Articles | Volume 8, issue 4
Geosci. Model Dev., 8, 1221–1232, 2015
https://doi.org/10.5194/gmd-8-1221-2015
Geosci. Model Dev., 8, 1221–1232, 2015
https://doi.org/10.5194/gmd-8-1221-2015

Development and technical paper 29 Apr 2015

Development and technical paper | 29 Apr 2015

The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations

K. Alexander and S. M. Easterbrook

Related authors

A framework for benchmarking of homogenisation algorithm performance on the global scale
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014,https://doi.org/10.5194/gi-3-187-2014, 2014

Related subject area

Climate and Earth System Modeling
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021,https://doi.org/10.5194/gmd-14-337-2021, 2021
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021,https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021,https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021,https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021,https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary

Cited articles

Alexander, K. and Easterbrook, S. M.: The Software Architecture of Global Climate Models, in: AGU Fall Meeting 2011, San Francisco, USA, Abstract ID 1204770, 2011.
Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511–526, https://doi.org/10.1029/96GB01521, 1996.
Bailey, D., Holland, M., Hunke, E., Lipscomb, B., Briegleb, B., Bitz, C., and Schramm, J.: Community Ice CodE (CICE) User's Guide Version 4.0, Tech. Rep., National Center for Atmospheric Research, available at: http://www.cesm.ucar.edu/models/cesm1.0/cice/ice_usrdoc.pdf (last access: 19 November 2014), 2010.
Collins, M.: Ensembles and probabilities: a new era in the prediction of climate change, Philos. T. R. Soc. A, 365, 1957–70, https://doi.org/10.1098/rsta.2007.2068, 2007.
Download
Short summary
This paper describes an analysis of the software architecture of global climate models. The analysis provides a visualization of the structure of these models, and reveals interesting differences between the models developed at different research labs.