Hydrometeorol., 6, 233–247,
2005.
McDowell, N. G. and Allen, C. D.: Darcy's law predicts widespread
forest mortality under climate warming, Nat. Clim. Change, 5, 669–672,
2015.
Miguez-Macho, G., Fan, Y., Weaver, C. P., Walko, R., and Robock, A.:
Incorporating water table dynamics in climate modeling: 2. Formulation,
validation, and soil moisture simulation, J. Geophys. Res.-Atmos.,
112, D13108, https://doi.org/10.1029/2006JD008112, 2007.
Milly, P. C. D., Malyshev, S. L., Shevliakova, E., Dunne, K. A.,
Findell, K. L., Gleeson, T., Liang, Z., Phillipps, P., Stouffer, R. J., and
Swenson, S.: An Enhanced Model of Land Water and Energy for Global
Hydrologic and Earth-System Studies, J. Hydrometeorol., 15,
1739–1761, 2014.
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522, 1976.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E.: A
simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global
climate models, J. Geophys. Res.-Atmos., 110, D21106, https://doi.org/10.1029/2005JD006111,
2005.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su,
H.: Development of a simple groundwater model for use in climate models and
evaluation with Gravity Recovery and Climate Experiment data, J.
Geophys. Res.-Atmos., 112, D07103, https://doi.org/10.1029/2006JD007522, 2007.
Niu, J., Shen, C., Chambers, J. Q., Melack, J. M., and Riley, W. J.:
Interannual Variation in Hydrologic Budgets in an Amazonian Watershed with a
Coupled Subsurface–Land Surface Process Model, J. Hydrometeorol.,
18, 2597–2617, 2017.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J.-F., Lawrence, P. J.,
Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y.,
Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the Community Land
Model (CLM), National Center for Atmospheric Research, Boulder, CO, 422 pp.,
2013.
Pacific, V. J., McGlynn, B. L., Riveros-Iregui, D. A., Welsch, D.
L., and Epstein, H. E.: Landscape structure, groundwater dynamics, and soil
water content influence soil respiration across riparian–hillslope
transitions in the Tenderfoot Creek Experimental Forest, Montana,
Hydrol. Process., 25, 811–827, 2011.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P.
A., Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded
global data set of soil, intact regolith, and sedimentary deposit
thicknesses for regional and global land surface modeling, J.
Adv. Model. Earth Syst., 8, 41–65, 2016.
Petra, D.: Vulnerability to the impact of climate change on
renewable groundwater resources: a global-scale assessment, Environ.
Res. Lett., 4, 035006, https://doi.org/10.1088/1748-9326/4/3/035006, 2009.
Piao, S. L., Ito, A., Li, S. G., Huang, Y., Ciais, P., Wang, X. H., Peng, S.
S., Nan, H. J., Zhao, C., Ahlström, A., Andres, R. J., Chevallier, F., Fang,
J. Y., Hartmann, J., Huntingford, C., Jeong, S., Levis, S., Levy, P. E., Li,
J. S., Lomas, M. R., Mao, J. F., Mayorga, E., Mohammat, A., Muraoka, H.,
Peng, C. H., Peylin, P., Poulter, B., Shen, Z. H., Shi, X., Sitch, S., Tao,
S., Tian, H. Q., Wu, X. P., Xu, M., Yu, G. R., Viovy, N., Zaehle, S., Zeng,
N., and Zhu, B.: The carbon budget of terrestrial ecosystems in East Asia
over the last two decades, Biogeosciences, 9, 3571–3586,
https://doi.org/10.5194/bg-9-3571-2012, 2012.
Pruess, K., Oldenburg, C., and Moridis, G.: TOUGH2 User's Guide,
Version 2.0, Lawrence Berkeley National Laboratory, Berkeley, CALBNL-43134,
1999.
Rihani, J. F., Maxwell, R. M., and Chow, F. K.: Coupling groundwater
and land surface processes: Idealized simulations to identify effects of
terrain and subsurface heterogeneity on land surface energy fluxes, Water
Resour. Res., 46, W12523, https://doi.org/10.1029/2010WR009111, 2010.
Salvucci, G. D. and Entekhabi, D.: Hillslope and Climatic Controls
on Hydrologic Fluxes, Water Resour. Res., 31, 1725–1739, 1995.
Shen, C., Niu, J., and Phanikumar, M. S.: Evaluating controls on
coupled hydrologic and vegetation dynamics in a humid continental climate
watershed using a subsurface-land surface processes model, Water Resour.
Res., 49, 2552–2572, 2013.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P.,
and Portmann, F. T.: Groundwater use for irrigation – a global inventory,
Hydrol. Earth Syst. Sci., 14, 1863–1880,
https://doi.org/10.5194/hess-14-1863-2010, 2010.
Sivapalan, M., Beven, K., and Wood, E. F.: On hydrologic similarity:
2. A scaled model of storm runoff production, Water Resour. Res., 23,
2266–2278, 1987.
Soylu, M. E., Istanbulluoglu, E., Lenters, J. D., and Wang, T.: Quantifying
the impact of groundwater depth on evapotranspiration in a semi-arid
grassland region, Hydrol. Earth Syst. Sci., 15, 787–806,
https://doi.org/10.5194/hess-15-787-2011, 2011.
Sperry, J. S., Adler, F. R., Campbell, G. S., and Comstock, J. P.:
Limitation of plant water use by rhizosphere and xylem conductance: results
from a model, Plant, Cell Environ., 21, 347–359, 1998.
Srivastava, R. and Yeh, T. C. J.: Analytical solutions for
one-dimensional, transient infiltration toward the water table in
homogeneous and layered soils, Water Resour. Res., 27, 753–762, 1991.
Swenson, S. C. and Lawrence, D. M.: Assessing a dry surface
layer-based soil resistance parameterization for the Community Land Model
using GRACE and FLUXNET-MTE data, J. Geophys. Res.-Atmos., 119, 10299–210312, 2014.
Swenson, S. C., Lawrence, D. M., and Lee, H.: Improved simulation of
the terrestrial hydrological cycle in permafrost regions by the Community
Land Model, J. Adv. Model. Earth Syst., 4, M08002, https://doi.org/10.1029/2012MS000165,
2012.
Tanaka, M., Girard, G., Davis, R., Peuto, A., and Bignell, N.:
Recommended table for the density of water between 0 ∘C
and 40 ∘C based on recent experimental reports, Metrologia, 38, 301,
2001.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of
CMIP5 and the Experiment Design, B. Am. Meteorol.
Soc., 93, 485–498, 2012.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R.,
Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., and Edmunds,
M.: Ground water and climate change, Nat. Clim. Change, 3, 322–329,
2013.
Tian, W., Li, X., Cheng, G.-D., Wang, X.-S., and Hu, B. X.: Coupling a
groundwater model with a land surface model to improve water and energy cycle
simulation, Hydrol. Earth Syst. Sci., 16, 4707–4723,
https://doi.org/10.5194/hess-16-4707-2012, 2012.
van Genuchten, M. T.: A Closed-form Equation for Predicting the
Hydraulic Conductivity of Unsaturated Soils1, Soil Sci. Soc.
Am. J., 44, 892–898, 1980.
Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R.,
Lee, T. J., Ojima, D., Sr., R. A. P., Taylor, C., Tague, C., Tremback, C.
J., and Vidale, P. L.: Coupled Atmosphere-Biophysics-Hydrology Models for
Environmental Modeling, J. Appl. Meteorol., 39, 931–944, 2000.
White, M. and Stomp, O. M.: Subsurface transport over multiple
phases; Version 2.0; Theory Guide, Pacific Northwest National Laboratory,
2000.
Yeh, P. J.-F. and Eltahir, E. A. B.: Representation of Water Table
Dynamics in a Land Surface Scheme. Part I: Model Development, J.
Climate, 18, 1861–1880, 2005.
York, J. P., Person, M., Gutowski, W. J., and Winter, T. C.: Putting
aquifers into atmospheric simulation models: an example from the Mill Creek
Watershed, northeastern Kansas, Adv. Water Resour., 25, 221–238,
2002.
Yuan, X., Xie, Z., Zheng, J., Tian, X., and Yang, Z.: Effects of
water table dynamics on regional climate: A case study over east Asian
monsoon area, J. Geophys. Res.-Atmos., 113, D21112, https://doi.org/10.1029/2008JD010180,
2008.
Zektser, I. S. and Evertt, L. G.: Groundwater resources of the world
and their use, United Nations Educational, Scientific and Cultural
Organization7, place de Fontenoy, 75352 Paris 07 SP, 2004.
Zeng, X. and Decker, M.: Improving the Numerical Solution of Soil
Moisture–Based Richards Equation for Land Models with a Deep or Shallow
Water Table, J. Hydrometeorol., 10, 308–319, 2009.
Zhu, Q., Riley, W. J., Tang, J., and Koven, C. D.: Multiple soil
nutrient competition between plants, microbes, and mineral surfaces: model
development, parameterization, and example applications in several tropical
forests, Biogeosciences, 13, 341–363, 2016.
Short summary
Most existing global land surface models used to study impacts of climate change on water resources routinely use different models for near-surface unsaturated soil and the deeper groundwater table. We developed a model that uses a unified treatment of soil hydrologic processes throughout the entire soil column. Using a calibrated drainage parameter, the new model is able to correctly predict deep water table depth as reported in an observationally constrained global dataset.
Most existing global land surface models used to study impacts of climate change on water...