Articles | Volume 16, issue 19
https://doi.org/10.5194/gmd-16-5515-2023
https://doi.org/10.5194/gmd-16-5515-2023
Model description paper
 | 
04 Oct 2023
Model description paper |  | 04 Oct 2023

All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0

Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein

Related authors

Stable isotope evidence for long-term stability of large-scale hydroclimate in the Neogene North American Great Plains
Livia Manser, Tyler Kukla, and Jeremy K. C. Rugenstein
Clim. Past, 20, 1039–1065, https://doi.org/10.5194/cp-20-1039-2024,https://doi.org/10.5194/cp-20-1039-2024, 2024
Short summary
Technical note: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines
Daniel E. Ibarra, Carlos Primo C. David, and Pamela Louise M. Tolentino
Hydrol. Earth Syst. Sci., 25, 2805–2820, https://doi.org/10.5194/hess-25-2805-2021,https://doi.org/10.5194/hess-25-2805-2021, 2021
Short summary
Clay mineralogical evidence for mid-latitude terrestrial climate change from the latest Cretaceous through the earliest Paleogene in the Songliao Basin, NE China
Yuan Gao, Youfeng Gao, Daniel E. Ibarra, Xiaojing Du, Tian Dong, Zhifei Liu, and Chengshan Wang
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-36,https://doi.org/10.5194/cp-2020-36, 2020
Revised manuscript not accepted
Short summary
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020,https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
cfr (v2024.1.26): a Python package for climate field reconstruction
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024,https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
NEWTS1.0: Numerical model of coastal Erosion by Waves and Transgressive Scarps
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024,https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Evaluation of isoprene emissions from the coupled model SURFEX–MEGANv2.1
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024,https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
A comprehensive Earth system model (AWI-ESM2.1) with interactive icebergs: effects on surface and deep-ocean characteristics
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024,https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
The regional climate–chemistry–ecology coupling model RegCM-Chem (v4.6)–YIBs (v1.0): development and application
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024,https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary

Cited articles

Abbot, D. S., Cowan, N. B., and Ciesla, F. J.: Indication of Insensitivity of Planetary Weathering Behavior and Habitable Zone to Surface Land Fraction, Astrophys. J., 756, 178, https://doi.org/10.1088/0004-637X/756/2/178, 2012. a
Arndt, S., Regnier, P., Goddéris, Y., and Donnadieu, Y.: GEOCLIM reloaded (v 1.0): a new coupled earth system model for past climate change, Geosci. Model Dev., 4, 451–481, https://doi.org/10.5194/gmd-4-451-2011, 2011. a
Baum, M., Fu, M., and Bourguet, S.: Sensitive Dependence of Global Climate to Continental Geometry, Geophys. Res. Lett., 49, e2022GL098843, https://doi.org/10.1029/2022GL098843, 2022. a, b, c, d
Bergman, N. M.: COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time, Am. J. Sci., 304, 397–437, https://doi.org/10.2475/ajs.304.5.397, 2004. a, b, c, d
Berner, R. A.: A Model for Atmospheric CO2 over Phanerozoic Time, Am. J. Sci., 291, 339–376, https://doi.org/10.2475/ajs.291.4.339, 1991. a, b, c
Download
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.