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Abstract. We present a novel Bayesian statistical approach
to computing model weights in climate change projection
ensembles in order to create probabilistic projections. The
weight of each climate model is obtained by weighting the
current day observed data under the posterior distribution
admitted under competing climate models. We use a lin-
ear model to describe the model output and observations.
The approach accounts for uncertainty in model bias, trend
and internal variability, including error in the observations
used. Our framework is general, requires very little problem-
specific input, and works well with default priors. We carry
out cross-validation checks that confirm that the method pro-
duces the correct coverage.

1 Introduction

Regional climate models (RCMs) are powerful tools to pro-
duce regional climate projections (Giorgi and Bates, 1989;
Christensen et al., 2007; van der Linden and Mitchell, 2009;
Evans et al., 2013, 2014; Mearns et al., 2013; Solman et
al., 2013; Olson et al., 2016b). These models take climate
states produced by global climate models (GCMs) as bound-
ary conditions, and solve equations of motion for the atmo-
sphere on a regional grid to produce regional climate pro-
jections. The main advantages of RCMs over GCMs are in-
creased resolution, more parsimony in terms of representing
sub-grid-scale processes, and often improved modelling of
spatial patterns, particularly in regions with coastlines and
considerable topographic features (e.g. van der Linden and
Mitchell, 2009; Prommel et al., 2010; Feser et al., 2011).

Current computing power is now allowing for ensembles
of regional climate models to be performed, allowing for
sampling of model structural uncertainty (Christensen et al.,
2007; Giorgi and Bates, 1989; van der Linden and Mitchell,
2009; Mearns et al., 2013; Solman et al., 2013).

Along with these ensemble modelling studies, methods for
extracting probabilistic projections have followed (Buser et
al., 2010; Fischer et al., 2012; Kerkhoff et al., 2015; Olson
et al., 2016a; Wang et al., 2016). While these studies all take
a Bayesian approach, the implementations differ. For exam-
ple, Buser et al. (2010) and Kerkhoff et al. (2015) model
both the RCM output and the observations as a function of
time. However, this implementation uses too many parame-
ters to be applicable to short (e.g. 20-year) time series com-
mon in regional climate modelling. Furthermore, the results
are affected by climate model convergence: the output from
the outlier models is pulled towards clusters of converging
models. The Wang et al. (2016) method is applicable to rela-
tively short time series; however, convergence still influences
model predictions.

Olson et al. (2016a) introduced Bayesian model averaging
to the RCM model processing. In their framework, model
clustering does not affect the results, incorporating their be-
lief that clustering can occur due to common model errors.
Furthermore, they provide model weights — a useful diag-
nostic of model performance. The weights depend on model
performance in terms of trend, bias, and internal variabil-
ity. However, their approach still suffers from shortcom-
ings. Specifically, the observations are modelled as a func-
tion of smoothed model output. However, the smoothing re-
quires subjective choices, and the uncertainty in the smooth-
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ing choice is not explicitly considered. Second, in the pro-
jection stage the Olson et al. (2016a) implementation does
not fully account for the uncertainty in model biases and in
standard deviation of the model—data residuals.

Several authors have shown that in many regions, future
changes are positively correlated with present-day internal
variability in the models: see Buser et al. (2009) and Hut-
tunen et al. (2017). This means that knowing internal vari-
ability may provide important information and potentially
improve future projections. While previous works have in-
cluded information from internal variability in their statisti-
cal model, the information was not used to directly penalise
the models for getting the internal variability wrong: see for
example Buser et al. (2010) and Kerkhoff et al. (2015). Olson
et al. (2016a) was the first attempt to incorporate this infor-
mation via penalising model priors. However, the priors were
chosen ad hoc. A fundamental improvement of this work is
weighting the models not just by their performance in terms
of the mean, but also in terms of the internal variability in a
principled way.

In this article, we propose a new method to obtain model
weights using raw model output, so the method better ac-
counts for model output uncertainty. Our framework allows
us to compute weights efficiently, simultaneously penalising
for model bias, deviations in trend and model internal vari-
ability. One of the main advantages of the current approach is
that improper and vague priors for the model parameters can
be used, which makes implementation of the method much
more straightforward. In the Olson et al. (2016a) framework,
subjective and informative parameter choices are required.
Such choices impact strongly on the resulting weights and
inference. In addition, their framework cannot accommodate
improper priors since they need to be able to sample directly
from the prior.

Below the Bayesian methodology developed is described
followed by a Markov chain Monte Carlo (MCMC) method
to obtain solutions for the posterior distributions. The tech-
nique is then applied to a regional climate model ensemble
and compared with results found in previous work (Olson et
al., 2016a).

2 Posterior predictive weighting

In this section, we introduce the Bayesian methodology for
weighting model output based on current day observations.
The framework we describe below is not limited to any par-
ticular distributional form, although the analysis presented is
based on the univariate normal distribution. We have also im-
plemented the same procedure using the asymmetric Laplace
distribution for median regression to obtain robust estima-
tors for our analyses, but we have excluded them from pre-
sentation as the procedure produced similar results to that of
the normal error assumption (indicating no major violations
from normality).
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Figure 1. Pictorial representation of the weight distribution on p
and o.

We suppose that current day observations are denoted as
vt, wheret = 1,..., T is a set of indices for time. We assume
that the present-day observations over time can be described
by

yi=ap+by(t—11)+¢ )]

where ¢, ~ N(0,0,),t =1y,...t0+ T, and t is the first year
that the observation is available, and #; = #9 + 7 /2. Formu-
lating the equation in terms of #; allows us to interpret a,
as the mean value of the observations. This model is rea-
sonable for the type of short time series temperature data
that we consider. We assume that the data y, are indepen-
dent between observations. Let x/",t =1,..., T denote data
generated by the mth model over the same time period, where
m=1,..., M, and we assume that each set of model outputs
can be adequately modelled by

X' =am+bn(t —11) +e& )

with €; ~ N (0, 0,,,). Again, x;s are assumed independent.

The parameters ay,, by, 0, can be obtained under the
Bayesian paradigm by first specifying a prior distribution
p(am, by, om), and the posterior distribution given data x™
is subsequently obtained via the Bayes rule,

P, by, Om |xm) X L(xmlama by, om)pam, bm,om), (3)

where L(x™|-) denotes the likelihood of obtaining data x™
from model m. In this work, vague priors are used through-
out. The use of a vague prior allows the data to discriminate
amongst models, whereas informative priors reflect the sci-
entist’s personal knowledge, and can lead to more subjec-
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Figure 2. New South Wales planning regions, the ACT and the state
of Victoria.

tive analyses. Vague priors are sometimes considered prefer-
able when data contain sufficient information or when sub-
jective knowledge is uncertain. Conjugate analyses for cer-
tain classes of models, including Gaussian error models, are
often possible, leading to analytical forms for the posterior
distributions. In this work, we choose to present the results
with non-standard priors, and use MCMC for computation.
This approach is much easier when extending to more com-
plex modelling scenarios.

We would like to weight the models based on the similar-
ity of output x;" to the observation data. We note that a model
that performs well under recent conditions does not guaran-
tee that it will perform well under future climate conditions,
but we assume that good performance under recent condi-
tions is an indication of reliable performance in future cli-
mates. This translates to preferring models whose parameters
am, by, oy, are similar to ay, by, 0. In practice o, has addi-
tional terms, due to instrumental and gridding error associ-
ated with collecting observational data. This additional error
is not reflected in the model output. Jones et al. (2009) per-
formed error analyses for 2001-2007 for Australian climate
data, and found that the root mean squared error for monthly
temperature data ranges between 0.5 and 1 K. For our analy-
ses of seasonally averaged temperature data in Sect. 2.2, we
set the additional error to be § = 0.5 K. Resulting weights
were largely insensitive to values of § between 0.5 and 1.

Finally, we define the weight for each model m to be of the
form

w™ :/L(ylamvbms 0',%,+Sz)p(amvbrnso'm‘xm)damdbmdo'm (4)

where L(y|am, b, /o2 +8%) denotes the likelihood of
observational data y, given the parameters of the mth
model, a,,, b, and o,,. The weight w™ fully accounts for
the uncertainties associated with the estimates of a,,, b,
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and o,, by averaging over the posterior distribution of
p(am, by, 0y |x™). Clearly, the right-hand side of Eq. (4) will
be larger if a,,, by, and /o2 + 8% are similar to a,, b, and
o), i.e. if the distributions of y and x™ are similar (up to a
difference of observational error §). We term these weights
the posterior predictive weights. Note that Eq. (4) is simply
the marginal likelihood p(y|x™), i.e. the probability of ob-
serving data y given x,,, averaging over any model parameter
uncertainties. The term a,, and its deviation from a, in the
observation model can be considered as penalising bias be-
tween model output and observation, the deviation between
by and b, can be thought of as a penalty for trend, and the
terms oy, and o, account for the differences of model and
observation internal variability.

The ensemble models can now be combined into a single
posterior model, using the weights

plapma, bema, osmalx’, ..., xM)
M
= D " p(an, by, omlx™). 5)
m=1

The above expression gives us an ensemble estimate for the
posterior distribution of the parameters for a, b and ¢ from
the M model outputs, and we denote these as apma, bBMA
and opma. Note that the weights should be normalised by
S =1

In order to understand this weight, we suppose for the mo-
ment that the data y come from, say, a N (0, 1). Suppose also
that x™ comes from N (u, o). Then if the posterior distribu-
tions of u and o are centered around O and 1, x™ should
be assigned a higher weight. As the values of y and o di-
verge away from 0 and 1, we should see a decrease in the
respective weights. Figure 1 plots the likelihood of 50 simu-
lated y values from N (0, 1) distribution, the left panel shows
the weights for a fixed value of u=—-2,...,2 and 0 =1,
and the right panel shows the weights for a fixed value of
o =0.01,...,5 with u = 0. The figure corresponds to a sin-
gle term inside the weight Eq. (4), where ay, 1, by 1 corre-

spond to u and , /17,,21’I + 82 corresponds to o. See also Eq. (6)
below. The figure shows the changes in the weight, as param-
eter values move away from the true values of 0 and 1. In the
case of single fixed values of i and o, the weights simply
correspond to the likelihood at these values. In practice, the
weights in Eq. (4) average over the set of posterior values of
pnando.

It is worth noting that even if we specify non-informative
priors in Eq. (3) for all models, the implied priors used in
our approach are not uninformative. As pointed out by H. R.
Kiinsch, some form of informative priors must be used be-
cause the data available simply do not contain information
for certain parameters of the model for the future (see Buser
et al., 2009 for an alternative formulation which also requires
some form of informative prior specifications.) In the current
case, our modelling approach assumes that the relationship

Geosci. Model Dev., 10, 2321-2332, 2017
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Figure 3. Results for the CC region of south-eastern Australia, in the DJF season. Top row: weights w” of 12 models based on Eq. (4) (L),
Eq. (8), w1 (M) and Eq. (9) w™ T (R). Each triplet represents a GCM (MIROC3.2, ECHAMS5, CCCMA3.1, and CSIRO-MKk3.0). Middle
row and first plot of last row: fitted observations according to Eq. (1) (red dashed line) and fitted model output according to Eq. (2) for 12
models. Last row: weighted fit based on w in solid black line (M), weighted fit based on w™ L in solid green line and weighted fit based on

w™T in solid blue line (R).

between future climate and future model output behaves in a
similar way to the relationship between present-day climate
and present-day model output. We consider that there is a
perfect model that has the same parameters (intercept, slope
and standard deviation) in both the present and the future. We
then compute the probability that any model m is this perfect
model, based on present-day data. These assumptions can be
seen as an informative prior on the parameters governing fu-
ture observations, although these parameters are not explic-
itly modelled.

2.1 Computation
The procedure for the calculation of weights is designed

to be applicable regardless of the distributional forms cho-
sen to model the data. In most cases, the posterior distri-

Geosci. Model Dev., 10, 2321-2332, 2017

butions p(ay,, by, on|x™) in Eq. (3) will be analytically in-
tractable; however, samples from this distribution can easily
be obtained via MCMC. Many software packages perform-
ing MCMC are available. For the analysis in this paper, we
used the MCMCpack library of the R statistical package (R
Core Team, 2014). MCMC is an iterative algorithm, and it is
necessary to check for convergence and throw away an ini-
tial burn-in period of the chain. For our simulations, we used
5000 chain iterations, throwing away the initial 500 itera-
tions as burn in, retaining N = 4500 MCMC samples to work
with. Default priors from MCMCpack were used throughout
this paper. For the model and data used in this paper, only a
routine application of MCMC was required. However, more
complex model and data typically require advanced knowl-
edge of MCMC; see Gilks et al. (1996) for more on MCMC.

www.geosci-model-dev.net/10/2321/2017/
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Figure 4. Results for the FW region of south-eastern Australia, in the DJF season. Top row: weights w™ of 12 models based on Eq. (4) (L),
Eq. (8), w1 (M) and Eq. (9) wm™ T (R). Each triplet represents a GCM (MIROC3.2, ECHAMS, CCCMA3.1, and CSIRO-MKk3.0). Middle
row and first plot of last row: fitted observations according to Eq. (1) (red dashed line) and fitted model output according to Eq. (2) for 12
models. Last row: weighted fit based on w” in solid black line (M), weighted fit based on w”! in solid green line and weighted fit based on

w™ T in solid blue line (R).

In addition to obtaining simulations from the posteriors of
the M ensemble models, the weight calculation in Eq. (4)
also involves an intractable integral, which we can approxi-
mate using standard Monte Carlo

> LOlam1bmiyfop +8) (6)

am.l;bm,l »Om,1

w" A

where L(ylam1,bm1, , /Urﬁyl + 62) denotes the likelihood of
y under the ith sample of a, 1, b,y 1 and o, 1 from the pos-
terior distribution p(ay,, by, op |x™). Thus, the 4500 MCMC
samples obtained for each model are then used to compute
the Monte Carlo sum in Eq. (6). Again, the weights should
be normalised by the constraint Zﬁ:le w" =1.

Finally, the predictive distribution for the future cli-
mate y,f ,t=1,...,T', given future model output denoted as

www.geosci-model-dev.net/10/2321/2017/
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2.2 Application

Here we consider the same data as Olson et al. (2016a) —
temperature output from NARCIiM (New South Wales/ACT
Regional Climate Modeling Project, Evans et al., 2014). This
project is the most comprehensive regional modelling project
for south-eastern Australia, and the first to systematically ex-
plore climate model structural uncertainties. The NARCIiM
ensemble downscales four GCMs (MIROC3.2, ECHAMS,

Geosci. Model Dev., 10, 2321-2332, 2017
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Figure 5. Results for the CWO region of south-eastern Australia, in the MAM season. Top row: weights w™ of 12 models based on Eq. (4)
(L), Eqg. (8), w1 (M) and Eq. (9) wm T (R). Each triplet represents a GCM (MIROC3.2, ECHAMS, CCCMA3.1, and CSIRO-MK3.0).
Middle row and first plot of last row: fitted observations according to Eq. (1) (red dashed line) and fitted model output according to Eq. (2)
for 12 models. Last row: weighted fit based on w™ in solid black line (M), weighted fit based on w1 in solid green line and weighted fit

based on w™ T in solid blue line (R).

CCCMA3.1, and CSIRO-Mk3.0) with three versions of the
WRF modelling framework (which we call R1, R2, and R3,
Skamarock et al., 2008) that differ in parameterisations of
radiation, cumulus physics, surface physics, and planetary
boundary layer physics. NARCIiM output has been evaluated
in terms of its ability to reproduce the observed mean cli-
mate (Ji et al., 2016; Olson et al., 2016b; Grose et al., 2015),
climate extremes (Cortés-Hernandez et al., 2015; Perkins-
Kirkpatrick et al., 2016; Walsh et al., 2016; Kiem et al., 2016;
Sharples et al., 2016), and important regional climate phe-
nomena (Di Luca et al., 2016; Pepler et al., 2016). These
studies demonstrate that while the downscaling has provided
added value (Di Luca et al., 2016), a range of model errors
are present within the ensemble. For the analysis, we fo-
cus on seasonal-mean temperature differences as modelled
by the inner NARCIiM domain RCMs between years 1990—

Geosci. Model Dev., 10, 2321-2332, 2017

2009 (present) and 2060-2079 (far future). We discard partial
seasons from the analysis.

Here we average the temperatures over south-eastern Aus-
tralian regions that include New South Wales (NSW) plan-
ning regions, ACT, and Victoria; see Fig. 2. Corresponding
temperature observations are derived from the AWAP project
(Jonmes et al., 2009). The models are generally cooler than the
observations; however, in many cases the observations span
the mean model climate.

In addition to computing weights of the form in Eq. (4), we
also compute two variants of the weight: one based on penal-
ising only the intercept a,, and internal variability o,,, and
an alternative weight based on penalising only the slope term
b;, and internal variability o,,. This is achieved by modifying

www.geosci-model-dev.net/10/2321/2017/



Y. Fan et al.: A Bayesian posterior predictive framework

FW NENW
~ 0
— —
“ @ « 2
he] o ° —
o o
< 1
<) <)
e e
o o
cwo
n
= W W
N
—
e
— o
k] 5 @
o o
n
L <
e oS
S ] e
o o
]} SET
o
~ ' [ )
afoo ! —
n ' (Nl
— 1 [N}
' "
5 o | 1 [ 5
Q. — 1 [N Q.
[} 1
n 1
o 4
< =
o o
1 2 3 4 01 2 3 4

2327
NC Hun
[Ts}
—
o
5 o
o
n
o
o
S}
o
~
n
—
S
o -
[Ts}
o
o
S}
ACT
n
o
n
—
]
e — O
2 2 -
S 7 2
S =
o o
1 2 3 4 01 2 3 4

Figure 6. Posterior predictive projections of DJF temperature change in 2060-2079 compared to 1990-2009 for regions in south-eastern

Australia. Black lines correspond to w™ weights, green lines to w1 weights and blue lines to w

m,T weights. Red lines are results from

Olson et al. (2016a). Black vertical lines represent 95 % credible intervals, and red vertical lines represent the 95 % credible intervals obtained
by Olson et al. (2016a). Circles represent the difference between the changes in temperature using the individual models. Black crosses

indicate the simple ensemble mean of the changes in temperature.

Eq. (4) to

w’”’lz/L(ylam,bp, 02 +82) plam,omlx™)daydoy, — (8)

or
wm’Tz/L(ymp»bma 0'n21+52)p(bmsUm|xln)dbn1dar1l 9

where w™! penalises models with large biases and wrong in-
ternal variability, and w™ T penalises models with the wrong
trend and internal variability. Note that our proposed weight
w™ penalises bias, trend and internal variability simultane-
ously. The weights w”! and w™T can be computed by fit-
ting the observation data to the model in Eq. (1) to obtain
estimates for a, and b, and using only the posterior sam-
ples of a,,, by, and o, to complete the calculation.

Figure 3 shows the weight calculation of each model based
on Eq. (4), for the CC region in season DJF. We used the
observed data and the corresponding model output for the

www.geosci-model-dev.net/10/2321/2017/

years 1990-2009. One can see how the three different types
of weights behave relative to the bias and slope of the model
output. For example, in Fig. 3, models 1,2,3 (left figure,
middle row) and 10, 11, 12 (left figure, bottom row) have
large bias compared to the other models; consequently, w™
and w™! give these models almost no weight. On the other
hand these models simulated the trend well, and are preferred
by w™T.

The weighted fits are shown in the last two plots in the
bottom row of Fig. 3. The black line is computed using w™,
according to

M
$e=> w"(@m+bn-t) (10)
m=1

where a,, and b,, are taken as the posterior means of the
MCMC samples, and t = —9.5,...,9.5. A similar calcula-
tion is done based on w™!, with w™T shown in green and
blue respectively. The plots here suggest that the weights w™

Geosci. Model Dev., 10, 2321-2332, 2017
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Figure 7. Bootstrapped weighted projections of DJF temperature change in 2060-2079 compared to 1990-2009 for regions in south-eastern
Australia. Black lines correspond to w™ weights, green lines to w1 weights and blue lines to wn T weights. Red lines are results from Olson
et al. (2016a). Black vertical lines represent 95 % credible intervals, and red vertical lines represent the 95 % credible intervals obtained by
Olson et al. (2016a). Circles represent the difference between the changes in temperature using the individual models. Black crosses indicate

the simple ensemble mean of the changes in temperature.

Table 1. Mean squared error and 95 % coverage probabilities for the three sets of weights.

DJF MAM JIA SON
MSE Cov MSE Cov MSE Cov MSE Cov
w™ 4843 0938 | 1444 0958 | 14.15 0910 | 41.86 0.917
w™l 15206 0965 | 2134 0979 | 17.89 0944 | 43.55 0.951
w™T | 5693 0993 | 30.74 0.979 | 2045 0.972 | 39.79  1.000
m,T

are similar to w"™ XL, and better than w in this case. We
note that there are dependencies between the RCMs driven
by the same GCM. Our weight calculation does not model
this dependence. So if different GCMs drive a different num-
ber of RCMs, the weights will over-represent some models
but not others. While for most cases, the weights given by
w™! provide similar weighted fits to w™, Fig. 4 (showing
the FW region for season DJF) demonstrates the instances
where the weighted fit produced by w™! is clearly worse
than w”. The green line in the final plot shows that w!

Geosci. Model Dev., 10, 2321-2332, 2017

produces a fit which is very close to the observation at the
intercept but fails to capture the trend. This is unsurprising
since this weight penalises deviations of a,;, to a,. Similarly,
the blue line w™T appears to better capture the trend, but
is clearly underestimating the bias, since it fails to penalise
for bias. The weight w™ is a compromise between the two.
From the weight plots in the first row, the models that have
non-negligible weights under w™ X are 6,7, 11 and 12, corre-
sponding to models whose intercepts are closest to the inter-
cept of the observation model. The weights w™ T are more

www.geosci-model-dev.net/10/2321/2017/



Y. Fan et al.: A Bayesian posterior predictive framework

o o
~ ~
1
-
5 o 5 o
a 3 a 5
1
o
= =
o o
n
I.(\' —
—
<
IS) —
5 - 5
a a
0 3
o
= =
o o
1 2 3 4
< N
~N —
5 ] 5 9
2 o a -
S
1
_ =
< <
o o

01 2 3 4

2329

CC CC
]
—
w ©o
g 5
0
o
o
o
01 2 3 4 012345
CC CC
o
o
5
& o
—
o
o
012 3 4 1 2 3 4
CC CC
5 5 1
o o

0.0 05 1.0 15 2.0

0.0 05 1.0 15

T
01 2 3 4

Figure 8. Cross validation of weighted projections of DJF temperature change in 2060-2079 compared to 1990-2009 for region CC in south-

eastern Australia. Black lines correspond to w” weights; green lines correspond to w1 weights and w

m,T weights. Each plot represents

the weighted posterior predictive distribution of temperature change using the current ith model output as observation and the remaining 11
models are weighted. Vertical lines represent 95 % credible intervals. Crosses indicate the actual changes between the future model output

and the current model output of the ith model.

spread out, giving high weights to models 1 and 2, which
have large biases but capture the trend well. The weights w™
allocate most weight to models 6 and 7. Both models closely
follow the shape of the observed data. In fact, in terms of
trend, the weights w1 can capture more of the increase in
trend better than w™, this was the case in some of the regions
in the SON season. A more formal evaluation of the three
different weights will be carried out later in this section.

For seasons JJA and MAM, weights w™ and w™! were
quite similar in all regions. These weights gave very close
fits to the observation model, while w™T captured the trend
well but gave biased fits to the observation. Generally for
these two seasons, fewer models had non-neglible weights
compared with DJF and SON. In DJF and SON, the weights
were distributed more evenly across the models. This sug-
gests that some of the individual models in JJA and MAM
were performing strongly. Interestingly for MAM, the two
models that dominated most regions are models 8 and 9; see
for example the results for region CWO in Fig. 5. We can see
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the goodness of fit of these two models individually (see sec-
ond row, right plot), and clearly they were markedly better
than the other competing models.

The corresponding posterior predictive distribution of pro-
jections of change in temperature for season DJF over the
different regions in south-eastern Australia are plotted in
Fig. 6. The pdfs show the mean temperature change in the
period 2060-2079 compared to 1990-2009. In order to ob-
tain the posterior predictive projection pdf, we begin by
first fitting MCMC for each future model output for the
period 2060-2079, to obtain the posterior distribution of

plal, bt ,fl|xf”). Here we obtained 5000 posterior samples

of af,.bf, and o,. We then obtain 10 000 random samples for
each pdf. Each sample is obtained as follows.

1. With probability w™, randomly select a sample from the

osteriors of af bf and of , say af .bf - and of ..
p mYm m y m,1%m,I m,l

2. Simulate a predictive temperature series ytf according to

i~ N(ah, (+bh (t —11), 00 1)
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for + =2060,...,2079 and #; =2069.5. This process
produces the posterior predictive samples ytf according
to Eq. (7).

3. Compute current model estimate y;" = a, +by, - (t —11),
for t =1990,...,2009 and #; = 1999.5 where a,, and
b, are posterior means based on model m and current
model output x™.

4. Compute the mean of the differences between future
prediction yf and $.

This process produces the posterior predictive distributions
for the mean difference between the posterior predictive sam-
ples y,f and the current estimate of climate.

We present the results for season DJF in Fig. 6. The black
lines in Fig. 6 correspond to the pdf given by w™, the green
lines correspond to w"™! and the blue lines correspond to
w™T. The red circles indicate the difference between the
means of y; and fzf from each of the 12 models; the cross in-
dicates the mean of these differences. Black vertical lines in-
dicate the 95 % credibility interval for predictions made with
w™ (black line). We can see that the pdfs based on w” and
w™! are similar to each other, while the ones given by w™T
deviate substantially from the other two. We also superim-
posed the pdf obtained in Olson et al. (2016a) in red for com-
parison. The corresponding 95 % credible interval is shown
in red vertical lines. It can be seen that our method gener-
ally provides a more precise prediction interval. In fact, to
properly compare the two predictive distributions, we com-
pute the posterior predictive distribution using the method
described by Olson et al. (2016a). Unlike our posterior pre-
dictive pdf, the pdf in Olson et al. (2016a) was obtained by
bootstrapping the errors, and does not account for the un-
certainty in the parameter estimates of a,, b, and o,,. To
properly compare the effect of the different weights between
our method and that of Olson et al. (2016a), we also show
in Fig. 7 the bootstrapped pdf. Here the red line indicates the
pdf using Olson et al. (2016a) weights with the 95 % credible
interval shown in red vertical lines, and here we can see that
Olson et al. (2016a) generally produce significantly larger
credible intervals than our approach.

The incident of bimodality or multimodality is reduced in
our approach compared to Olson et al. (2016a), suggesting
a smoother mixing of models induced by our approach. Our
approach generally produced sharper, more definite peaks in
the posterior pdf. This could be due to the fact that our penal-
isation is done simultaneously, whereas Olson et al. (2016a)
consider the penalty for bias and internal variability sepa-
rately.

In order to assess the ensemble pdf, we performed a series
of cross-validation checks. For each region at a given sea-
son, we have 12 current model outputs and 12 future model
outputs. We select 1 of the models, m;, and treat the cur-
rent model output for m; as the truth, and weigh the remain-
ing 11 models. We then cycle through all 12 models, setting
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m; =1,...,12. Figure 8 shows the weighted projections for
region CC in season DJF, each plot corresponding to using 1
of the 12 models as truth.

Table 1 shows the empirical coverage probabilities based
on 144 sets of cross-validation datasets for each region, DJF,
MAM, JJA and SON. The coverage probabilities are com-
puted by counting the number of times the true mean change
in temperature falls inside the 95 % credibility intervals,
taken as the 0.025th and 0.975th quantile values of the pos-
terior predictive samples. Each weighting method produces
a different set of credibility intervals. We see from the ta-
ble that both w™ and w™! perform quite close to the nom-
inal level at 95 %, but the pdfs given by the weight w™T
are a little too large. Finally, we also computed the mean
squared error for each season: this is calculated as the aver-
age squared difference between the posterior predictive sam-
ple and the true value. The sums over all regions and all
cross-validation sets are reported in Table 1. Overall, the
weights w™ performed consistently well in this respect. w”
outperforms w”! in all seasons. The poorer performance of
w™T is largely due to the large biases in the w™T models.
One possibility of making w™ T models more useful is to per-
form some kind of post hoc bias correction to the weighted
estimates.

3 Conclusions

In this article we have introduced a new framework for com-
puting Bayesian model weights. Our framework is novel,
and requires minimal expert knowledge of model parame-
ters. The fact that we do not require subjective expert prior
knowledge makes the method more robust, since prior elic-
itation can sometimes be difficult, and different priors can
lead to different conclusions.

We provided two alternative weight specifications under
the same framework to aid interpretation of our weighting.
One of the weights favours models with intercept terms that
are close to the observation intercept. This weight does not
penalise for trend deviations very well. An alternative weight
which does not penalise for the intercept term can capture
trend in the model very well. Both alternatives have defi-
ciencies, and our proposed weight is a combination of the
two. However, there are other potential avenues to explore
with these alternative weights. For instance, for the weights
based on trend and internal variability, it can be seen that the
weighted model can capture trend extremely well but fails
to account for bias, but applying some kind of post hoc bias
correction may be a fruitful direction to pursue.

We validated our approach using cross validation, and
showed that our posterior predictive distributions obtained
correct empirical coverages, which is a desired property to
possess, and provides us with some confidence in our ap-
proach. Our posterior predictive distributions also provided
narrower confidence intervals than previous approaches. Fi-
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nally, our model weighting framework is not restricted to
data from univariate normal distributions, or linear models.
This approach could be extended to handle dependent Gaus-
sian data via a multivariate normal distribution, as well as
non-linear and non-normal models.
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