Articles | Volume 8, issue 4
https://doi.org/10.5194/gmd-8-1221-2015
https://doi.org/10.5194/gmd-8-1221-2015
Development and technical paper
 | 
29 Apr 2015
Development and technical paper |  | 29 Apr 2015

The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations

K. Alexander and S. M. Easterbrook

Related authors

A framework for benchmarking of homogenisation algorithm performance on the global scale
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014,https://doi.org/10.5194/gi-3-187-2014, 2014

Related subject area

Climate and Earth system modeling
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024,https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary

Cited articles

Alexander, K. and Easterbrook, S. M.: The Software Architecture of Global Climate Models, in: AGU Fall Meeting 2011, San Francisco, USA, Abstract ID 1204770, 2011.
Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511–526, https://doi.org/10.1029/96GB01521, 1996.
Bailey, D., Holland, M., Hunke, E., Lipscomb, B., Briegleb, B., Bitz, C., and Schramm, J.: Community Ice CodE (CICE) User's Guide Version 4.0, Tech. Rep., National Center for Atmospheric Research, available at: http://www.cesm.ucar.edu/models/cesm1.0/cice/ice_usrdoc.pdf (last access: 19 November 2014), 2010.
Collins, M.: Ensembles and probabilities: a new era in the prediction of climate change, Philos. T. R. Soc. A, 365, 1957–70, https://doi.org/10.1098/rsta.2007.2068, 2007.
Download
Short summary
This paper describes an analysis of the software architecture of global climate models. The analysis provides a visualization of the structure of these models, and reveals interesting differences between the models developed at different research labs.