Articles | Volume 9, issue 10
https://doi.org/10.5194/gmd-9-3779-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-3779-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation
University of New South Wales, Sydney, NSW, 2052, Australia
Brian Powell
University of Hawai'i at Manoa, Honolulu, Hawaii, USA
Moninya Roughan
University of New South Wales, Sydney, NSW, 2052, Australia
Peter Oke
CSIRO Marine and Atmospheric Research, Hobart, Australia
Related authors
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023, https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
Short summary
The current paper describes the configuration and evaluation of the Moana Ocean Hindcast, a > 25-year simulation of the ocean state around New Zealand using the Regional Ocean Modeling System v3.9. This is the first open-access, long-term, continuous, realistic ocean simulation for this region and provides information for improving the understanding of the ocean processes that affect the New Zealand exclusive economic zone.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Carlos Rocha, Christopher A. Edwards, Moninya Roughan, Paulina Cetina-Heredia, and Colette Kerry
Geosci. Model Dev., 12, 441–456, https://doi.org/10.5194/gmd-12-441-2019, https://doi.org/10.5194/gmd-12-441-2019, 2019
Short summary
Short summary
Off southeast Australia, the East Australian Current (EAC) moves warm nutrient-poor waters towards the pole. In this region, the EAC and a large number of vortices pinching off it strongly affect phytoplankton’s access to nutrients and light. To study these dynamics, we created a numerical model that is able to solve the ocean conditions and how they modulate the foundation of the region’s ecosystem. We validated model results against available data and this showed that the model performs well.
Manh Cuong Tran, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-480, https://doi.org/10.5194/essd-2024-480, 2024
Preprint under review for ESSD
Short summary
Short summary
The East Australian Current (EAC) plays an important role in the marine ecosystem and climate of the region. To understand the EAC regime and the inner shelf dynamics, we implement the variational approach to produce the first multi-year coastal radar dataset (2012–2023) in this region. The validated data allows for a comprehensive investigation of the EAC dynamics. This dataset will be useful for understanding the complex EAC regime and its far-reaching impacts on the shelf environment.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Michael P. Hemming, Moninya Roughan, Neil Malan, and Amandine Schaeffer
Ocean Sci., 19, 1145–1162, https://doi.org/10.5194/os-19-1145-2023, https://doi.org/10.5194/os-19-1145-2023, 2023
Short summary
Short summary
We estimate subsurface linear and non-linear temperature trends at five coastal sites adjacent to the East Australian Current (EAC). We see accelerating trends at both 34.1 and 42.6 °S and place our results in the context of previously reported trends, highlighting that magnitudes are depth-dependent and vary across latitude. Our results indicate the important role of regional dynamics and show the necessity of subsurface data for the improved understanding of regional climate change impacts.
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
Short summary
Short summary
We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023, https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
Short summary
The current paper describes the configuration and evaluation of the Moana Ocean Hindcast, a > 25-year simulation of the ocean state around New Zealand using the Regional Ocean Modeling System v3.9. This is the first open-access, long-term, continuous, realistic ocean simulation for this region and provides information for improving the understanding of the ocean processes that affect the New Zealand exclusive economic zone.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Matthew A. Chamberlain, Peter R. Oke, Russell A. S. Fiedler, Helen M. Beggs, Gary B. Brassington, and Prasanth Divakaran
Earth Syst. Sci. Data, 13, 5663–5688, https://doi.org/10.5194/essd-13-5663-2021, https://doi.org/10.5194/essd-13-5663-2021, 2021
Short summary
Short summary
BRAN2020 is a dynamical reconstruction of the ocean, combining observations with a high-resolution global ocean model. BRAN2020 currently spans January 1993 to December 2019, assimilating in situ temperature and salinity, as well as satellite-based sea level and sea surface temperature. A new multiscale approach to data assimilation constrains the broad-scale ocean properties and turbulent mesoscale dynamics in two steps, showing closer agreement to observations than all previous versions.
Andrew E. Kiss, Andrew McC. Hogg, Nicholas Hannah, Fabio Boeira Dias, Gary B. Brassington, Matthew A. Chamberlain, Christopher Chapman, Peter Dobrohotoff, Catia M. Domingues, Earl R. Duran, Matthew H. England, Russell Fiedler, Stephen M. Griffies, Aidan Heerdegen, Petra Heil, Ryan M. Holmes, Andreas Klocker, Simon J. Marsland, Adele K. Morrison, James Munroe, Maxim Nikurashin, Peter R. Oke, Gabriela S. Pilo, Océane Richet, Abhishek Savita, Paul Spence, Kial D. Stewart, Marshall L. Ward, Fanghua Wu, and Xihan Zhang
Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, https://doi.org/10.5194/gmd-13-401-2020, 2020
Short summary
Short summary
We describe new computer model configurations which simulate the global ocean and sea ice at three resolutions. The coarsest resolution is suitable for multi-century climate projection experiments, whereas the finest resolution is designed for more detailed studies over time spans of decades. The paper provides technical details of the model configurations and an assessment of their performance relative to observations.
Carlos Rocha, Christopher A. Edwards, Moninya Roughan, Paulina Cetina-Heredia, and Colette Kerry
Geosci. Model Dev., 12, 441–456, https://doi.org/10.5194/gmd-12-441-2019, https://doi.org/10.5194/gmd-12-441-2019, 2019
Short summary
Short summary
Off southeast Australia, the East Australian Current (EAC) moves warm nutrient-poor waters towards the pole. In this region, the EAC and a large number of vortices pinching off it strongly affect phytoplankton’s access to nutrients and light. To study these dynamics, we created a numerical model that is able to solve the ocean conditions and how they modulate the foundation of the region’s ecosystem. We validated model results against available data and this showed that the model performs well.
Dale Partridge, Tobias Friedrich, and Brian S. Powell
Geosci. Model Dev., 12, 195–213, https://doi.org/10.5194/gmd-12-195-2019, https://doi.org/10.5194/gmd-12-195-2019, 2019
Short summary
Short summary
This paper demonstrates the improvements made to an operational ocean forecast model around the Hawaiian Islands by performing a reanalysis of the model over a 10-year period. Using a number of different measurements we show the role a variety of observations play in producing the forecast, in particular the contribution of high-frequency radar.
Mabel Costa Calim, Paulo Nobre, Peter Oke, Andreas Schiller, Leo San Pedro Siqueira, and Guilherme Pimenta Castelão
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-5, https://doi.org/10.5194/gmd-2018-5, 2018
Revised manuscript not accepted
Short summary
Short summary
A new tool inspired on tides is introduced. The Spectral Taylor Diagram designed for evaluating and monitoring models performance in frequency domain calculates the degree of correspondence between simulated and observed fields for a given frequency (or a band of frequencies). It's a powerful tool to detect co-oscillating patterns in multi scale analysis, without using filtering techniques.
Joao Marcos Azevedo Correia de Souza and Brian Powell
Ocean Sci., 13, 31–46, https://doi.org/10.5194/os-13-31-2017, https://doi.org/10.5194/os-13-31-2017, 2017
Short summary
Short summary
The relevance of including the wave effect into a nearshore circulation model is discussed. Two different approaches are tested in the framework of an operational forecast system. It is shown that the waves are essential to represent the circulation patterns near the coast. While it seams to be ideal to consider the full coupling between surface waves and ocean currents, a computationally cheaper alternative is tested and shown to give equivalent qualitative results.
Emlyn M. Jones, Mark E. Baird, Mathieu Mongin, John Parslow, Jenny Skerratt, Jenny Lovell, Nugzar Margvelashvili, Richard J. Matear, Karen Wild-Allen, Barbara Robson, Farhan Rizwi, Peter Oke, Edward King, Thomas Schroeder, Andy Steven, and John Taylor
Biogeosciences, 13, 6441–6469, https://doi.org/10.5194/bg-13-6441-2016, https://doi.org/10.5194/bg-13-6441-2016, 2016
Short summary
Short summary
Marine biogeochemical models are often used to understand water quality, nutrient and blue-carbon dynamics at scales that range from estuaries and bays, through to the global ocean. We introduce a new methodology allowing for the assimilation of observed remote sensing reflectances, avoiding the need to use empirically derived chlorophyll-a concentrations. This method opens up the possibility to assimilate of reflectances from a variety of missions and potentially non-satellite platforms.
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016, https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Short summary
The Marine Virtual Laboratory (MARVL) is designed to help ocean modellers hit the ground running. Usually, setting up an ocean model involves a handful of technical steps that time and effort. MARVL provides a user-friendly interface that allows users to choose what options they want for their model, including the region, time period, and input data sets. The user then hits "go", and MARVL does the rest – delivering a "take-away bundle" that contains all the files needed to run the model.
Amandine Schaeffer, Moninya Roughan, Emlyn M. Jones, and Dana White
Biogeosciences, 13, 1967–1975, https://doi.org/10.5194/bg-13-1967-2016, https://doi.org/10.5194/bg-13-1967-2016, 2016
Short summary
Short summary
The water properties of the coastal ocean such as temperature, salt, oxygen, or chlorophyll content vary spatially, and estimates need to be made regarding the scales of variability. Here, we use statistical techniques to determine the spatial variability of ocean properties from high-resolution measurements by gliders. We show that biological activity is patchy compared to the distribution of physical characteristics, and that the size and shape of this is determined by coastal ocean processes.
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53, https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary
Short summary
Characterizing phytoplankton growth influences fisheries and climate. We use a lagrangian approach to identify phytoplankton blooms in the Great Australian Bight (GAB), and associate them with nitrate sources. We find that 88 % of the nitrate utilized in blooms is originated between the GAB and the SubAntarctic Front. Large nitrate concentrations are supplied at depth but do not reach the euphotic zone often. As a result, 55 % of blooms utilize nitrate supplied in the top 100 m.
X. Zhang, P. R. Oke, M. Feng, M. A. Chamberlain, J. A. Church, D. Monselesan, C. Sun, R. J. Matear, A. Schiller, and R. Fiedler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-17, https://doi.org/10.5194/gmd-2016-17, 2016
Revised manuscript not accepted
Short summary
Short summary
Eddy-resolving global ocean models are highly desired, but expensive to run, and also subject to many problems including drift. Here we modified a near-global eddy-resolving OGCM for climate studies with some novel strategies. We demonstrated that the historical experiment driven by Japanese atmospheric reanalysis product, didn't have significant drifts, and also provided an eddy-resolving simulation of the global ocean over 1979–2014. Our experiences can be helpful to other modelling groups.
A. M. Waite, V. Rossi, M. Roughan, B. Tilbrook, P. A. Thompson, M. Feng, A. S. J. Wyatt, and E. J. Raes
Biogeosciences, 10, 5691–5702, https://doi.org/10.5194/bg-10-5691-2013, https://doi.org/10.5194/bg-10-5691-2013, 2013
P. R. Oke, D. A. Griffin, A. Schiller, R. J. Matear, R. Fiedler, J. Mansbridge, A. Lenton, M. Cahill, M. A. Chamberlain, and K. Ridgway
Geosci. Model Dev., 6, 591–615, https://doi.org/10.5194/gmd-6-591-2013, https://doi.org/10.5194/gmd-6-591-2013, 2013
Related subject area
Oceanography
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
An optimal transformation method for inferring ocean tracer sources and sinks
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Modelling the water isotope distribution in the Mediterranean Sea using a high-resolution oceanic model (NEMO-MED12-watiso v1.0): evaluation of model results against in situ observations
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
HIDRA3: a robust deep-learning model for multi-point ensemble sea level forecasting
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
An optimal transformation method applied to diagnose the ocean carbon budget
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
DALROMS-NWA12 v1.0, a coupled circulation-ice-biogeochemistry modelling system for the northwest Atlantic Ocean: Development and validation
Development of a novel storm surge inundation model framework for efficient prediction
Skin sea surface temperature schemes in coupled ocean–atmosphere modelling: the impact of chlorophyll-interactive e-folding depth
A wave-resolving 2DV Lagrangian approach to model microplastic transport in the nearshore
DELWAVE 1.0: deep learning surrogate model of surface wave climate in the Adriatic Basin
StraitFlux – precise computations of water strait fluxes on various modeling grids
Comparison of the Coastal and Regional Ocean COmmunity model (CROCO) and NCAR-LES in non-hydrostatic simulations
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Intercomparisons of Tracker v1.1 and four other ocean particle-tracking software packages in the Regional Ocean Modeling System
CAR36, a regional high-resolution ocean forecasting system for improving drift and beaching of Sargassum in the Caribbean archipelago
Implementation of additional spectral wave field exchanges in a three-dimensional wave–current coupled WAVEWATCH-III (version 6.07) and CROCO (version 1.2) configuration: assessment of their implications for macro-tidal coastal hydrodynamics
Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts
Great Lakes wave forecast system on high-resolution unstructured meshes
Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0)
A flexible z-layers approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 1: Evolution of ecosystem composition under limited light and nutrient conditions
Ocean wave tracing v.1: a numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths
Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0)
Evaluation of the CMCC global eddying ocean model for the Ocean Model Intercomparison Project (OMIP2)
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Open-ocean tides simulated by ICON-O, version icon-2.6.6
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Using the COAsT Python package to develop a standardised validation workflow for ocean physics models
Improving Antarctic Bottom Water precursors in NEMO for climate applications
Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones
Waves in SKRIPS: WAVEWATCH III coupling implementation and a case study of Tropical Cyclone Mekunu
Adding sea ice effects to a global operational model (NEMO v3.6) for forecasting total water level: approach and impact
Enhanced ocean wave modeling by including effect of breaking under both deep- and shallow-water conditions
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024, https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is vital in climate, weather, and ocean sciences because it influences air–sea interactions. Errors in the ECMWF model's scheme for predicting ocean skin temperature prompted a revision of the ocean mixed layer model. Validation against infrared measurements and buoys showed a good correlation with minimal deviations. The revised model accurately simulates SST variations and aligns with solar radiation distributions, showing promise for weather and climate models.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024, https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
Short summary
We describe a method to relate fluxes of heat and freshwater at the sea surface to the resulting distribution of seawater among categories such as warm and salty or cold and salty. The method exploits the laws that govern how heat and salt change when water mixes. The method will allow the climate community to improve estimates of how much heat the ocean is absorbing and how rainfall and evaporation are changing across the globe.
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024, https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Short summary
Mixing is a crucial aspect of the ocean, but its accurate representation in computer simulations is made challenging by errors that result in unwanted mixing, compromising simulation realism. Here we illustrate the spurious effect that tides can have on simulations of south-east Asia. Although they play an important role in determining the state of the ocean, they can increase numerical errors and make simulation outputs less realistic. We also provide insights into how to reduce these errors.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024, https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Short summary
Autonomous profiling floats have provided unprecedented observational coverage of the global ocean, but uncertainties remain about whether their sampling frequency and density capture the true spatiotemporal variability of physical, biogeochemical, and biological properties. Here, we present the novel synthetic biogeochemical float capabilities of the Energy Exascale Earth System Model version 2 and demonstrate their utility as a test bed to address these uncertainties.
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2068, https://doi.org/10.5194/egusphere-2024-2068, 2024
Short summary
Short summary
HIDRA3 is a novel deep-learning model for predicting sea levels and storm surges, offering significant improvements over previous models and numerical simulations. It utilizes data from multiple tide gauges, enhancing predictions even with limited historical data and during sensor outages. With its advanced architecture, HIDRA3 outperforms the current state-of-the-art models by achieving up to 15 % lower mean absolute error, proving effective for coastal flood forecasting in diverse conditions.
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024, https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
Short summary
Accurate and timely forecasting of ocean waves is of great importance to the safety of marine transportation and offshore engineering. In this study, GPU-accelerated computing is introduced in WAve Modeling Cycle 6 (WAM6). With this effort, global high-resolution wave simulations can now run on GPUs up to tens of times faster than the currently available models can on a CPU node with results that are just as accurate.
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024, https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
Short summary
Nearshore ocean models often lack complete information about freshwater fluxes due to numerous ungauged rivers and streams. We tested a simple rain-based hydrological model as inputs into an ocean model of Quatsino Sound, Canada, with the aim of improving the representation of the land–ocean connection in the nearshore model. Through multiple tests, we found that the performance of the ocean model improved when providing 60 % or more of the freshwater inputs from the simple runoff model.
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024, https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Short summary
The ocean absorbs carbon dioxide from the atmosphere, mitigating climate change, but estimates of the uptake do not always agree. There is a need to reconcile these differing estimates and to improve our understanding of ocean carbon uptake. We present a new method for estimating ocean carbon uptake and test it with model data. The method effectively diagnoses the ocean carbon uptake from limited data and therefore shows promise for reconciling different observational estimates.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024, https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary
Short summary
The carbonate system is typically studied using measurements, but modeling can contribute valuable insights. Using a biogeochemical model, we propose a new representation of total alkalinity, dissolved inorganic carbon, pCO2, and pH in a highly dynamic Mediterranean coastal area, the Bay of Marseille, a useful addition to measurements. Through a detailed analysis of pCO2 and air–sea CO2 fluxes, we show that variations are strongly impacted by the hydrodynamic processes that affect the bay.
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
EGUsphere, https://doi.org/10.5194/egusphere-2024-1372, https://doi.org/10.5194/egusphere-2024-1372, 2024
Short summary
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the oceans’ capture of atmospheric carbon dioxide which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
Xuanxuan Gao, Shuiqing Li, Dongxue Mo, Yahao Liu, and Po Hu
Geosci. Model Dev., 17, 5497–5509, https://doi.org/10.5194/gmd-17-5497-2024, https://doi.org/10.5194/gmd-17-5497-2024, 2024
Short summary
Short summary
Storm surges generate coastal inundation and expose populations and properties to danger. We developed a novel storm surge inundation model for efficient prediction. Estimates compare well with in situ measurements and results from a numerical model. The new model is a significant improvement on existing numerical models, with much higher computational efficiency and stability, which allows timely disaster prevention and mitigation.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-100, https://doi.org/10.5194/gmd-2024-100, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents a novel modeling approach for understanding microplastic transport in coastal waters. The model accurately replicates experimental data and reveals key transport mechanisms. The findings enhance our knowledge of how microplastics move in nearshore environments, aiding in coastal management and efforts to combat plastic pollution globally.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Short summary
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.
Xiaoyu Fan, Baylor Fox-Kemper, Nobuhiro Suzuki, Qing Li, Patrick Marchesiello, Peter P. Sullivan, and Paul S. Hall
Geosci. Model Dev., 17, 4095–4113, https://doi.org/10.5194/gmd-17-4095-2024, https://doi.org/10.5194/gmd-17-4095-2024, 2024
Short summary
Short summary
Simulations of the oceanic turbulent boundary layer using the nonhydrostatic CROCO ROMS and NCAR-LES models are compared. CROCO and the NCAR-LES are accurate in a similar manner, but CROCO’s additional features (e.g., nesting and realism) and its compressible turbulence formulation carry additional costs.
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-58, https://doi.org/10.5194/gmd-2024-58, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We developed a physical ocean model called the Hindcast of the Salish Sea (HOTSSea) that recreates conditions throughout the Salish Sea from 1980 to 2018, filling in the gaps in patchy measurements. The model predicts physical ocean properties with sufficient accuracy to be useful for a variety of applications. The model corroborates observed ocean temperature trends and was used to examine areas with few observations. Results indicate that some seasons and areas are warming faster than others.
Jilian Xiong and Parker MacCready
Geosci. Model Dev., 17, 3341–3356, https://doi.org/10.5194/gmd-17-3341-2024, https://doi.org/10.5194/gmd-17-3341-2024, 2024
Short summary
Short summary
The new offline particle tracking package, Tracker v1.1, is introduced to the Regional Ocean Modeling System, featuring an efficient nearest-neighbor algorithm to enhance particle-tracking speed. Its performance was evaluated against four other tracking packages and passive dye. Despite unique features, all packages yield comparable results. Running multiple packages within the same circulation model allows comparison of their performance and ease of use.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024, https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Short summary
Here a new method of modelling the interaction between ocean currents and waves is presented. We developed an advanced coupling of two models, one for ocean currents and one for waves. In previous couplings, some wave-related calculations were based on simplified assumptions. Our method uses more complex calculations to better represent wave–current interactions. We tested it in a macro-tidal coastal area and found that it significantly improves the model accuracy, especially during storms.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024, https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024, https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary
Short summary
We present a new way of solving the quasi-geostrophic (QG) equations, a simple set of equations describing ocean dynamics. Our method is solely based on the numerical methods used to solve the equations and requires no parameter tuning. Moreover, it can handle non-rectangular geometries, opening the way to study QG equations on realistic domains. We release a PyTorch implementation to ease future machine-learning developments on top of the presented method.
Zheqi Shen, Yihao Chen, Xiaojing Li, and Xunshu Song
Geosci. Model Dev., 17, 1651–1665, https://doi.org/10.5194/gmd-17-1651-2024, https://doi.org/10.5194/gmd-17-1651-2024, 2024
Short summary
Short summary
Parameter estimation is the process that optimizes model parameters using observations, which could reduce model errors and improve forecasting. In this study, we conducted parameter estimation experiments using the CESM and the ensemble adjustment Kalman filter. The obtained initial conditions and parameters are used to perform ensemble forecast experiments for ENSO forecasting. The results revealed that parameter estimation could reduce analysis errors and improve ENSO forecast skills.
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024, https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Short summary
This article presents an overview of the development and implementation of Great Lake Wave Unstructured (GLWUv2.0), including the core model and workflow design and development. The validation was conducted against in situ data for the re-forecasted duration for summer and wintertime (ice season). The article describes the limitations and challenges encountered in the operational environment and the path forward for the next generation of wave forecast systems in enclosed basins like the GL.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Jin-Song von Storch, Eileen Hertwig, Veit Lüschow, Nils Brüggemann, Helmuth Haak, Peter Korn, and Vikram Singh
Geosci. Model Dev., 16, 5179–5196, https://doi.org/10.5194/gmd-16-5179-2023, https://doi.org/10.5194/gmd-16-5179-2023, 2023
Short summary
Short summary
The new ocean general circulation model ICON-O is developed for running experiments at kilometer scales and beyond. One targeted application is to simulate internal tides crucial for ocean mixing. To ensure their realism, which is difficult to assess, we evaluate the barotropic tides that generate internal tides. We show that ICON-O is able to realistically simulate the major aspects of the observed barotropic tides and discuss the aspects that impact the quality of the simulated tides.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
Short summary
Short summary
We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
Pengcheng Wang and Natacha B. Bernier
Geosci. Model Dev., 16, 3335–3354, https://doi.org/10.5194/gmd-16-3335-2023, https://doi.org/10.5194/gmd-16-3335-2023, 2023
Short summary
Short summary
Effects of sea ice are typically neglected in operational flood forecast systems. In this work, we capture these effects via the addition of a parameterized ice–ocean stress. The parameterization takes advantage of forecast fields from an advanced ice–ocean model and features a novel, consistent representation of the tidal relative ice–ocean velocity. The new parameterization leads to improved forecasts of tides and storm surges in polar regions. Associated physical processes are discussed.
Yue Xu and Xiping Yu
Geosci. Model Dev., 16, 2811–2831, https://doi.org/10.5194/gmd-16-2811-2023, https://doi.org/10.5194/gmd-16-2811-2023, 2023
Short summary
Short summary
An accurate description of the wind energy input into ocean waves is crucial to ocean wave modeling, and a physics-based consideration of the effect of wave breaking is absolutely necessary to obtain such an accurate description, particularly under extreme conditions. This study evaluates the performance of a recently improved formula, taking into account not only the effect of breaking but also the effect of airflow separation on the leeside of steep wave crests in a reasonably consistent way.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Cited articles
Andreu-Burillo, I., Brassington, G., Oke, P., and Beggs, H.: Including a new data stream in the BLUElink Ocean Data Assimilation System, Aust. Meteorol. Ocean., 59, 77–86, 2010.
Australian National Facility for Ocean Gliders: Data Management, Integrated Marine Observing System, available at: http://anfog.ecm.uwa.edu.au/ (last access: 24 October 2016), 2012.
Bennett, A. F.: Inverse Modeling of the Ocean and Atmosphere, Cambridge Univ. Press, 2002.
Broquet, G., Edwards, C. A., Moore, A., Powell, B. S., Veneziani, M., and Doyle, J. D.: Application of 4D-Variational data assimilation to the California Current System, Dynam. Atmos. Oceans, 48, 69–92, 2009.
Cetina Heredia, P., Roughan, M., Van Sebille, E., and Coleman, M.: Long-term trends in the East Australian Current separation latitude and eddy driven transport, J. Geophys. Res., 119, 4351–4366, https://doi.org/10.1002/2014JC010071, 2014.
Chapman, D. C.: Numerical treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model, J. Phys. Oceanogr., 15, 1060–1075, 1985.
CNES: SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products, AVISO Sateliitle Altimetry Data, 2015.
Courtier, P.: Dual formulation of four-dimensional variational assimilation, Q. J. Roy. Meteor. Soc, 123, 2449–2461, 1997.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, 2005.
Di Lorenzo, E., Moore, A. M., Arango, H. G., Cornuelle, B. D., Miller, A. J., Powell, B. S., Chua, B. S., and Bennett, A. F.: Weak and Strong Constraint Data Assimilation in the inverse Regional Ocean Modelling System (ROMS): development and application for a baroclinic coastal upwelling system, Ocean Modell., 16, 160–187, 2007.
Everett, J. D., Baird, M. E., Oke, P. R., and Suthers, I. M.: An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea, Geophys. Res. Lett., 39, L16608, https://doi.org/10.1029/2012GL053091, 2012.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res., 101, 3747–3764, 1996.
Feron, R. C. V.: The southern ocean western boundary currents: Comparison of fine resolution Antarctic model results with Geosat altimeter data, J. Geophys. Res., 100, 4959–4975, 1995.
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks, Annu. Rev. Fluid Mech., 41, 253–282, 2009.
Flather, R. A.: A tidal model of the northwest European continental shelf, Mem. Soc. R. Sci. Liege, 6, 141–164, 1976.
Gordon, A. L., Horai, K. I., and Donn, M.: Southern hemisphere western boundary current variability revealed by GEOS 3 altimeter, J. Geophys. Res., 88, 755–762, 1983.
Haidvogel, D. and Beckmann, A.: Numerical Ocean Circulation Modeling, Imperial College Press, 1999.
Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., and Shchepetkin, A. F.: Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates, Dynam. Atmos. Oceans, 32, 239–281, 2000.
Haney, R. L.: On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean Models, J. Phys. Oceanogr., 21, 610–619, 1991.
Janeković, I., Powell, B. S., Matthews, D., McManus, M. A., and Sevadjian, J.: 4D-Var Data Assimilation in a Nested, Coastal Ocean Model: A Hawaiian Case Study, J. Geophys. Res., 118, 1–14, https://doi.org/10.1002/jgrc.20389, 2013.
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woolen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP/NCAR 50-Year Reanalysis, B. Am. Meteorol. Soc., 82, 247–268, 2001.
Macdonald, H. S., Roughan, M., Baird, M. E., and Wilkin, J.: A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy, J. Geophys. Res., 118, 301–315, https://doi.org/10.1029/2012JC008386, 2013.
Macdonald, H. S., Roughan, M., Baird, M. E., and Wilkin, J.: The formation of a cold-core eddy in the East Australian Current, Cont. Shelf Res., 114, 72–84, https://doi.org/10.1016/j.csr.2016.01.002, 2016.
Mata, M. M., Tomczak, M., Wijffels, S. E., and Church, J. A.: East Australian Current volume transports at 30° S: Estimates from the World Ocean Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current meter array, J. Geophys. Res., 105, 28509–28526, 2000.
Mata, M. M., Wijffels, S. E., Church, J. A., and Tomczak, M.: Eddy shedding and energy conversions in the East Australian Current, J. Geophys. Res., 111, C09034, https://doi.org/10.1029/2006JC003592, 2006.
Matthews, D., Powell, B. S., and Janeković, I.: Analysis of Four-dimensional Variational State Estimation of the Hawaiian Waters, J. Geophys. Res., 117, C03013, https://doi.org/10.1029/2011JC007575, 2012.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Ge., 20, 851–875, 1982.
Mellor, G. L., Ezer, T., and Oey, L. Y.: The pressure gradient error conundrum of sigma coordinate ocean models, J. Atmos. Ocean. Tech., 11, 1126–1134, 1994.
Moore, A., Arango, H. G., Di Lorenzo, E., Miller, A. J., and Cornuelle, B. D.: An Adjoint Sensitivity Analysis of the Southern California Current Circulation and Ecosystem, J. Phys. Oceanogr., 39, 702–720, 2009.
Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B. S., Foley, D., Doyle, J., Costa, D., and Robinson, P.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part II – Performance and application to the California Current System, Prog. Oceanog., 91, 50–73, https://doi.org/10.1016/j.pocean.2011.05.003, 2011a.
Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B. S., Foley, D., Doyle, J., Costa, D., and Robinson, P.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part III – Observation impact and observation sensitivity in the California Current System, Prog. Oceanogr., 91, 74–94, https://doi.org/10.1016/j.pocean.2011.05.005, 2011b.
Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Zavala-Garay, J., and Weaver, A. T.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I – System overview and formulation, Prog. Oceanogr., 91, 34–49, https://doi.org/10.1016/j.pocean.2011.05.004, 2011c.
O'Kane, T. J., Oke, P. R., and Sandery, P. A.: Predicting the East Australian Current, Ocean Modell., 38, 251–266, 2011.
Oke, P., Sakov, P., Cahill, M. L., Dunn, J. R., Fiedler, R., Griffin, D. A., Mansbridge, J. V., Ridgway, K. R., and Schiller, A.: Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3, Ocean Modell., 67, 52–70, 2013.
Oke, P. R. and Middleton, J. H.: Topographically Induced Upwelling off Eastern Australia, J. Phys. Oceanogr., 30, 512–530, 2000.
Oke, P. R. and Sakov, P.: Representation Error of Oceanic Observations for Data Assimilation, J. Atmos. Ocean. Techn., 25, 1004–1017, 2008.
Oke, P. R. and Sakov, P.: Assessing the footprint of a regional ocean observing system, J. Marine Syst., 105–108, 30–51, 2012.
Oke, P. R., Schiller, A., Griffin, D. A., and Brassington, G. B.: Ensemble data assimilation for an eddy-resolving ocean model of the Australian region, Q. J. Roy. Meteor. Soc, 131, 3301–3311, 2005.
Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink ocean data assimilation system (BODAS), Ocean Modell., 21, 46–70, 2008.
Powell, B. S. and Moore, A. M.: Estimating the 4DVAR analysis error of GODAE products, Ocean Dynam., 59, 121–138, 2008.
Powell, B. S., Arango, H. G., Moore, A. M., Di Lorenzo, E., Milliff, R. F., and Foley, D.: 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS), Ocean Modell., 25, 173–188, 2008.
Powell, B. S., Janekovic, I., Carter, G. S., and Merrifield, M. A.: Sensitivity of Internal Tide Generation in Hawaii, Geophys. Res. Lett., 39, L10606, https://doi.org/10.1029/2012GL051724, 2012.
Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Logan, L., Naughton, M., Tingwell, C., Xiao, Y., Barras, V., Bermous, I., Bowen, R., Deschamps, L., Franklin, C., Fraser, J., Glowacki, T., Harris, B., Lee, J., Le, T., Roff, G., Sulaiman, A., Sims, H., Sun, X., Sun, Z., Zhu, H., Chattopadhyay, M., and Engel, C.: Operational implementation of the ACCESS Numerical Weather Prediction system, Austr. Meteorol. Oceanogr. J., 63, 265–284, 2013.
Ridgway, K. and Godfrey, J.: Seasonal cycle of the East Australian Current, J. Geophys. Res., 102, 22921–22936, 1997.
Ridgway, K. and Hill, K.: The East Australian Current, A Marine Climate Change Impacts and Adaption Report Card for Australia 2009, NCCARF Publication, 2009.
Ridgway, K., Dunn, J., and Wilkin, J.: Ocean interpolation by four-dimensional least squares -Application to the waters around Australia, J. Atmos. Ocean. Tech., 19, 1357–1375, 2002.
Roughan, M. and Morris, B.: Using high-resolution ocean timeseries data to give context to long term hydrographic sampling off Port Hacking, NSW, Australia, MTS/IEEE Kona Conference, OCEANS'11 (Conference Paper), 6107032, 2011.
Roughan, M., Oke, P. R., and Middleton, J. H.: A modeling study of the Climatological current field and the trajectories of upwelled particles in the East Australian current, J. Phys. Oceanogr., 33, 2551–2564, 2003.
Schaeffer, A., Roughan, M., Jones, E. M., and White, D.: Physical and biogeochemical spatial scales of variability in the East Australian Current separation from shelf glider measurements, Biogeosciences, 13, 1967–1975, https://doi.org/10.5194/bg-13-1967-2016, 2016.
Shchepetkin, A. F. and McWilliams, J. C.: Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation, Mon. Weather Rev., 126, 1541–1580, 1998.
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate, J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047, 2003.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modell., 9, 347–404, 2005.
Sloyan, B. M., Ridgway, K. R., and Cowley, R.: The East Australian Current and Property Transport at 27S from 2012–2013, J. Phys. Oceanogr., 46, 993–1008, 2016.
Souza, J., Powell, B. S., Castillo-Trujillo, A. C., and Flament, P.: The Vorticity Balance of the Ocean Surface in Hawaii from a Regional Reanalysis, J. Phys. Oceanogr., 45, 424–440, 2014.
Stammer, D.: Global Characteristics of Ocean Variability Estimated from Regional TOPEX/ POSEIDON Altimeter Measurements, J. Phys. Oceanogr., 27, 1743–1769, 1997.
Wajsowicz, R. C.: A Consistent Formulation of the Anisotropic Stress Tensor for Use in Models of the Large-Scale Ocean Circulation, J. Comput. Phys., 105, 333–338, 1993.
Weaver, A. and Courtier, P.: Correlation modelling on the sphere using generalized diffusion equation., Q. J. Roy. Meteor. Soc., 127, 1815–1846, 2001.
Weaver, A., Vialard, J., and Anderson, D.: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks, Mon. Weather Rev., 131, 1360–1378, 2003.
Whiteway, T.: Australian Bathymetry and Topography Grid. Scale 1:5000000, Geoscience Australia, Canberra, 2009.
Wilkin, J. L., Bowen, M. M., and Emery, W. J.: Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data, Ocean Dynam., 52, 95–103, 2002.
Wyatt, L. R.: Error analysis for ACORN HF radars, Integrated Marine Observing System – Australian Coastal Ocean Radar Network, ACORN report 2014-2, 2014.
Zavala-Garay, J., Wilkin, J. L., and Arango, H. G.: Predictability of mesoscale variability in the East Australian Current given strong-constraint data assimilation, J. Phys. Oceanogr., 42, 1402–1420, 2012.
Short summary
Ocean circulation drives weather and climate and supports marine ecosystems, so providing accurate predictions is important. The ocean circulation is complex, 3-D and highly variable, and its prediction requires advanced numerical models combined with real-time measurements. Focusing on the dynamic East Austr. Current, we use novel mathematical techniques to combine an ocean model with measurements to better estimate the circulation. This is an important step towards improving ocean forecasts.
Ocean circulation drives weather and climate and supports marine ecosystems, so providing...