Articles | Volume 9, issue 6
https://doi.org/10.5194/gmd-9-2239-2016
https://doi.org/10.5194/gmd-9-2239-2016
Development and technical paper
 | 
28 Jun 2016
Development and technical paper |  | 28 Jun 2016

Improving the WRF model's (version 3.6.1) simulation over sea ice surface through coupling with a complex thermodynamic sea ice model (HIGHTSI)

Yao Yao, Jianbin Huang, Yong Luo, and Zongci Zhao

Related authors

Climate change and its impacts on river discharge in two climate regions in China
H. Xu and Y. Luo
Hydrol. Earth Syst. Sci., 19, 4609–4618, https://doi.org/10.5194/hess-19-4609-2015,https://doi.org/10.5194/hess-19-4609-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023,https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023,https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023,https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023,https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023,https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary

Cited articles

Andreas, E. L., Persson, P. O. G., Grachev, A. A., Jordan, R. E., Horst, T. W., Guest, P. S., and Fairall, C. W.: Parameterizing Turbulent Exchange over Sea Ice in Winter, J. Hydrometeorol., 11, 87–104, https://doi.org/10.1175/2009jhm1102.1, 2010.
Barton, N. P., Klein, S. A., and Boyle, J. S.: On the Contribution of Longwave Radiation to Global Climate Model Biases in Arctic Lower Tropospheric Stability, J. Climate, 27, 7250–7269, https://doi.org/10.1175/jcli-d-14-00126.1, 2014.
Berg, P., Döscher, R., and Koenigk, T.: On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model, Clim. Dynam., 46, 3499–3515, https://doi.org/10.1007/s00382-015-2783-y, 2015.
Bromwich, D. H., Hines, K. M., and Bai, L.-S.: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean, J. Geophys. Res.-Atmos., 114, D08122, https://doi.org/10.1029/2008JD010300, 2009.
Download
Short summary
A complex thermodynamic sea ice model (HIGHTSI) is coupled with WRF to improve its simulation of surface temeprature and surface upward long-wave radiation flux over sea ice surface. HIGHTSI includes the ablation and accretion processes of sea ice and uses an interpolation method which can ensure the heat conservation during its integration. These allow the HIGHTSI to better resolve the energy balance in the sea ice, and the bias in sea ice temperature is reduced considerably.