Articles | Volume 7, issue 4
Geosci. Model Dev., 7, 1543–1571, 2014
https://doi.org/10.5194/gmd-7-1543-2014
Geosci. Model Dev., 7, 1543–1571, 2014
https://doi.org/10.5194/gmd-7-1543-2014

Development and technical paper 24 Jul 2014

Development and technical paper | 24 Jul 2014

Application of a computationally efficient method to approximate gap model results with a probabilistic approach

M. Scherstjanoi et al.

Related authors

GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models
M. Scherstjanoi, J. O. Kaplan, E. Thürig, and H. Lischke
Geosci. Model Dev., 6, 1517–1542, https://doi.org/10.5194/gmd-6-1517-2013,https://doi.org/10.5194/gmd-6-1517-2013, 2013

Related subject area

Climate and Earth System Modeling
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021,https://doi.org/10.5194/gmd-14-337-2021, 2021
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021,https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021,https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021,https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021,https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary

Cited articles

Bohn, U., Gollub, G. C. H., Neuhäuslová, Z., Raus, T., Schlüter, H., and Weber, H.: Map of Natural Vegetation of Europe, Bonn: Federal Agency for nature conservation, 2004.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, 2008.
Botkin, D. B., Wallis, J. R., and Janak, J. F.: Some ecological consequences of a computer model of forest growth, J. Ecol., 60, 849–872, 1972.
Brändli, U.-B. (Ed.): Schweizerisches Landesforstinventar, Ergebnisse der dritten Erhebung 2004–2006, Birmensdorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Bern, Bundesamt für Umwelt, Wald und Landschaft, 2009.
Brzeziecki, B., Kienast, F., and Wildi, O.: A simulated map of the potential natural forest vegetation of Switzerland, J. Veg. Sci., 4, 499–508, 1993.
Download