Di Luca, A., Evans, J. P., Pepler, A., Alexander, L. V., and Argüeso, D.: Australian East Coast Lows in a Regional Climate Model ensemble, Journal of Southern Hemisphere Earth Systems Science, 66, 108–124, 2016.
Di Luca, A., Argüeso, D., Evans, J. P., de Elia, R., and Laprise, R.: Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales, J. Geophys. Res.-Atmos., 121, 1575–1590, https://doi.org/10.1002/2015JD024009, 2016.
Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30, 1371–1386, https://doi.org/10.1016/j.advwatres.2006.11.014, 2007.
Evans, J. P., Fita, L., Argüeso, D., and Liu, Y.: Initial NARCliM Evaluation, in MODSIM2013, 20th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2013, Adelaide, Australia, 2013.
Evans, J. P., Ji, F., Lee, C., Smith, P., Argüeso, D., and Fita, L.: Design of a regional climate modelling projection ensemble experiment – NARCliM, Geosci. Model Dev., 7, 621–629, https://doi.org/10.5194/gmd-7-621-2014, 2014.
Feser, F., Rrockel, B., von Storch, H., Winterfeldt, J., and Zahn, M.: Regional climate models add value to global model data: a review and selected examples, B. Am. Meteorol. Soc., 92, 1181–1192, 2011.
Fischer, A. M., Weigel, A. P., Buser, C. M., Knutti, R., Künsch, H. R., Liniger, M. A., Schär, C., and Appenzeller, C.: Climate change projections for Switzerland based on a Bayesian multi-model approach, Int. J. Climatol., 32, 2348–2371, https://doi.org/10.1002/joc.3396, 2012.
Giorgi, F. and Bates, G. T.: The Climatological Skill of a Regional Model over Complex Terrain, Mon. Weather Rev., 117, 2325–2347, https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2, 1989.
Goes, M., Urban, N. M., Tonkonojenkov, R., Haran, M., Schmittner, A., and Keller, K.: What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic Meridional Overturning Circulation?, J. Geophys. Res.-Oceans, 115, C12006, https://doi.org/10.1029/2010JC006407, 2010.
Grose, M. R., Bhend, J., Argüeso, D., Ekström, M., Dowdy, A., Hoffman, P., Evans, J. P., and Timbal, B.: Comparison of various climate change projections of eastern Australian rainfall, Aust. Meteorol. Oceanogr. J., 65, 72–89, 2015.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors, Stat. Sci., 14, 382–417, https://doi.org/10.1214/ss/1009212519, 1999.
Huttunen, J. M. J., Räiänen, J., Nissinen, A., Lipponen, A., and Kolehmainen, V.: Cross-validation analysis of bias models in Bayesian multi-model projections of climate, Clim. Dynam., 48, 1555–1570, https://doi.org/10.1007/s00382-016-3160-1, 2017.
Ji, F., Evans, J. P., Teng, J., Scorgie, Y., Argüeso, D., Di Luca, A., and Olson, R.: Evaluation of long-term precipitation and temperature WRF simulations for southeast Australia, Clim. Res., 67, 99–115, https://doi.org/10.3354/cr01366, 2016.
Kerkhoff, C., Künsch, H. R., and Schär, C.: A Bayesian hierarchical model for heterogeneous RCM-GCM multimodel ensembles, J. Climate, 28, 6249–6266, https://doi.org/10.1175/JCLI-D-14-00606.1, 2015.
Kiem, A., Johnson, F., Westra, S., van Dijk, A., Evans, J. P., O'Donnell, A., Rouillard, A., Barr, C., Tyler, J., Thyer, M., Jakob, D., Woldemeskel, F., Sivakumar, B., and Mehrotra, R.: Natural hazards in Australia: droughts, Climatic Change, 139, https://doi.org/10.1007/s10584-016-1798-7, 2016.
Kirtman, B., Power, S. B., et al.: Near-term Climate Change: Projections and Predictability, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, v, Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Borshung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Mearns, L. O., Sain, S., Leung, L. R., Bukovsky, M. S., McGinnis, S., Biner, S., Caya, D., Arritt, R. W., Gutowski, W., Takle, E., Snyder, M., Jones, R. G., Nunes, A. M. B., Tucker, S., Herzmann, D., and McDaniel, L.: L. Sloanet al.: Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP), Climatic Change, 120, 965–975, https://doi.org/10.1007/s10584-013-0831-3, 2013.
Mendoza, P. A., Rajagopalan, B., Clark, M. P., Ikeda, K., and Rasmussen, R. M.: Statistical postprocessing of high-resolution regional climate model output, Mon. Weather Rev., 143, 1533–1553, https://doi.org/10.1175/MWR-D-14-00159.1, 2015.
Montgomery, J. M. and Nyhan, B.: Bayesian Model Averaging: Theoretical Developments and Practical Applications, Polit. Anal., 18, 245–270, https://doi.org/10.1093/pan/mpq001, 2010.
Olson, R., Fan, Y., and Evans, J. P.: A simple method for Bayesian model averaging of regional climate model projections: Application to southeast Australian temperatures', Geophys. Res. Lett., 43, 7661–7669, https://doi.org/10.1002/2016GL069704, 2016a.
Olson, R., Evans, J. P., Di Luca, A., and Argüeso, D.: The NARCliM project: model agreement and significance of climate projections, Climate Res., 69, 209–227, 2016b.
Pepler, A. S., Di Luca, A., Ji, F., Alexander, L. V., Evans, J. P., and Sherwood, S. C.: Projected changes in east Australian midlatitude cyclones during the 21st century, Geophys. Res. Lett., 43, 334–340, https://doi.org/10.1002/2015GL067267, 2016.
Perkins-Kirkpatrick, S., White, C., Alexander, L., Argueso, D., Boschat, G., Cowan, T., Evans, J., Ekstrom, M., Oliver, E., Phatak, A., and Purich, A.: Natural hazards in Australia: heatwaves, Climatic Change, 139, 101–114, https://doi.org/10.1007/s10584-016-1650-0, 2016.
Prömmel, K., Geyer, B., Jones, J. M., and Widmann, M.: Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature, Int. J. Climatol., 30, 760–773, 2010.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, available at: http://www.R-project.org/, 2014.
Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133, 1155–1174, https://doi.org/10.1175/MWR2906.1, 2005.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Sharples, J. J., Cary, G., Fox-Hughes, P., Mooney, S., Evans, J. P., Fletcher, M., Fromm, M., Baker, P., Grierson, P., and McRae, R.: Natural hazards in Australia: extreme bushfire, Climatic Change, 139, 85–99, https://doi.org/10.1007/s10584-016-1811-1, 2016.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3 NCAR Technical Note NCAR/TN-475+STR, NCAR, Boulder, CO, USA, 2008.
Solman, S. A., Sanchez, E., Samuelsson, P., da Rocha, R. P., Li, L., Marengo, J., Pessacg, N. L., Remedio, A. R. C., Chou, S. C., Berbery, H., Le Treut, H., de Castro, M., and Jacob, D.: Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties, Clim. Dynam., 41, 1139–1157, https://doi.org/10.1007/s00382-013-1667-2, 2013.
Terando, A., Keller, K., and Easterling, W. E.: Probabilistic projections of agro-climate indices in North America, J. Geophys. Res.-Atmos., 117, D08115, https://doi.org/10.1029/2012JD017436, 2012.
Walsh, K., White, C. J., McInnes, K., Holmes, J., Schuster, S., Richter, H., Evans, J. P., Di Luca, A., and Warren, R. A.: Natural hazards in Australia: storms, wind and hail, Climatic Change, 139, 55–67, https://doi.org/10.1007/s10584-016-1737-7, 2016.
Wang, X., Huang, G., and Baetz, B. W.: Dynamically-downscaled probabilistic projections of precipitation changes: A Canadian case study, Environ. Res., 148, 86–101, https://doi.org/10.1016/j.envres.2016.03.019, 2016.
Whetton, P., Hennessy, K., Clarke, J., McInnes, K., and Kent, D.: Use of Representative Climate Futures in impact and adaptation assessment, Climatic Change, 115, 433?442, https://doi.org/10.1007/s10584-012-0471-z, 2012.