Articles | Volume 10, issue 6
https://doi.org/10.5194/gmd-10-2321-2017
https://doi.org/10.5194/gmd-10-2321-2017
Methods for assessment of models
 | 
23 Jun 2017
Methods for assessment of models |  | 23 Jun 2017

A Bayesian posterior predictive framework for weighting ensemble regional climate models

Yanan Fan, Roman Olson, and Jason P. Evans

Related authors

A Markov chain method for weighting climate model ensembles
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021,https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary

Related subject area

Numerical methods
Stabilized two-phase material point method for hydromechanical coupling problems in solid–fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025,https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
Geosci. Model Dev., 18, 4535–4569, https://doi.org/10.5194/gmd-18-4535-2025,https://doi.org/10.5194/gmd-18-4535-2025, 2025
Short summary
Optimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev., 18, 4273–4291, https://doi.org/10.5194/gmd-18-4273-2025,https://doi.org/10.5194/gmd-18-4273-2025, 2025
Short summary
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary

Cited articles

Bhat, K. S., Haran, M., Terando, A., and Keller, K.: Climate Projections Using Bayesian Model Averaging and Space-Time Dependence, J. Agric. Biol. Envir. S., 16, 606?628, https://doi.org/10.1007/s13253-011-0069-3, 2011.
Buser, C. M., Künsch, H. R., Lüthi, D., Wild, M., and Schär, M. C.: Bayesian multi-model projections of climate: bias assumptions and interannual variability, Clim. Dynam., 33, 849–868, 2010.
Buser, C. M., Künsch, H. R., and Schär, C.: Bayesian multi-model projections of climate: generalization and application to ENSEMBLES results, Climate Res., 44, 227–241, 2010.
Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: the PRUDENCE project, Climatic Change, 81, 1–6, https://doi.org/10.1007/s10584-006-9211-6, 2007.
Cortés-Hernández, V. E., Zheng, F., Evans, J. P., Lambert, M., Sharma, A., and Westra, S.: Evaluating regional climate models for simulating sub-daily rainfall extremes, Clim. Dynam., 47, 1613–1628, https://doi.org/10.1007/s00382-015-2923-4, 2015.
Download
Short summary
We develop a novel and principled Bayesian statistical approach to computing model weights in climate change projection ensembles of regional climate models. The approach accounts for uncertainty in model bias, trend and internal variability. The weights are easily interpretable and the ensemble weighted models are shown to provide the correct coverage and improve upon existing methods in terms of providing narrower confidence intervals for climate change projections.
Share