Articles | Volume 10, issue 6
https://doi.org/10.5194/gmd-10-2321-2017
https://doi.org/10.5194/gmd-10-2321-2017
Methods for assessment of models
 | 
23 Jun 2017
Methods for assessment of models |  | 23 Jun 2017

A Bayesian posterior predictive framework for weighting ensemble regional climate models

Yanan Fan, Roman Olson, and Jason P. Evans

Related authors

A Markov chain method for weighting climate model ensembles
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021,https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary

Related subject area

Numerical methods
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary
Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0
Yuta Kawai and Hirofumi Tomita
Geosci. Model Dev., 18, 725–762, https://doi.org/10.5194/gmd-18-725-2025,https://doi.org/10.5194/gmd-18-725-2025, 2025
Short summary
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary

Cited articles

Bhat, K. S., Haran, M., Terando, A., and Keller, K.: Climate Projections Using Bayesian Model Averaging and Space-Time Dependence, J. Agric. Biol. Envir. S., 16, 606?628, https://doi.org/10.1007/s13253-011-0069-3, 2011.
Buser, C. M., Künsch, H. R., Lüthi, D., Wild, M., and Schär, M. C.: Bayesian multi-model projections of climate: bias assumptions and interannual variability, Clim. Dynam., 33, 849–868, 2010.
Buser, C. M., Künsch, H. R., and Schär, C.: Bayesian multi-model projections of climate: generalization and application to ENSEMBLES results, Climate Res., 44, 227–241, 2010.
Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: the PRUDENCE project, Climatic Change, 81, 1–6, https://doi.org/10.1007/s10584-006-9211-6, 2007.
Cortés-Hernández, V. E., Zheng, F., Evans, J. P., Lambert, M., Sharma, A., and Westra, S.: Evaluating regional climate models for simulating sub-daily rainfall extremes, Clim. Dynam., 47, 1613–1628, https://doi.org/10.1007/s00382-015-2923-4, 2015.
Download
Short summary
We develop a novel and principled Bayesian statistical approach to computing model weights in climate change projection ensembles of regional climate models. The approach accounts for uncertainty in model bias, trend and internal variability. The weights are easily interpretable and the ensemble weighted models are shown to provide the correct coverage and improve upon existing methods in terms of providing narrower confidence intervals for climate change projections.
Share