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Abstract. As with other Western Boundary Currents glob-
ally, the East Australian Current (EAC) is highly variable
making it a challenge to model and predict. For the EAC re-
gion, we combine a high-resolution state-of-the-art numeri-
cal ocean model with a variety of traditional and newly avail-
able observations using an advanced variational data assimi-
lation scheme. The numerical model is configured using the
Regional Ocean Modelling System (ROMS 3.4) and takes
boundary forcing from the BlueLink ReANalysis (BRAN3).
For the data assimilation, we use an Incremental Strong-
Constraint 4-Dimensional Variational (IS4D-Var) scheme,
which uses the model dynamics to perturb the initial con-
ditions, atmospheric forcing, and boundary conditions, such
that the modelled ocean state better fits and is in balance with
the observations. This paper describes the data assimilative
model configuration that achieves a significant reduction of
the difference between the modelled solution and the obser-
vations to give a dynamically consistent “best estimate” of
the ocean state over a 2-year period. The reanalysis is shown
to represent both assimilated and non-assimilated observa-
tions well. It achieves mean spatially averaged root mean
squared (rms) residuals with the observations of 7.6 cm for
sea surface height (SSH) and 0.4 ◦C for sea surface tempera-
ture (SST) over the assimilation period. The time-mean rms
residual for subsurface temperature measured by Argo floats
is a maximum of 0.9 ◦C between water depths of 100 and
300 m and smaller throughout the rest of the water column.
Velocities at several offshore and continental shelf moorings

are well represented in the reanalysis with complex corre-
lations between 0.8 and 1 for all observations in the upper
500 m. Surface radial velocities from a high-frequency radar
array are assimilated and the reanalysis provides surface ve-
locity estimates with complex correlations with observed ve-
locities of 0.8–1 across the radar footprint. A comparison
with independent (non-assimilated) shipboard conductivity
temperature depth (CTD) cast observations shows a marked
improvement in the representation of the subsurface ocean
in the reanalysis, with the rms residual in potential density
reduced to about half of the residual with the free-running
model in the upper eddy-influenced part of the water col-
umn. This shows that information is successfully propagated
from observed variables to unobserved regions as the assim-
ilation system uses the model dynamics to adjust the model
state estimate. This is the first study to generate a reanalysis
of the region at such a high resolution, making use of an un-
precedented observational data set and using an assimilation
method that uses the time-evolving model physics to adjust
the model in a dynamically consistent way. As such, the re-
analysis potentially represents a marked improvement in our
ability to capture important circulation dynamics in the EAC.
The reanalysis is being used to study EAC dynamics, obser-
vation impact in state-estimation, and as forcing for a variety
of downscaling studies.
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1 Introduction

The East Australian Current (EAC) is the Western Boundary
Current (WBC) of the South Pacific subtropical gyre, flow-
ing poleward along the east coast of Australia. The EAC has
the weakest mean flow of the WBCs associated with the sub-
tropical gyres (Mata et al., 2000) but its flow is characterised
by high eddy variability (Mata et al., 2006) comparable with
stronger WBCs such as the Gulf Stream, the Kuroshio and
the Agulhas Current (e.g. Gordon et al., 1983; Feron, 1995).
The EAC forms in the South Coral Sea (15–24◦ S) and in-
tensifies as it flows along the coast of south-east Queensland
and northern New South Wales (NSW) (22–35◦ S) – refer to
Fig. 1 for geographical location. The current strengthens as
the continental shelf narrows to 15 km at its narrowest point
(31◦ S) and typically separates from the coast between 31 and
33◦ S (Cetina Heredia et al., 2014). Turning eastward to form
the Tasman Front, the current sheds large warm- and cold-
core eddies in the Tasman Sea every 90–110 days (Oke and
Middleton, 2000; Cetina Heredia et al., 2014). The high eddy
variability makes the EAC a challenging system to observe
and predict.

In general, the kinetic energy of the ocean is dominated
by submesoscale and mesoscale eddies that fluctuate on
timescales of days to months and on spatial scales of tens
to hundreds of kilometres and exceeds the mean flow by
1 order of magnitude or more (Stammer, 1997; Ferrari and
Wunsch, 2009). Eddies are typically generated by barotropic
or baroclinic instabilities, which are difficult to forecast;
therefore, effective state-estimation and prediction of the
mesoscale circulation requires data assimilation techniques
that combine ocean observations with a dynamical model.
Much of the effort towards data assimilative modelling of
the EAC region has been part of the development of Aus-
tralia’s Bluelink Ocean Data Assimilation System (BODAS)
(Oke et al., 2005, 2008, 2013) which uses an Ensemble Op-
timal Interpolation (EnOI)-based scheme. The BODAS has
been a useful and relatively efficient method to provide ocean
state estimates of the Australian region. EnOI uses long-run
statistics to generate the covariance of model points and as-
similates observations at a single time to generate adjusted
initial conditions for each assimilation window. O’Kane et al.
(2011) present an ensemble prediction study of the EAC re-
gion and identify regions of instability associated with the
Tasman Front and EAC extension.

In this work we use Incremental Strong-constraint 4-
Dimensional Variational data assimilation (IS4D-Var), which
generates increments to adjust the model initial conditions,
boundary and surface forcings such that the difference be-
tween the model solution of the time-evolving flow and all
available observations is minimised over an assimilation in-
terval. The 4D-Var scheme uses the linearised model equa-
tions and their adjoint to compute the increment adjustments,
such that the model is adjusted in a dynamically consis-
tent way to minimise the difference between the observa-

tions and the modelled time-evolving ocean state. Using the
linearised equations allows dynamical connections between
state variables to propagate information from observed vari-
ables to unobserved, dynamically linked variables. Because
the linearised version of the governing equations is used,
rather than the full nonlinear version, the assimilation inter-
val length is limited such that the linear assumption remains
reasonably valid and the nonlinearities do not grow too large.
The state estimate is a solution of the model equations, and
the minimisation process can be used to understand the sensi-
tivity of the modelled ocean circulation to initial conditions,
boundary and surface forcing, and model parameters (e.g.
Moore et al., 2009; Powell et al., 2012). Zavala-Garay et al.
(2012) used 4D-Var with ROMS to assimilate sea surface
height (SSH), sea surface temperature (SST), and Expend-
able Bathythermograph (XBT) observations into a coarse-
resolution (18–30 km) model of the EAC region. They use an
empirical relationship between surface and subsurface prop-
erties to help propagate the dominant surface observations to
the subsurface and improve their subsurface estimates.

Combining a state-of-the-art numerical ocean model with
a variety of traditional and newly available observations, we
generate a high-resolution ocean state estimate of the EAC
region over a 2-year period (January 2012-December 2013).
This paper describes the development and evaluation of the
data assimilative model configuration. We begin by config-
uring a numerical model of the EAC region that is capable
of representing the mean ocean circulation and its eddy vari-
ability. The model is configured to resolve the continental
shelf, which is 15 km wide at its narrowest point and may be
important in accelerating the EAC and driving the current’s
separation (Oke and Middleton, 2000). In order to correctly
represent the spatial and temporal evolution of the eddy field,
we need to constrain the model with observations. We con-
figure a 4D-Var data assimilation system that reduces the dif-
ference between the model solution and observations, given
prior assumptions of the uncertainties in the observations and
the model background state. In addition to the traditional data
streams (satellite-derived SSH and SST, Argo profiling floats
and XBT lines), we exploit newly available observations that
were collected as part of Australia’s Integrated Marine Ob-
serving System (IMOS; www.imos.org.au). These include
velocity and hydrographic observations from a deep-water
mooring array and several moorings on the continental shelf,
high-frequency radar observations, and ocean gliders.

We show that the assimilation configuration developed in
this work results in a significant reduction of the differences
between the modelled solution and the observations. As such,
the reanalysis provides us with a “best estimate” of the ocean
state that is dynamically consistent within each assimilation
time window. The reanalysis is being used to study the vari-
ability and separation dynamics of the EAC. Furthermore,
the 4D-Var method allows us to use the reanalysis to quantify
the impact of particular data streams on circulation estimates,
which has the potential to provide important information for
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Figure 1. Model domain and bathymetry with the 100, 200, (bold) and 2000 m contours. Australian states are labelled and main towns are
labelled and shown by the red diamonds. A sketch of the EAC is overlain showing the typical separation latitude and the Tasman Front.

assessing and improving the observing system design. The
product is also being used as boundary forcing for a variety of
downscaling studies in coastal south-eastern Australia. This
data assimilative model represents a significant improvement
on previous modelling work in the EAC for these purposes:
e.g. Roughan et al. (2003), which was based on climatology;
Macdonald et al. (2013, 2016), which focused on process
studies of warm core and cold core eddies; and Zavala-Garay
et al. (2012), which used 4D-Var with a much coarser reso-
lution.

The reanalysis development and evaluation is presented as
follows. In Sect. 2, we describe the numerical model config-
uration, including validation of a 10-year free-running simu-
lation to provide confidence that the model is correctly repre-
senting the region’s circulation dynamics. In Sect. 3, we de-
scribe the development of the reanalysis, including the data
assimilation scheme used, the assimilation configuration and
the observations. The reanalysis performance is evaluated in
Sect. 4 using a variety of metrics to illustrate the system’s
skill. A summary and conclusions are presented in Sect. 5.

2 Numerical model

2.1 Model configuration

We use the Regional Ocean Modeling System (ROMS,
version 3.4) to simulate the atmospherically forced eddy-
ing ocean circulation off the south-eastern coast of Aus-
tralia. ROMS is a free-surface, hydrostatic, primitive equa-
tion ocean model solved on a curvilinear grid with a terrain-
following vertical coordinate system (Shchepetkin and
McWilliams, 2005). For computational efficiency, ROMS
uses a split-explicit time-stepping scheme allowing for the
barotropic solution to be computed at a much smaller time
step than is used for the (slow-mode) baroclinic equations,
using a temporal averaging filter to ensure preservation of
tracers and momentum and minimise aliasing of unresolved
barotropic signals into the baroclinic motions (Shchepetkin
and McWilliams, 2005). The ROMS computational kernel
is further described in Shchepetkin and McWilliams (1998,
2003).

Sub-grid-scale horizontal mixing of momentum and trac-
ers uses a harmonic (3-point stencil) mixing operator (Haid-
vogel and Beckmann, 1999), and the viscosity is derived
from the horizontal divergence of the deviatory stress ten-
sor (Wajsowicz, 1993). The diffusion and viscosity coeffi-
cients are scaled by grid size such that less explicit diffu-
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sion occurs in the high-resolution region than in the lower-
resolution region. The Mellor and Yamada (1982) level-2.5,
second-moment turbulence closure scheme (MY2.5) is used
in parameterising vertical turbulent mixing of momentum
and tracers.

The model domain (shown in Fig. 1) extends from Fraser
Island in the north (25.25◦ S) to below the NSW–Victoria
border in the south (41.55◦ S) and nearly 1000 km offshore.
The northern boundary is chosen at a latitude where the EAC
remains fairly coherent and is upstream of the region of el-
evated eddy variability (refer to Fig. 2a). The grid is rotated
20◦ clockwise such that it is orientated predominantly along-
shore in the y dimension and cross-shore in the x dimen-
sion. The model has a variable horizontal resolution in the
cross-shore direction, with 2.5 km (1/44◦) over the continen-
tal shelf and slope that gradually increases to 6 km (1/18◦)
in the open ocean. The horizontal resolution is 5 km (1/22◦)
in the along-shore direction. The model is configured with
30 vertical s-layers distributed with a higher resolution in the
upper 500 m to resolve the wind-driven mesoscale circula-
tion and near the bottom for improved resolution of the bot-
tom boundary layer. The vertical stretching scheme of Souza
et al. (2014) is used, which ensures a constant-depth surface
layer to better represent satellite-derived SST, better resolve
the ocean surface currents, and reduce the representation er-
ror of radio-measured surface currents. The bathymetry for
the model was obtained from the 50 m multibeam data set
for Australia from Geoscience Australia (Whiteway, 2009).

In models using terrain-following coordinate systems,
steep topographic gradients generate numerical errors asso-
ciated with the computation of the pressure gradient term
resulting in artificial along-slope flows (Haney, 1991; Mel-
lor et al., 1994). These errors depend on the topographic
steepness and the intensity of the stratification (Haidvogel
et al., 2000). The variable cross-shore resolution improves
the bathymetric resolution over the continental shelf and
minimises pressure gradient errors over the steep topogra-
phy of the continental slope, while reducing computational
expense by allowing coarser resolution in the deep ocean.
ROMS is effective at minimising these horizontal pressure
gradient (HPG) errors (Shchepetkin and McWilliams, 2003);
conversely, a certain degree of topographic smoothing is usu-
ally still desirable. For this study, a smoothing method has
been applied in which a high priority is placed on main-
taining the width of the continental shelf and preserving the
seamounts that potentially play a role in steering of the EAC,
while minimising HPG errors to an acceptable level. Accu-
rate representation of the continental shelf was considered
paramount as the shelf is thought to have an important influ-
ence on the EAC (e.g. Oke and Middleton, 2000).

The model uses initial conditions and boundary forcing
from the BlueLink ReANalysis version 3p5 (BRAN3; Oke
et al., 2013). BRAN is a multi-year integration of the Ocean
Forecasting Australian Model (OFAM) and the Bluelink
Ocean Data Assimilation System (BODAS; Oke et al., 2008).

The boundary forcing is applied daily. The Chapman condi-
tion (Chapman, 1985) is applied to the free surface and the
Flather condition (Flather, 1976) is applied to the barotropic
velocity so that barotropic energy is effectively transmitted
out of the domain. For the free-running model, the baroclinic
southern boundary conditions are clamped to the BRAN3
boundary conditions to ensure accurate representation of the
outflow to the south of the domain. Radiation conditions are
applied to the east and west boundaries. For the assimilation,
the baroclinic boundary conditions at all three ocean bound-
aries are clamped to the BRAN3 boundary conditions. Baro-
clinic energy that does not match the BRAN3 condition is
absorbed at the boundaries using a flow-relaxation scheme
involving a sponge layer over which viscosity and diffusiv-
ity are increased linearly by a factor of 10 from the values
applied within the model domain for the northern and east-
ern boundaries, and a factor of 20 for the southern boundary.
The size of the sponge layer is 12 grid cells (approximately
60 km). Because the BRAN3 system is run with different at-
mospheric forcing than we use, a correction was applied to
the surface heat flux forcing such that the SST from BRAN3
is in balance with the atmospheric surface forcing for each
month. This correction is applied so that the surface heat flux
applied through the atmospheric forcing is in balance with
BRAN3, which is providing the open-boundary forcing.

We begin by configuring a 10-year free-running simula-
tion (hereafter referred to as the “10 yr free run”) to ensure
that the model is capable of representing the mean ocean cir-
culation and its variability. The 10 yr free run is also used to
provide estimates of background variability to compute back-
ground error covariances for the assimilation scheme, and
the 10-year-mean SSH field is used for addition of sea level
anomaly (SLA) observations for assimilation into the model.
For the 10 yr free run, we use atmospheric forcing from the
National Center for Environmental Prediction (NCEP) re-
analysis atmospheric model (Kistler et al., 2001). The atmo-
spheric forcing fields are specified every 6 h and used to com-
pute the surface wind stress and surface net heat and fresh-
water fluxes using the bulk flux parameterisation of Fairall
et al. (1996). A higher-resolution atmospheric product was
available for the 2-year reanalysis period. Atmospheric forc-
ing for the 2-year model used to develop the reanalysis is
provided by the 12 km resolution Bureau of Meteorology
(BOM) Australian Community Climate and Earth-System
Simulation (ACCESS) analysis (Puri et al., 2013) and the
forcing fields are specified every 6 h.

2.2 Consistency of free-running model

The 10 yr free run is performed from 2002 to 2011 as this is
the most recent period over which BRAN3 data were avail-
able at the time of model development for use as initial and
boundary forcing (BRAN3 more recently became available
for the reanalysis period, 2012–2013). Comparison of the
10 yr free run with observations provides validation of the
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Figure 2. Root mean squared (rms) SSH anomaly over 10-year period from AVISO (a), and ROMS 10 yr free run (b). Cross sections plotted
in Fig. 3 and used for transport calculations in Table 1 are plotted on panel (b).

ability of the model to represent the ocean dynamics in the
region. The model reproduces well the spatial patterns of the
time mean and variability of the mesoscale SSH; however,
it is not expected to be in phase with the observations (e.g.
the time and location of mesoscale eddies do not match).
Figure 2 shows that the mesoscale SSH variability is well
represented in the model compared to satellite-derived SSH
data from Archiving, Validation and Interpretation of Satel-
lite Oceanographic Data (AVISO) over the 10-year period.
This region of elevated SSH variability is consistent with
the regions of enhanced eddy amplitude and rotational speed
shown in Everett et al. (2012).

Mean cross-shore sections of alongshore velocity and tem-
perature for the 10-year modelled period reveal a south-
ward flowing EAC and the associated upslope thermocline
tilt (Fig. 3, top and middle panels). The sections shown cross
the coast near Brisbane, where the EAC is found to be most
coherent (27.5◦ S), at Coffs Harbour, just upstream of the
typical EAC separation zone (30.3◦ S) and at Sydney, down-
stream of the EAC separation zone (33.9◦ S) (Fig. 2b). The
mean temperature sections compare very well with the corre-
sponding mean temperature sections from BRAN3 over the
10-year period, as expected as the ROMS model receives its
boundary forcing from BRAN3. The mean temperature sec-
tions also match the corresponding mean temperature sec-
tions from the Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO) Atlas of Regional Seas clima-
tology well (CARS; Ridgway et al., 2002), shown in the bot-
tom panel of Fig. 3. There are some small differences, which
are not surprising given that the CARS data cover a longer
averaging period and is mapped at a much coarser horizontal
resolution (0.5◦). In particular, difference plots (not shown)
reveal some differences over the continental shelf and slope,
which is not well resolved by CARS. The comparison pro-
vides confidence that our ROMS model is representing the
mean thermal structure of the ocean well.

Table 1. Total full-water-column alongshore transport (Sv) through
27.5◦ S (EAC deep water array), 30.3◦ S (Coffs Harbour), and 33.9◦

(Sydney) cross-shore sections as shown in Fig. 3, computed daily
for the 10-year free-running model period. The transport is com-
puted for distances offshore of 266, 296, and 276 km, to span the
location of the main jet.

Transport (Sv)

EAC Array (27.5◦ S) mean −14.3
SD 28.4
min −97.9
max 59.5

Coffs Harbour (30.3◦ S) mean −21.9
SD 31.7
min −120.2
max 66.5

Sydney (33.9◦ S) mean −6.9
SD 39.2
min −163.0
max 117.8

Alongshore transport through the same three cross-shore
sections for the full water column is computed daily and
the mean, standard deviation, minimum and maximum trans-
ports are shown in Table 1. Mean transport at Coffs Harbour
is greater than upstream at 27.5◦ S due to recirculation, as
described by Ridgway and Hill (2009). The EAC typically
separates from the coast south of Coffs Harbour and mean
transport through the Sydney cross section is approximately
one-third of the transport at Coffs Harbour. This is consistent
with Ridgway and Godfrey (1997), who estimate that about
one-third of the current’s transport continues southward of
the separation zone. Mata et al. (2000) computed transport
from a mooring array located at 30◦ S, from the coast ex-
tending offshore to 154.4◦ E (a similar section to our Coffs
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Figure 3. Mean alongshore velocity from the ROMS 10 yr free run at the cross-shore sections that cross the coast at the EAC transport array
(27.5◦ S), Coffs Harbour (30.3◦ S), and Sydney (33.9◦ S), top row. Mean temperature from the ROMS 10 yr free run, middle row, and mean
temperature from CARS climatology, bottom row, for the same cross-shore sections.

Harbour section) between September 1991 and March 1994.
They find a mean total transport of 22.1 Sv southward with
an root mean squared (rms) variability of 30 Sv. This com-
pares well with the transport through the Coffs Harbour sec-
tion from the 10 yr free run, which has a mean of 21.9 Sv
poleward and a standard deviation of 31.7 Sv.

The model configuration is capable of producing the mean
dynamical features of the EAC and representing the SSH
variability. Thus, using 4D-Var data assimilation, we aim to
constrain the model with 2 years of observational data to ex-
amine the evolution of the EAC during this period.

3 Reanalysis development

3.1 Configuration

The reanalysis is configured for the 2-year period of 2012–
2013 because of the availability of significant observational
resources during this time; in particular, a mooring array de-
ployed to capture the transport of the EAC (as detailed in the
next section). The reanalysis model uses initial conditions
and boundary forcing from BRAN3 and atmospheric forc-
ing provided by the 12 km resolution BOM ACCESS anal-
ysis, which was not available over the 10 yr free-run test-
ing period described above. The simulation is spun-up over
a 1-month period before we begin assimilation on 1 Jan-
uary 2012. A surface heat flux correction was applied such

that the new atmospheric surface forcing is in balance with
SST from BRAN3 for each month. To ensure that the higher-
resolution atmospheric forcing did not significantly alter
the previous model comparison, we integrated the model
for two years without assimilation (hereafter referred to as
the “2 yr free run”) and compared the model-derived SST
with those from the advanced very-high-resolution radiome-
ter (AVHRR) satellite data. The 2 yr free-run model spatially
averaged SST and the spatially-averaged SST observations
exhibit a small net bias over the 2012–2013 period (0.28◦).
The temperature–salinity (T –S) diagram of data from Argo
floats over the 2-year reanalysis period matches well with the
corresponding T –S diagram for the 2 yr free-run output in-
terpolated onto the Argo float locations and times (Fig. 4).
This provides further confidence that the ROMS model con-
figuration is capable of simulating the vertical structure of
temperature and salinity in the region.

3.2 Data assimilation scheme

To generate the full reanalysis, we combine the model with
the observations in a way that uses the model physics to com-
pute increments in initial conditions, boundary, and surface
forcing to generate a state estimate that better fits the ob-
servations. In this regard, we are looking for the model to
represent the observations, not replicate the observations. If
the model is capable of representing all of the observations
in time and space using the physics of the model, then we

Geosci. Model Dev., 9, 3779–3801, 2016 www.geosci-model-dev.net/9/3779/2016/



C. Kerry et al.: A reanalysis of the East Australian Current region 3785

34 34.5 35 35.5 36
0

5

10

15

20

25

30

Salinity

T
em

pe
ra

tu
re

 (o C
)

 

 

Argo observations
ROMS free run

Figure 4. Temperature–salinity diagram for the Argo observations
and corresponding values from the 2 yr free run for 2012–2013.

should have the most complete description of the ocean state
available. To accomplish this, we use IS4D-Var. IS4D-Var
uses variational calculus to solve for increments in model
initial conditions, boundary conditions, and forcing such that
the difference between the modelled solution and all avail-
able observations is minimised – in a least-squares sense –
over the assimilation window. This is achieved by minimis-
ing an objective cost function, J , that measures normalised
deviations of the modelled ocean state from the observations
as well as from the modelled background state (the model
prior).

The forward integration of the nonlinear model equations,
given a prior estimate of the initial conditions, surface, and
boundary forcings, provides an estimate of the background
state. The evolution of the state vector, x, for times t =
t1, . . ., ti−1, ti, . . ., tn can be written as

x(ti)=M(ti, ti−1)(x(ti−1),f (ti),b(ti)), (1)

whereM represents the nonlinear model equations operating
on x(ti−1) and subject to forcing f (ti) and boundary condi-
tions b(ti). The initial time for each data assimilation cycle is
denoted by t0 and the model time step is ti−ti−1. The goal of
the assimilation system is to generate a vector of increments
that are added to the model initial conditions, boundary con-
ditions, and forcing such that the quadratic cost function,
J , is minimised. The increments describe departures of the
initial conditions, surface forcing, and open-boundary condi-
tions from those applied to the model prior, such that

x(t0)= xb(t0)+ δx(t0), (2)

f (ti)= f b(ti)+ δf (ti), (3)

b(ti)= bb(ti)+ δb(ti), (4)

where xb(t0) represents the background circulation initial
conditions and f b(ti) and bb(ti) are the background circula-
tion surface forcing and boundary conditions at t = ti respec-
tively. Because the increments δx, δf and δb are assumed to
be small relative to the background fields, they can be ap-
proximately described by the linearised model equations, re-
ferred to as the tangent-linear model. Utilising Bayesian in-
ference and assuming Gaussian uncertainties in the observa-
tions and model prior, we can formulate a cost function that is
a function of the increment adjustments. Following Courtier
(1997), we define the increment vector

δz= (δx(t0)
T ,δf T (t1), . . ., δf

T (tn),

δbT (t1), . . ., δb
T (tn))

T , (5)

representing the increments to the initial conditions (time t0),
and the surface forcing and boundary conditions for model
times t1 to tn. The cost function can then be written as

J (δz)=
1
2

n∑
i=0
(HiM(ti, t0)δz− d i)

T R−1
i (HiM(ti, t0)δz− d i)

+
1
2
(δz)T P−1(δz)= Jo+ Jb, (6)

where M(ti, t0) represents the tangent-linear version of the
nonlinear model equationsM, integrated from t0 to ti . The
difference between the modelled background state and the
observations is represented by the innovation vector, given
at each time ti by d i = yi −Hi(x

b(ti)); where y are the ob-
servations and Hi is the linear operator that interpolates the
background circulation to observation points in space and
time. R is the observation error covariance matrix and P is the
background error covariance matrix. The observation term of
the cost function, Jo, represents the difference between the
model and the observations, and is obtained by the squared
difference between the observations and the model given the
integration of the increment adjustment through the tangent-
linear model, weighted by the inverse of the observation error
covariance. Jb is given by the squared increment, weighted
by the inverse of the background error covariance matrix,
which describes the uncertainty in the initial conditions, sur-
face, and boundary forcing.

The first step of the assimilation procedure is the forward
integration of the nonlinear model equations to estimate the
background state (referred to as the first outer loop of the as-
similation methodology), from which the initial cost function
is computed. We seek to minimise the cost function by equat-
ing the gradient to zero. The gradient of the cost function is
given by

∇δzJ =

n∑
i=0

M(ti, t0)
THT

i R−1
i (HiM(ti, t0)δz− d i)

+P−1(δz), (7)

where M(ti, t0)
T is the adjoint of the tangent-linear model

equations. To compute the gradient, the tangent-linear model
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is integrated using the increment δz (for the first iteration,
δz= 0) and HiM(ti, t0)δz− d i is computed. The adjoint
model is then used to compute the first term of Eq. (7)
and ∇δxJ is computed. A Lanczos-based conjugate gradient
method is used to determine how far to step in the direction
of the gradient to reduce J and a new increment, δz, is gen-
erated. Subsequent integrations of the tangent-linear and ad-
joint models (referred to as the inner loops) are continued to
generate subsequent increments to minimise J . In practice,
the inner loops can be continued until J is reduced by a cer-
tain ratio or, as in this study, a set number of inner loops can
be completed that are found to give an acceptable reduction
in J . We do not find the true minimum of J , but rather an
acceptable reduction. After the last inner loop, the final in-
crement is applied to generate new initial conditions, bound-
ary and surface forcing. The new integration of the nonlinear
model, given the increment adjustments, completes the outer
loop. The final outer loop provides the “best estimate” of the
ocean state (the analysis), which is constrained to satisfy the
nonlinear model equations (strong-constraint) and better rep-
resent the observations over the assimilation window. The
analysis provides an improved estimate of the initial state for
the subsequent assimilation window.

An advantage of this assimilation method is that it makes
use of the dynamical connections between the model fields,
such that observed variables propagate information to unob-
served, dynamically linked variables. Because the linearised
model equations are used for the cost function minimisation,
the length of the assimilation window is limited by the time
over which the tangent-linear assumption remains reason-
able. For a thorough description of the IS4D-Var formulation,
the reader is referred to Moore et al. (2011c). The ROMS
4D-Var implementation is well described by (Moore et al.,
2011c, a, b), and it has been used successfully in ROMS ap-
plications (e.g. Di Lorenzo et al., 2007; Powell et al., 2008;
Powell and Moore, 2008; Broquet et al., 2009; Matthews
et al., 2012; Zavala-Garay et al., 2012; Janeković et al., 2013;
Souza et al., 2014).

3.3 Assimilation configuration

The goal of the assimilation is to combine an uncertain model
with uncertain observations to generate a circulation estimate
that has reduced uncertainty and better represents the obser-
vations. To do this we solve for the nonlinear ocean solution
that is dynamically consistent with the observations and is
free within the uncertainties in the system. As such, specifi-
cation of the prior model and observation uncertainties is im-
portant. These uncertainties are prescribed in the background
and observation error covariance matrices and are important
scaling factors in the cost function, J (refer to Eq. 6). The
specification of the background and observation error covari-
ances is described in Sect. 3.4 and 3.5 below, and their con-
sistencies checked in Sect. 4.1.

The minimisation of J is performed over a specified time
window in a sequence of linear least-squares minimisations
in the inner loops, and the nonlinear model trajectory is up-
dated in the outer loops. Through experimentation, we found
that one outer loop, with 14 inner loops, gives an accept-
able reduction in J for a reasonable computational cost. Cost
function convergence is shown in Sect. 4.2. We aim for the
longest time window available without nonlinearities grow-
ing too large. Linearity experiments (not shown) indicated
that for this model configuration, the linear assumption re-
mains acceptable for typical perturbations over 5 days, so we
chose that as our window size. We overlap the 5-day assim-
ilation windows by 1 day, such that each subsequent assim-
ilation cycle is initialised 4 days after the start of the previ-
ous 5-day cycle. The overlap allows us to produce a blended
product, which is constructed as a post-processing step us-
ing a weighted average of the overlapping times from adja-
cent assimilation windows to build a continuous signal. The
blended product can then be used for dynamical analysis and
further nesting.

The ROMS 4D-Var allows for controlling both the initial
conditions and the time-varying atmospheric and boundary
forcing. We adjust the atmospheric forcing every 12 h and
the open-boundary conditions every 24 h. The heat flux is the
dominant adjustment in the atmospheric forcing over most
of the domain, with the wind adjustment dominating in the
vicinity of the HF radar.

3.4 Observations and observation prior uncertainties

The reanalysis time period (2012–2013) was chosen be-
cause it contains the greatest number of available observa-
tions, including a full-depth mooring array that resolves the
EAC transport, which was deployed from 1 April 2012 to
26 August 2013. Other available subsurface observations and
satellite-derived surface observations are also sourced for
this time period. Figure 5a shows the location of Argo pro-
filing float observations, coloured by time of occurrence, and
Fig. 5b shows the location of all other observations, with the
exception of the satellite-derived SSH, SST and sea surface
salinity (SSS). The number of processed observations assimi-
lated for each 5-day assimilation window is shown in Fig. 6a,
with a break-down of the provenance of the temperature ob-
servations in Fig. 6b. The observations and their respective
processing for assimilation into the reanalysis are detailed in
the subsections below.

The uncertainties in the observations are specified to pre-
vent “over-fitting” the solution to uncertain observations. The
observation uncertainty is a combination of the uncertainty in
the observation itself and just as significantly, the uncertainty
in the model’s ability to represent that observation (referred
to as representation error). The observational uncertainties
are prescribed in the observation error covariance matrix, R,
which is an diagonal N by N matrix, where N is the number
of observations. The representation errors depend on the spa-
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Figure 5. Argo observations coloured by time of occurrence (a),
and all other observations, with the exception of satellite-derived
SSH and SST (b); 100, 200, and 2000 m contours are shown.
Coastal towns are labelled in line with their location on the coast.
HF radar sites Red Rock (RRK) and North Nambucca (NNB) are
shown with black asterisks in (b) and insets showing the percent
coverage of radial data for the two stations are shown in (c) and (d).

tial and temporal resolution of the model and the processes
resolved. Observations that capture processes unresolved by
the model must be either filtered or an uncertainty applied
that accounts for the unresolved process. If multiple observa-
tions from the same instrument exist in the same horizontal
and vertical grid cell taken within the same model time-step
(5 min), the observations are averaged and this value is as-
similated within that grid cell at the appropriate time. The
variance of those observations provides a lower-bound to the
representation error as the model can express only a single
value. Oftentimes, this error is greatest where the model reso-
lution (and therefore its physics) cannot represent finer-scale
dynamics captured in the observations. A thorough discus-
sion of representation error can be found in Oke and Sakov
(2008).

We describe the observations used in the section below,
and detail the observation uncertainties specified for each.
The consistency of these uncertainty estimates is checked in
Sect. 4.1.

3.4.1 Satellite-derived sea surface height

AVISO, France, produce global, daily, gridded (1/4◦× 1/4◦)
mean SLA data produced by merging all available along-
track satellite altimetry data, computed with respect to a 7-
year mean. The AVISO data provide a daily statistical field
giving a synoptic view of the SSH. The AVISO SLA data are
added to the dynamic SSH mean from the 10 yr free run de-
scribed above to generate sea level data for assimilation that
are consistent with the ROMS model bathymetry and con-
figuration. We prescribe an observation uncertainty of 6 cm.
The error in the AVISO delayed-time global SLA product
due to noise for the region is estimated at 2 cm (CNES, 2015).
We include a further 4 cm of uncertainty because, in this case,
the model resolves far more structure at smaller spatial scales
than is capable in the observations. The AVISO fields pro-
vide a statistical fit to along-track SSH data and the obser-
vation uncertainty allows for imbalances between this sta-
tistical field and a dynamically balanced SSH field required
by the model. We exclude SSH observations that were taken
over water depths less than 1000 m. This is because the ob-
servations are noisy on the continental shelf and the AVISO
gridded product is not able to resolve the processes that occur
here.

The gridded AVISO product is used to constrain SSH,
rather than the along-track altimetry, to ensure that the con-
straint is projected into the baroclinic ocean state solution.
The use of along-track SSH data successfully with 4D-Var
relies on the prescription of balanced terms in the back-
ground error covariance matrix to describe the covariance
between SSH and the subsurface ocean (refer to Sect. 3.5).
This is a topic of further research.

3.4.2 Satellite-derived Sea Surface Temperature

We use SST from the US Naval Oceanographic Office Global
Area Coverage Advanced Very High Resolution Radiometer
level-2 product (NAVOCEANO GAC AVHRR L2P SST).
The product does not provide observations through clouds
but contains useful observations close to the coast. Data are
available 2–3 times per day. A product error is specified in the
NAVOOCEANO SST product (Andreu-Burillo et al., 2010),
with an error for each data point of 0.38–0.4 ◦C. As the res-
olution of the data is similar to the resolution of the model,
the observation uncertainty for the assimilation is chosen to
be equal to this product error.

3.4.3 Satellite-derived sea surface salinity

SSS was observed from space for the first time by the
National Aeronautics and Space Administrations (NASA)
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Figure 6. Number of observations (after processing) used in each 5-day assimilation window; for each observation type (a), and temperature
observations for each data source (b).

Aquarius satellite (www.aquarius.umaine.edu/). We make
use of the level 3 gridded salinity product, which provides
daily fields at a 1◦ resolution. The observation uncertainty
is set to 0.4. There is a product error of around 0.2 for the
Aquarius SSS data and 0.4 is chosen to account for addi-
tional uncertainty due to processes not resolved by the obser-
vations or the model. The value is considerably higher than
the uncertainties specified for other in situ salinity observa-
tions. Similarly to SSH, any data taken over water depths less
than 1000 m depth were eliminated.

3.4.4 Argo floats

Argo is an international program consisting of nearly 4000
free-drifting profiling floats that measure the temperature and
salinity of the upper 2000 m of the global ocean (www.argo.
ucsd.edu). The Argo float locations in our model domain for
2011–2012, and the times at which they occur at those loca-
tions, are shown in Fig. 5a. The Argo data points are averaged
to the model grid and a 5 min time step.

Uncertainty profiles are defined to specify the nominal
minimal uncertainties for subsurface temperature and salin-
ity. To devise the profile shapes, temperature and salinity
variance is computed for each month of the year from the
10 yr free run. The monthly variances are spatially averaged
over the model domain and averaged in time to give a single
variance profile for both temperature and salinity. The pro-
files are then scaled to provide variance profiles appropriate

for the nominal minimum observation error variance, based
on preliminary assimilations and checks against the diagnos-
tics described in Sect. 4.1 (computed throughout the water
column). The uncertainty profiles are shown in Fig. 7 (stan-
dard deviation is plotted instead of variance so the units are
more intuitive for the reader). The profiles provide greater
uncertainties in the depth ranges of the greatest variability,
where representation errors are likely to be the largest. The
observation error variance is specified as the maximum of
this nominal minimum error variance and the variance of the
observations from the same model cell.

3.4.5 Expendable Bathythermographs

XBT collect temperature profiles along repeat lines sam-
pled by merchant ships. Two transects intersect our model
domain: PX34, which is the Sydney–Wellington route, and
PX30, which is the Brisbane–Fiji route (only a small por-
tion of this transect is within our model domain). Five PX30
lines took place over the assimilation period (16 Decem-
ber 2011, 8–9 March 2012, 13 September 2012, 7 June 2013,
and 1 November 2013) and seven PX34 lines (3–4 Febru-
ary 2012, 23–24 May 2012, 22–23 September 2012, 26–
27 November 2012, 16–18 February 2013, 12–13 May 2013,
and 24–26 August 2013). The sections are sampled at 10 km
intervals. The XBT data points are averaged to the model
grid and a 5 min time step. The same nominal minimal un-
certainty profile used for the Argo temperature observations
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Figure 7. Nominal minimum observation uncertainty profiles ap-
plied to subsurface temperature and salinity observations offshore
of the continental shelf.

(Fig. 7) is used and the observation error variance is specified
as the maximum of the nominal minimum error variance and
the variance of the observations from the same model cell.

3.4.6 High-frequency radar

The Coffs Harbour high-frequency (HF) ocean radar is part
of the IMOS and is managed by the Australian Coastal
Ocean Radar Network (ACORN; http://imos.org.au/acorn.
html). The radar is a WERA phased-array system with 16-
element receive arrays located at Red Rock (RRK; 29.98◦ S,
153.23◦ E) to the north of Coffs Harbour and North Nam-
bucca (NNB; 30.62◦ S, 153.011◦ E) to the south. The radars
operate at a frequency of 13.920 MHz, with a bandwidth of
100 KHz and a maximum range of 100 km.

The HF radar broadcasts and receives along defined an-
gles in a phased-array set-up and the surface current speed
(towards and away from the radar site) is measured. The
overlapping coverage from the two radar sites allows for
the surface current (u and v) vectors to be computed. Using
the same assimilation procedure as detailed in Souza et al.
(2014), we assimilate radial currents, rather than the com-
puted current velocities. The velocities have correlated er-
rors and using the radials allows us to make use of data when
only one station is available and over areas that do not over-
lap with the other station’s measurements. We can also make
use of radial data in regions where the beam intersection an-
gle between measurements from the two stations results in
a high error in the velocity calculation, whereas the radials
errors are adequately low.

Radial data are available from 1 March 2012 to the end
of the reanalysis period. The areas of HF radar coverage are
shown in Fig. 5b, with inset panels showing the percentage of
data coverage for assimilated radials for the RRK and NNB

sites in Fig. 5c and d respectively. Radials for each of the two
stations are processed separately. At the outer range of the
HF radar instrument coverage, radial values become noisy.
We extract only radial values with a Bragg signal-to-noise ra-
tio > 10 dB. Manual inspection of the radial values for each
of the two sites was then conducted and a “good data” re-
gion was chosen for each site every day, excluding the outer
regions of coverage where noisy data are observed. Only ra-
dial data within these “good data” regions is used, and ab-
solute radial speed values greater than 2 ms−1 are excluded.
This manual inspection was performed daily as the radii of
reliable radial data vary significantly, and this method allows
us to retain the maximum amount of data for assimilation.
The radial speeds and angles are spatially averaged onto the
model grid and a 24 h boxcar-averaging filter is used to re-
move tides and inertial oscillations that are not resolved by
the model.

Radial speed standard error is given in the data files pro-
vided by ACORN, calculated from the mean width of the
two Bragg peaks weighted by their maximum power (Wy-
att, 2014). These standard errors are converted to variances
and averaged as above. An error variance is then applied to
each observation, given by the maximum of the averaged
variances and the variance of the averaged radial speeds.
The nominal minimum observation error for the surface ra-
dials is set to 0.15 ms−1. The observation error covariance
for each radial speed observation is set to the maximum of
the nominal minimum observation error covariance and the
error variance computed during the averaging. Any observa-
tions where the square-root of the radial speed error variance
exceeds the radial speed magnitude are removed. Radial data
within one grid cell of the coast are also removed as unreal-
istically high values are observed here.

3.4.7 NSW shelf moorings

Data collected from three moorings located along the NSW
continental shelf are used in this assimilation study. The
moorings collect temperature and velocity data at high sam-
pling frequencies and are located off the coast of Coffs
Harbour, 30◦ S (CH100) and Sydney, 33.9◦ S (SYD100 and
SYD140). In each case the number in the mooring name rep-
resents the approximate water depth of the mooring loca-
tion. Table 2 contains details of the mooring locations and
the properties observed. Temperature and velocity observa-
tions are every 8 m through the water column. The data col-
lection and quality control is described in detail in Roughan
and Morris (2011).

All temperature observations taken from moorings at high
sampling frequencies are low-pass filtered to remove vari-
ability at periods shorter than the inertial period (23.8 h for
Coffs Harbour and 21.5 h for Sydney), and the observations
are applied 6 hourly. For latitudes south of 30◦ S, the iner-
tial period is less than 24 h, so the filtering does not remove
the diurnal signal, which may arise from internal tides and/or
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Table 2. Mooring information for the EAC deep water array moorings (EAC1-5), South East Queensland shelf moorings (SEQ200, SEQ400)
and the NSW shelf moorings (CH100, SYD100, SYD140).

Sensor depth range (m)

Name Lat Long Water Distance Temporal Temperature Salinity Velocity
(◦ S) (◦ E) depth (m) offshore (km) coverage

CH100 30.27 153.40 98 25 1 Jan 2012–30 Dec 2013 5–100 – 9–89
SYD100 33.94 151.38 104 10 1 Jan 2012–30 Dec 2013 11–107 – 1–99
SYD140 33.99 151.45 138 19 1 Jan 2012–30 Dec 2013 21–143 – 24–129
EAC1 27.31 153.97 1525 53 21 Apr 2012–23 Aug 2013 60–1060 60–1060 43–1054
EAC2 27.31 153.99 1940 55 22 Apr 2012–24 Aug 2013 163–1045 163–1045 9–1495
EAC3 27.25 154.29 4220 85 23 Apr 2012–24 Aug 2013 156–3991 156–3991 9–3968
EAC4 27.21 154.65 4745 121 25 Apr 2012–25 Aug 2013 154–4009 154–4009 38–3974
EAC5 27.10 155.30 4797 185 26 Apr 2012–26 Aug 2013 192–1109 192–1109 107–4016
SEQ400 27.33 153.88 405 44 1 Apr 2012–6 Jun 2013 48–375 48–375 23–405
SEQ200 27.34 153.77 209 33 1 Apr 2012–6 Jun 2013 40–189 40–189 23–196

diurnal surface heating for near-surface temperature observa-
tions. The rms residual between the mooring temperature ob-
servations low-pass filtered at 30 h (removing variability due
to baroclinic tides and inertial oscillations) and the observa-
tions filtered at the inertial frequency is very small compared
to the nominal minimum uncertainties applied, confirming
that these unresolved processes are accounted for in the ob-
servation uncertainty specification. Velocity observations are
low-pass filtered at 30 h to remove variability due to tides
and inertial oscillations and applied 6 hourly. It is important
to remove the tidal signal from velocity observations as the
barotropic tidal velocities are of a similar order of magnitude
to the sub-tidal velocities.

For all observations on the continental shelf, different
nominal minimum observation error variance profiles are
adopted (to those used offshore for Argo and XBT) to ac-
count for increased variability due to finer-scale processes
that occur on the shelf that are not resolved in the model.
Variance profiles for the shelf observations were computed
by comparing all of the shelf observations (NSW moorings,
SEQ moorings, and gliders) to the 2 yr free run for the 2012–
2013 assimilation period to generate a nominal uncertainty
profile on the shelf. Profiles were generated for all observed
in situ variables: u and v velocity components, temperature,
and salinity. u(v) uncertainty peaks at 0.12 (0.3) ms−1 in the
upper 50 m reducing to 0.08 (0.1) ms−1 at 200 m depth. The
shelf temperature uncertainty profile peaks at 1.2 ◦C between
20–100 m depth, reducing to 0.8 ◦C at 200 m. We doubled the
computed salinity errors to give a range of 0.1–0.16 for the
upper 200 m on the shelf.

The observation error variance is specified as the maxi-
mum of the nominal minimum error variance and the vari-
ance from averaging observations within the same model grid
cell. For velocities, the high density of the ADCP depth bins
means several velocity measurements are often available for

a single vertical grid layer, which can result in variances that
exceed the specified nominal minimum uncertainty.

3.4.8 EAC transport array and SEQ shelf moorings

The EAC transport array was deployed as part of IMOS to
understand the variability of the EAC, and it is comprised of
five deep water moorings (EAC 1–5), which measure tem-
perature, salinity, and velocities. The array was positioned
where the EAC is predicted to be most coherent and was de-
signed to measure the mean and time-varying EAC transport
(Sloyan et al., 2016). The array is continued onto the shelf
slope and shelf with two moorings (SEQ400 and SEQ200)
in approximate water depths of 400 and 200 m respectively.
Each mooring has a suite of instruments measuring temper-
ature, salinity, and velocities at high sampling frequencies
throughout the water column. Table 2 contains details of the
moorings.

All temperature and salinity observations are low-pass fil-
tered to remove variability at periods shorter than the inertial
period (26.0 h), and the observations are applied 6 hourly.
The vertical uncertainty profile used for the other off-shelf
temperature and salinity observations (Fig. 7) is used for
the nominal minimum profile for the EAC array mooring
observations. For the SEQ moorings the nominal minimum
vertical uncertainty profile generated for the shelf observa-
tions was used. The velocity observations are filtered and
processed in the same manner as the NSW moorings, de-
scribed above. For the EAC array moorings, the nominal
minimum error for u and v velocity components was spec-
ified as 0.12 ms−1 in the upper 10 m of the water column and
0.10 ms−1 for all depths below 10 m. For the SEQ moorings,
the uncertainty profile generated for the shelf observations
was used. Similar to the NSW moorings, the observation er-
ror variance is specified as the maximum of the nominal min-
imum error variance and the variance from averaging obser-
vations within the same model grid cell.
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3.4.9 Ocean gliders

Autonomous ocean gliders (both SeaGliders and Slocum)
were deployed as part of the IMOS by the Australian Na-
tional Facility for Ocean Gliders (http://imos.org.au/anfog.
html). The buoyancy controlled gliders move horizontally
through the water while collecting vertical profiles of temper-
ature and salinity. The majority of the glider missions in the
model domain over the 2011–2012 time period occur on the
NSW continental shelf, between 29.5 and 32.3◦ S, with two
missions between 25 March and 22 July 2013 extending off-
shore, further south, and to depths of 900 m (Fig. 5b). Quality
control flags are applied to the glider data through the IMOS
processing (Australian National Facility for Ocean Gliders,
2012) and only the data deemed to be “top quality data in
which no malfunctions have been identified and all real fea-
tures have been verified during the quality control process”
are used. The glider data points are averaged onto the model
grid and a 5 min time step. Glider temperature data in the up-
per 20 m and salinity data in the upper 50 m were removed.
The uncertainty profiles computed for the shelf observations
were used and the error variances for the gliders are the maxi-
mum between the variance computed from the averaging and
the shelf error variance profile.

3.5 Model prior uncertainties

The background error covariance matrix, P, should represent
the expected uncertainties in the model initial conditions, sur-
face, and boundary forcings. P is an M by M matrix, where
M is the length of the increment vector δz (Eq. 5). Because
of its size P cannot be estimated completely or stored and
we estimate P by factorisation, as described in Weaver and
Courtier (2001), such that

P=Kb63L
1/2
v LhL

1/2
v 36KT

b , (8)

where Kb are the covariance operators of the balanced dy-
namics,6 and3 are the diagonal matrices of the background
error standard deviations and normalisation factors respec-
tively, and Lv and Lh are the univariate correlations in the
vertical and horizontal directions. In this work, we only pre-
scribe univariate covariance in Kb. The dynamics are cou-
pled through the use of the tangent-linear and adjoint models
in the assimilation, but not in the statistics of P. The corre-
lation matrices, Lv and Lh, and the normalisation factors, 3,
are computed as solutions to diffusion equations following
Weaver and Courtier (2001). The characteristic length scales
chosen for Lv and Lh are assumed to be homogeneous and
isotropic.

In the horizontal, the characteristic length scales chosen
for the background error covariances are 100 km for SSH,
temperature, and salinity, and 70 km for velocities. These val-
ues were chosen based on analysis of cross-correlation of
SSH and complex correlation of surface velocities between
points in the eddy rich Tasman Sea region from the 2 yr free

run. The length scale of 100 km for SSH is consistent with the
decorrelation scales estimated from along-track satellite data
for the area by Wilkin et al. (2002) and used by Zavala-Garay
et al. (2012). It is noted that shorter cross-shore length scales
are likely along the coast of south-eastern Australia, as the
continental shelf is narrow (15–30 km) and the EAC displays
a narrow jet-like structure, while SSH decorrelation length
scales were found to be about 100–200 km in the alongshore
direction by Oke and Sakov (2012).

For the vertical, semivariogram analysis of glider data
on the NSW shelf by Schaeffer et al. (2016) found vertical
decorrelation length scales of about 50 m for both tempera-
ture and salinity on the NSW shelf. Analysis of correlations
between temperature data measured by the moorings used in
this study found vertical decorrelation length scales of 15–
30 m for the shelf moorings (NSW moorings, SEQ 200),
70 m for SEQ 400, and 100–200 m for the EAC deepwa-
ter array moorings (EAC 1–5). Salinity measurements were
taken at SEQ200, SEQ400, and the EAC deep water array
moorings and decorrelation length scales were similar to the
length scales for temperature at these moorings. In the verti-
cal, we apply characteristic length scales of 50 m for salinity
and 10 m for temperature. The shorter length scale for tem-
perature was adopted due to the short length scale of variabil-
ity for temperature near the sea surface, as SST observations
dominate. The salinity length scale is set to 50 m (longer than
the temperature length scale) in order to limit vertical struc-
ture in the salinity analysis increments.

Analysis of correlations between velocities measured by
the moorings found vertical decorrelation length scales of
20–50 m for the shelf moorings (NSW moorings, SEQ 200),
70 m for SEQ 400, and 100–200 m for the EAC deep water
array moorings (EAC 1–5). Because the deep water moor-
ings span the core of the EAC, we reduced the de-correlation
length scale value to 50 m in the vertical for velocity to en-
sure consistency when assimilating velocities outside of the
EAC and/or on the shelf.

The background error covariance matrix plays an impor-
tant role in determining the spatial structure of the analysis
increment and, in this oceanic region, the horizontal and ver-
tical scales of variability differ between the mesoscale eddy
field in the Tasman Sea and the smaller-scale shelf processes.
Further research on the impact of applying anisotropic corre-
lation length scales on system performance is warranted.

The background error standard deviations were estimated
from the average of 5-day variances from the 10 yr free run
described above. These climatological variances provide an
estimate of the uncertainty associated with each state variable
and surface forcing field, based on the assumption that back-
ground errors are likely to be the largest in regions of strong
ocean variability. We choose 5-day variances as the model is
nested in BRAN3, which assimilates large-scale data, so we
expect our model prior boundary and initial conditions to be
accurate to within the typical changes to the ocean state that
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Figure 8. Initial nonlinear cost function and the reduction achieved in the final (14th) tangent-linear model inner loop and the final nonlinear
cost function, plotted for each assimilation interval (a). Mean cost function reduction for each of the 14 inner loops for all 5-day assimilation
intervals (b).

occur over 5 days. The same background error covariance
matrix is used for each assimilation cycle.

4 Reanalysis evaluation

In this section, we evaluate the performance of the assimi-
lation procedure in terms of the consistency of the prior un-
certainty assumptions, comparison with the assimilated ob-
servations, and comparison to unassimilated observations.
Overall, the assimilation performs well in minimising the
cost function over each assimilation interval and the corre-
sponding reanalysis provides a good match to observations.

4.1 Consistency of observation and model uncertainties

The analysis generated by the IS4D-Var system is dependent
on the prior assumptions of the background and observa-
tion uncertainties, and the validity of these assumptions is
important in determining the optimality of the analysis. A
measure of the consistency of the assimilation system given
the prior uncertainty assumptions can be made using a set
of diagnostics based on the innovation statistics, presented
in Desroziers et al. (2005). These diagnostics are based on
the observation minus background, observation minus anal-
ysis, and analysis minus background differences and provide
a check of the consistency of the prior choices of the back-
ground and observation error covariances. The level of agree-
ment between the a priori specified error variances (P and R),
and those diagnosed a posteriori following the methods intro-
duced by Desroziers et al. (2005) provides a measure of the
appropriateness of the estimates of P and R. We find that the
prior specified error variances and those diagnosed after the
assimilation match well.

For SSH, square-root of the spatially averaged diagnosed
observation error variance ranges from 4.1 to 8.4 cm with
a mean value of 5.8 cm, which matches the square root of
the prior observation error variance of 6 cm very well. The

SSH prior and diagnosed model error variances are also con-
sistent. For subsurface temperature, the prior and diagnosed
model error variances match very well. The prior observation
error variances are greater than the diagnosed observation er-
ror variances for subsurface temperature; the time mean of
the square root of the spatially averaged prior error variances
is 0.88 ◦C compared to 0.48 ◦C for the diagnosed errors. This
prior uncertainty was necessary to account for the representa-
tion errors associated with the subsurface temperature obser-
vations. Similarly for subsurface salinity and velocities, the
prior observation error variances exceed the diagnosed obser-
vation error variances. For the radial current speeds, the time
mean of the square root of the spatially averaged diagnosed
observation error variances is 0.11 ms−1, which matches the
prior observation uncertainty of 0.15 ms−1 well.

Another simple diagnostic to check the validity of P and R
is to check the value of the cost function, J , at its minimum.
As shown by Bennett (2002), the theoretical minimum of the
cost function, for a linear system, isNobs/2, whereNobs is the
number of observations. This minimum should be reached
on each assimilation cycle if the prior background and obser-
vation error covariance estimates are correctly specified and
the system is quasi-linear (Weaver et al., 2003). It is conve-
nient to define the “optimality” value, γ = 2J/Nobs, which
should reach a value of 1±

√
2/Nobs (Powell et al., 2008).

As Nobs is large, a value of 1 indicates correct specification
of the uncertainties. The “optimality” value provides a mea-
sure of how well the system approaches an optimal fit and,
for the 5-day analysis windows over the 2-year assimilation,
the values range from 0.43 to 1.72 with a mean value of 0.81.

Overall, the prior assumptions of observation and model
background uncertainties are considered reasonable and the
assimilation achieves reduced analysis uncertainty by reduc-
tion of the cost function for each assimilation interval. The
cost function reduction and convergence properties are de-
tailed in the following section.
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Figure 9. The rms SSH observation anomaly (a) and rms SSH difference between the analysis and observations (b) for the 2-year assimilation
window. Time series of spatially averaged rms SSH observation anomaly, rms SSH difference between the free run and observations, and
rms SSH difference between the analysis and observations, for each assimilation window (c).

4.2 Cost function reduction and convergence properties

Linear minimisation of the cost function, J , is performed in
the inner loops. We use a single outer loop, at the end of
which the final cost function is computed after the integration
of the nonlinear model. Figure 8a shows the initial nonlin-
ear cost function (black), the reduction achieved in the final
(14th) inner loop (blue), and the final nonlinear cost function
(magenta), plotted for each assimilation interval over the 2-
year period. The match between the final tangent-linear and
the nonlinear cost functions provides confidence in the valid-
ity of the tangent-linear assumption over the 5-day assimila-
tion window. The mean tangent-linear model cost function
reduction (1− JTLM/Jinitial, where JTLM is the cost func-
tion for the final inner loop) over all assimilation windows is
62 %, and the mean of the subsequent nonlinear model cost
function reduction (1− JNLM/Jinitial) is 52 %. Temperature
dominates the cost function, followed by the velocities (in-
cluding the radials) and SSH, with salinity playing the least
dominant role. Figure 8b shows the mean cost function re-
duction for each of the 14 inner loops for all 5-day assim-

ilation windows. The cost function reduction relative to the
initial cost function increases with each inner loop, and the
curve begins to flatten out towards the final inner loop show-
ing that 14 loops is a good choice. The mean reduction in the
nonlinear cost function is shown by a magenta dot in the plot
and shows that minor nonlinearities persist in our assimila-
tion windows.

4.3 Reanalysis comparison to assimilated observations

4.3.1 SSH

The rms observation anomaly for a particular observation lo-
cation describes the variability in the observation with re-
spect to its time mean. This is compared to the rms differ-
ences between the observations and the free-running model
(the 2 yr free run), as well as the observations and the analy-
sis (i.e. the analysis error), to provide an assessment of how
well the free run and the analysis match the observations rel-
ative to their typical variability. A skilful state estimate will
have residuals with the observations that are much lower that
the observation’s typical variability.
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Figure 10. The rms SST observation anomaly, including seasonal cycle, (a) and rms SST difference between the analysis and observations
(b) for the 2-year assimilation window. Time series of spatially averaged rms SST observation anomaly, rms SSH difference between the free
run and observations, and rms SSH difference between the analysis and observations, for each assimilation window (c).

The observation anomaly for an observed variable v at a
particular location is given by

rmsObsAnom =

√
6
tn
t1
(v(t)− v)2

n
, (9)

where t = t1, t2, . . .tn are the observation times and v is the
time mean of the observed variable at that location. The rms
difference between the free-run values (in observation space)
and the observations and the analysis and observations are
given by

RMSDFreerun−Obs =

√
6
tn
t1
(vf(t)− vo(t))

2

n
, (10)

and

RMSDAnalysis−Obs =

√
6
tn
t1
(va(t)− vo(t))

2

n
(11)

respectively, where vo is the observed value, vf is the corre-
sponding value from the free run, and va is the corresponding
value from the analysis.

Figure 9a shows the rms SSH anomaly from the
observations over the 2-year assimilation period. The
RMSDAnalysis−Obs is shown in Fig. 9b and shows that the
SSH fields are well represented in the analyses. In Fig. 9c,
the domain-averaged rmsObsAnom, RMSDFreerun−Obs, and
RMSDAnalysis−Obs are plotted for each 5-day assimilation
window over the 2-year period, showing significant im-
provement in the fit to observations in the analyses. The
RMSDFreerun−Obs is of similar magnitude to the SSH ob-
servation anomaly indicating that, as expected, the free run
has no skill in predicting the timing and location of the
mesoscale eddies. The time mean of the spatially averaged
RMSDAnalysis−Obs over all assimilation windows is 7.6 cm.
This is close to the observation uncertainty for SSH of 6 cm
and small compared to the typical SSH variability (the time
mean of the spatially averaged SSH observation anomalies is
23.4 cm).

4.3.2 SST

The free-running model shows some skill in prediction of
the SST due to the accuracy of the surface forcing; how-
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ever, significant improvement is achieved in the analyses.
The rms SST observation anomalies describe the variabil-
ity in SST over the 2-year assimilation period, includ-
ing the seasonal cycle, and are shown in Fig. 10a. The
RMSDFreerun−Obs is smaller than the observation anoma-
lies and the RMSDAnalysis−Obs (Fig. 10b) is further re-
duced. The time series of spatially averaged rmsObsAnom,
RMSDFreerun−Obs and RMSDAnalysis−Obs are shown in
Fig. 10c over the 2-year period. The time mean of the spa-
tially averaged analysis error for all assimilation windows
is 0.4 ◦C, which is the same magnitude as the SST obser-
vation uncertainty. The free-running model and SST obser-
vations exhibit no net bias over the 2 years (as mentioned in
Sect. 3.1), indicating that the RMSD reduction between the
free run and the analysis is due to improved prediction of the
dynamical features rather than a reduction in bias. The high
variability seen in the time-series plots, particularly in the
observation anomaly, is due to the patchy spatial coverage of
the SST observations.

4.3.3 SSS

The Aquarius SSS data were included but for this assimila-
tion configuration provides little constraint. The rmsObsAnom
for SSS is 0.15–0.3 over most of the model domain (up to
0.5 at a few points close to the coast). The Aquarius product
error itself is 0.2 and our specified observation error is 0.4,

which is greater than the typical variability in SSS over most
of the domain, so the assimilation does little to match the SSS
observations as they are so uncertain. The RMSDFreerun−Obs,
RMSDAnalysis−Obs, and rmsObsAnom are all of similar magni-
tude. Subsurface salinity dominates the salinity cost function
as the prescribed observation uncertainties are considerably
higher for SSS than the uncertainties specified for the in situ
salinity observations.

4.3.4 Subsurface temperature from Argo, gliders and
XBT

Subsurface observations are spatially and/or temporally
sparse in comparison to satellite observations of the sea
surface. The dynamical connections between surface and
subsurface variables are taken into account by the adjoint
and tangent-linear model such that the time-evolving model
physics are used to perform the cost function minimisation.
While these connections allow for the surface observations
to impact state estimates of the subsurface properties, sub-
surface observations are invaluable in improving estimates
of the subsurface (e.g. Zavala-Garay et al., 2012).

We show the improvement in subsurface temperature as
measured by the Argo floats, XBTs and ocean gliders by
computing the RMSDFreerun−Obs and RMSDAnalysis−Obs in
nominal depth bins for all observations over the model do-
main (Fig. 11). For Argo, time-mean RMSDFreerun−Obs for
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Figure 12. The rms potential density observation anomaly and rms
difference between the free run and observations, and the analy-
sis and observations for Argo float observations. Observations are
grouped into nominal depth bins of 25 mm from the surface to 200
and 50 m below 200 m.

all observations in the upper 500 m of the water column is
1.7 ◦C, reduced to 0.8 ◦C in the analysis. For the XBT above
500 m, the time-mean RMSD is reduced to 0.7 ◦C in the anal-
ysis from 1.9 ◦C for the free-running model. Below 500 m,
the number of observations in each depth bin for Argo and
XBT is too low for a meaningful comparison. The glider data
mostly samples the shelf and shelf slope circulation. A great
majority of the glider observations are in the upper 100 m of
the water column; here the time-mean RMSDFreerun−Obs of
2.1 ◦C is reduced to 0.7 ◦C in the analysis.

To investigate the relative contribution of improved repre-
sentation of dynamical features and reduction in bias to the
RMSD reduction between the free run and the analysis, we
also compute the RMSD between the free run and the “bias-
adjusted observations”. The bias-adjusted observations have
the bias between the observations and the free run removed
and, for each depth bin, are given by vo(t)− (vo−vf), where
vo is the observations in the depth bin for observation times
t = t1, t2, . . .tn, vf is the corresponding values from the free
run and the overbar represents the time mean of the variables
over the 2-year period. For the Argo and XBT observations,
the bias between the free run and the observations is small
and the RMSDFreerun−Obs and the RMSD between the free
run and the bias-adjusted observations (blue and grey dashed

lines in Fig. 11 respectively) match closely. The RMSD re-
duction for the analysis (magenta line) is due to better rep-
resentation of the dynamical features. The vast majority of
glider observations are taken on the continental shelf in water
depths less than 100 m. For these shallow glider observations,
the bias between the free run and the observations is approxi-
mately 1.5 ◦C (not shown). The bias in the analysis is close to
zero and this reduction in bias contributes to the reduction in
the RMSDAnalysis−Obs compared to the free run (the RMSD
between the free run and the bias-adjusted observations (grey
dashed line) is less than the RMSDFreerun−Obs (blue line)).
There is further reduction in the RMSDAnalysis−Obs (magenta
line) compared to the RMSD between the free run and the
bias-adjusted observations (grey dashed line) indicating im-
proved representation of dynamical features. It should be
noted that the glider observations below 100 m represent only
two separate glider missions (refer to Sect. 3.4.9), so the bias
has little meaning over this depth range.

As the Argo profiling floats measure both temperature
and salinity at each observation time we are able to assess
the residual reduction in terms of potential density through-
out the water column (Fig. 12), describing the improvement
in the representation of the density structure in the analy-
sis. The free-running model has some skill in predicting po-
tential density as sampled by the Argo floats in the upper
500 m, as the RMSDFreerun−Obs is less than the rmsObsAnom
for the nominal depth bins. The RMSDAnalysis−Obs in poten-
tial density is reduced to about half of the RMSDFreerun−Obs
in the upper 500 m; the upper layer that is most effected by
mesoscale eddies. The RMSDAnalysis−Obs in potential density
peaks in the upper 100 m at 0.23 kg m−3 and decreases grad-
ually to below 0.1 kg m−3 at 500 m depth, remaining below
that for the Argo-observed ocean deeper than 500 m.

4.3.5 Velocities from moorings

Profiles of the complex correlation between the velocities
from the free-running model and the analyses at the moor-
ing velocity measurement locations are shown in Fig. 13.
The correlations are generally considerably improved in the
analyses. The complex correlations for the analysis veloci-
ties approach the value of one for the South East Queens-
land shelf moorings (SEQ200 and SEQ400), which are on
the shelf and shelf slope at the latitude where the EAC is
found to be most coherent. At this same latitude, the deep
water array moorings 1 to 4 (EAC1-4) have high complex
correlations between the analysis and the observations in the
upper 400m of the water column. This is where the mean
EAC jet is the strongest (refer to Fig. 3). The EAC5 moor-
ing is outside of the main jet and influenced by a more vari-
able eddy-dominated circulation and the analysis has slightly
lower correlations in the upper water column at this location.
Further south on the shelf, velocity estimates are improved
with depth-averaged free run and analysis complex correla-
tions of 0.68 and 0.91 respectively, for the Coffs Harbour
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Figure 13. Complex correlation between observed velocities and free-run and analysis velocities at mooring locations.

mooring (CH100), 0.37 and 0.84 for the Sydney mooring
(SYD100), and 0.36 and 0.87 for the other Sydney mooring
(SYD140).

4.3.6 Surface velocities from HF radar

Here we choose to present the results in terms of surface
velocities (rather than the scalar radial current speeds) as
they are more meaningful in terms of the ocean surface cur-
rents. The observed surface velocities are computed from
the assimilated radials and the corresponding values com-
puted from the radial values extracted from the free-running
model and the analyses. The complex correlations between

these observed surface velocities and the surface velocities
computed from the free-running model and the analysis are
shown in Fig. 14. Note that the complex correlation for a par-
ticular grid cell requires velocities to be computed, which re-
quires radial data from each of the two sites to be available in
that cell and that the beams overlap with an angle greater than
30◦ (velocity calculations where beam intersection angles are
smaller than this are deemed inaccurate). Radial data are as-
similated at other times but cannot be converted to veloci-
ties. Only grid cells where velocity values can be computed
at more that 10 times over the 2-year period are included in
the plots. In the free run, velocity estimates were best on the
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Figure 14. Complex correlation of surface velocities computed from the assimilated HF radar radials, and surface velocities computed from
the corresponding free run (a) and analysis (b) radials; 200, 1000, and 2000 m bathymetry contours are shown.

shelf and shelf slope with complex correlations reducing off-
shore of the shelf slope. Velocity is very well represented in
the analysis under the HF radar footprint, with complex cor-
relations from 0.8–1 across the entire footprint.

In terms of the radial current speeds measured from both
NNB and RRK sites, the RMSDFreerun−Obs is 0.1–0.4 ms−1

inshore of the 200 m depth contour, 0.2–0.6 ms−1 above the
shelf slope (between the 200 and 2000 m depth contours),
and 0.3–0.5 ms−1 offshore of the 2000 m depth contour. The
RMSDAnalysis−Obs, for both NNB and RRK sites, is between
0.1 and 0.25 ms−1 across the entire radar footprints. The ratio
of RMSDFreerun−Obs/rmsObsAnom is 0.5–1, reduced to 0.2–
0.5 for the ratio of the RMSDAnalysis−Obs/rmsObsAnom.

4.4 Reanalysis comparison to independent
observations

Because IS4D-Var uses the model dynamics to solve for the
increment adjustments, information from observed variables
can propagate to unobserved regions such that the ocean state
better fits and is in balance with the observations. Compari-
son of the reanalysis with independent, non-assimilated, ob-
servations allows us to assess the performance of the state
estimate away from assimilated observations. As the princi-
pal aim of this work was to assimilate the maximum number
of available observations in the region in order to provide a
“best estimate” of the ocean state over the 2-year period, few
independent observations remain available for this compari-
son.

The available independent observations are from ship-
board conductivity–temperature–depth (CTD) casts that
were taken on three separate cruises within the model domain
over the 2-year period; 15 CTD casts were taken as part of
the deployment of the EAC array, along the EAC array tran-
sect from 21 to 27 April 2012 (blue diamonds in Fig. 15b).
Five casts were taken off of Sydney between 34.3–36.4◦ S
and 151.6–152.8◦ E from 27 to 28 February 2013 (magenta
diamonds in Fig. 15b); 28 CTD casts were taken in two tran-

sects off of Brisbane at 26.3 and 27.1◦ S out to 155.8◦ E be-
tween 21 and 31 August 2013 (green diamonds in Fig. 15b).
The CTD cast observations are mapped to the model verti-
cal levels for consistent comparison given the vertical dis-
cretisation of the model, and the corresponding model val-
ues extracted from the 2 yr free run and the analysis. The
rmsObsAnom, RMSDFreerun−Obs, and RMSDAnalysis−Obs for
potential density in nominal depth bins for all CTD casts
are shown in Fig. 15a. In the upper 350 m of the water col-
umn, the RMSDAnalysis−Obs in the potential density is re-
duced to about half of RMSDFreerun−Obs. For all CTD casts
in the upper 200 m, where the number of observations is the
greatest (not shown), the depth-averaged RMSDFreerun−Obs
of 0.33 kg m−3 is reduced to 0.17 kg m−3 in the analysis.
This shows that a marked improvement in the representation
of the subsurface ocean, as observed by these CTD casts, is
achieved in the reanalysis.

Note that the profiles of Argo RMSDFreerun−Obs and
RMSDAnalysis−Obs in potential density (Fig. 12) are similar
to the RMSD profiles for the independent shipboard CTD
observations. The reanalysis showing similar residual reduc-
tion for the assimilated Argo observations and for the non-
assimilated CTD cast observations suggests a well-specified
assimilation system in which a dynamically balanced ocean
state estimate is achieved with improved state-estimation
throughout the model domain, rather than over-fitting to as-
similated observations.

5 Summary and conclusions

We have presented the development of a data assimilating
model of the EAC region and assessed the performance of
the corresponding reanalysis over a 2-year period. We use an
advanced variational data assimilation scheme to integrate a
state-of-the-art coastal ocean model with an unprecedented
observational data for the south-east Australian region. We
show that the free-running numerical model reproduces the
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Figure 15. The rms potential density observation anomaly and rms
difference between the free run and observations, and the analysis
and observations for independent CTD cast observations mapped
to model vertical levels (a). Observations are grouped into nominal
depth bins of 50 m. Locations of the CTD casts for the three separate
cruises, described in Sect. 4.4, are shown in (b).

long-term mean surface and subsurface ocean properties and
represents the eddying circulation as expressed by the sea
surface variability well. For the reanalysis, we show that the
SSH and SST have mean rms residuals with the observations
of 7.6 cm and 0.4 ◦C. The rms residual profile for temperature
has a subsurface maximum of 0.9 ◦C for Argo float obser-
vations, 0.9 ◦C for ocean glider observations, and 0.8 ◦C for
XBT observations. Surface and subsurface velocity observa-
tions from HF radar, shelf, and offshore moorings match well
with complex correlations between 0.8 and 1 in the upper
500 m. The reanalysis has an rms residual in potential den-
sity with independent (non-assimilated) shipboard CTD cast
observations of under 0.2 kg m−3 throughout the water col-
umn.

The performance of the reanalysis is dependent on prior
assumptions of the model background and observation error
covariances. We processed the observations to be assimilated
to eliminate fine-scale processes not resolved by the model,
and carefully specified the prior observation and model back-
ground uncertainties. Overall, the prior uncertainty assump-
tions are considered reasonable and the assimilation achieves
reduced analysis uncertainty by reduction of the cost function
for each assimilation interval.

Not only does the reanalysis provide a good fit to observa-
tions, it is the first reanalysis of the EAC region that resolves
the continental shelf along south-east Australia (BRAN3 has

a resolution of 10 km (Oke et al., 2013), the shelf is 15 km
wide at its narrowest point) and the first high-resolution re-
analysis of the region that uses the model physics to adjust
the model in a dynamically consistent way (Zavala-Garay
et al., 2012, has a resolution of 18–30 km). Furthermore, it
is the first attempt to assimilate such a wide variety of obser-
vations in the region, including observations from moorings
on and off the continental shelf, a coastal HF radar array and
ocean gliders. The high-resolution and dynamic consistency
of the reanalysis mean that it has the potential to provide a
marked improvement in our ability to capture important cir-
culation dynamics in the EAC.

The reanalysis is being used to study the three-dimensional
structure of the current and the processes that drive its sepa-
ration from the coast and eddy formation. Several modelling
studies of coastal regions in south-eastern Australia are mak-
ing use of the reanalysis for boundary forcing. Output from
the adjoint model integrations performed in each assimila-
tion interval is being used to directly assess the impact of
specific observations on the estimates of circulation dynam-
ics of interest. Through this we hope to understand which ob-
servations are most effective at improving our state estimates
and which locations are most effective to observe, providing
valuable information on how we might improve the observ-
ing system to ultimately improve prediction.

6 Data availability

Model initial conditions and boundary forcing come from
the Bluelink ReANalysis version 3p5 (BRAN3; Oke et al.,
2013). Surface forcing is provided by the Australia Bureau
of Meteorology’s Australian Community Climate and Earth-
System Simulation (ACCESS) 12 km product (Puri et al.,
2013). The observations used for assimilation are available
through the Australian Integrated Marine Observing Sys-
tem’s (IMOS) data portal (www.imos.org.au).

The reanalysis output is saved as snapshots of three-
dimensional fields of ocean properties (sea-level, tempera-
ture, salinity, velocities) every 4 h over the 2-year period
(2012–2013). The data are archived at UNSW Australia and
can be made available for research purposes (contact the cor-
responding author of this paper).
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