Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1297-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1297-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Barotropic tides in MPAS-Ocean (E3SM V2): impact of ice shelf cavities
Nairita Pal
CORRESPONDING AUTHOR
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Centre for Ocean, River, Atmosphere and Land Sciences, Indian Institute of Technology, Kharagpur, 721302, India
Kristin N. Barton
Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
Mark R. Petersen
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Steven R. Brus
Argonne National Laboratory, Lemont, IL 60439, USA
Darren Engwirda
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Brian K. Arbic
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Andrew F. Roberts
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Joannes J. Westerink
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
Damrongsak Wirasaet
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
Related authors
No articles found.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
Nat. Hazards Earth Syst. Sci., 25, 3619–3639, https://doi.org/10.5194/nhess-25-3619-2025, https://doi.org/10.5194/nhess-25-3619-2025, 2025
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river, and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025, https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
Short summary
Discrete global grid systems, or DGGS, are digital frameworks that help us organize information about our planet. Although scientists have used DGGS in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon and Yukon basins, which play important roles in our planet's climate. These datasets may help us improve our water cycle models.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
Ocean Sci., 21, 325–342, https://doi.org/10.5194/os-21-325-2025, https://doi.org/10.5194/os-21-325-2025, 2025
Short summary
Short summary
Sea level observations along the swaths of the new SWOT (Surface Water and Ocean Topography) mission were used to characterize internal tides at three semidiurnal frequencies off the Amazon shelf in the tropical Atlantic during the SWOT calibration/validation period. The atlases were derived using harmonic analysis and principal component analysis. The SWOT-derived internal tide atlas outperforms the reference atlas previously used to correct SWOT observations.
Sara Calandrini, Darren Engwirda, and Luke Van Roekel
EGUsphere, https://doi.org/10.5194/egusphere-2024-472, https://doi.org/10.5194/egusphere-2024-472, 2024
Preprint withdrawn
Short summary
Short summary
Most modern ocean circulation models only consider the hydrostatic pressure, but for coastal phenomena nonhydrostatic effects become important, creating the need to include the nonhydrostatic pressure. In this work, we present a nonhydrostatic formulation for MPAS-Ocean (MPAS-O NH) and show its correctness on idealized benchmark test cases. MPAS-O NH is the first global nonhydrostatic model at variable resolution and is the first nonhydrostatic ocean model to be fully coupled in a climate model.
Siddhartha Bishnu, Robert R. Strauss, and Mark R. Petersen
Geosci. Model Dev., 16, 5539–5559, https://doi.org/10.5194/gmd-16-5539-2023, https://doi.org/10.5194/gmd-16-5539-2023, 2023
Short summary
Short summary
Here we test Julia, a relatively new programming language, which is designed to be simple to write, but also fast on advanced computer architectures. We found that Julia is both convenient and fast, but there is no free lunch. Our first attempt to develop an ocean model in Julia was relatively easy, but the code was slow. After several months of further development, we created a Julia code that is as fast on supercomputers as a Fortran ocean model.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023, https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Short summary
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our knowledge of the magnitude and spatial distribution of this mixing mostly relies on uncertain modeling. Here, we use novel observations from autonomous floats to validate the spatial variability in the semidiurnal IT in a realistic ocean simulation. The numerical simulation is found to correctly reproduce the main spatial patterns of the observed tidal energy but to be biased low at the global scale.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
David A. Griffin, Mike Herzfeld, Mark Hemer, and Darren Engwirda
Geosci. Model Dev., 14, 5561–5582, https://doi.org/10.5194/gmd-14-5561-2021, https://doi.org/10.5194/gmd-14-5561-2021, 2021
Short summary
Short summary
In support of the developing ocean renewable energy sector, and indeed all mariners, we have developed a new tidal model for Australian waters and thoroughly evaluated it using a new compilation of tide gauge and current meter data. We show that while there is certainly room for improvement, the model provides useful predictions of tidal currents for about 80 % (by area) of Australian shelf waters. So we intend to commence publishing tidal current predictions for those regions soon.
Steven R. Brus, Phillip J. Wolfram, Luke P. Van Roekel, and Jessica D. Meixner
Geosci. Model Dev., 14, 2917–2938, https://doi.org/10.5194/gmd-14-2917-2021, https://doi.org/10.5194/gmd-14-2917-2021, 2021
Short summary
Short summary
Wind-generated waves are an important process in the global climate system. They mediate many interactions between the ocean, atmosphere, and sea ice. Models which describe these waves are computationally expensive and have often been excluded from coupled Earth system models. To address this, we have developed a capability for the WAVEWATCH III model which allows model resolution to be varied globally across the coastal open ocean. This allows for improved accuracy at reduced computing time.
William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink
Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021, https://doi.org/10.5194/gmd-14-1125-2021, 2021
Short summary
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Cited articles
Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B.,
Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A.,
Menemenlis, D., Metzger, E. J., Müller, M., Nelson, A. D., Nelson, B. C.,
Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B.,
Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J.,
Zamudio, L., and Zhao, Z.: A primer on global internal tide
and internal gravity wave continuum modeling in HYCOM
and MITgcm, New Frontiers in Operational Oceanography, edited by: Chassignet, E. P., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, 307–392, https://doi.org/10.17125/gov2018.ch13, 2018. a
Barton, K. N., Pal, N., Brus, S. R., Roberts, A. F., Engwirda, D., Petersen,
M. R., Arbic, B. K., Wirasaet, D., Westerink, J. J., and Schindelegger, M.:
Global barotropic tide modeling using inline self‐attraction and loading in MPAS‐Ocean, J. Adv. Model. Earth Sy., 14, e2022MS003207,
https://doi.org/10.1029/2022MS003207, 2023. a, b, c, d, e, f, g
Begeman, C. B., Tulaczyk, S., Padman, L., King, M., Siegfried, M. R., Hodson,
T. O., and Fricker, H. A.: Tidal pressurization of the ocean cavity near an
Antarctic ice shelf grounding line, J. Geophys. Res.-Oceans,
125, e2019JC015562, https://doi.org/10.1029/2019JC015562, 2020. a
Bell Jr., T. H.: Topographically generated internal waves in the open ocean,
J. Geophys. Res., 80, 320–327,
https://doi.org/10.1029/JC080i003p00320, 1975. a
Blakely, C. P., Ling, G., Pringle, W. J., Contreras, M. T., Wirasaet, D., Westerink, J. J., Moghimi, S., Seroka, G., Shi, L., Myers, E., Owensby, M., and Massey, C.:
Dissipation and Bathymetric Sensitivities in an Unstructured Mesh Global
Tidal Model, J. Geophys. Res.-Oceans, 127, e2021JC018178, https://doi.org/10.1029/2021JC018178,
2022. a, b
Brunt, K. M., Fricker, H. A., Padman, L., Scambos, T. A., and O’Neel, S.:
Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat
laser altimetry, Ann. Glaciol., 51, 71–79, 2010. a
Brus, S. R., Barton, K. N., Pal, N., Roberts, A. F., Engwirda, D., Petersen,
M. R., Arbic, B. K., Wirasaet, D., Westerink, J. J., and Schindelegger, M.:
Scalable self attraction and loading calculations for unstructured ocean
models, Ocean Model., 182, 102160, https://doi.org/10.1016/j.ocemod.2023.102160, 2023. a, b, c, d
Buijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F.,
Timko, P. G., Wallcraft, A. J., Whalen, C. B., and Zhao, Z.: Impact of
parameterized internal wave drag on the semidiurnal energy balance in a
global ocean circulation model, J. Phys. Oceanogr., 46,
1399–1419, 2016. a
Codiga, D. L.: Unified Tidal Analysis and Prediction Using the UTide Matlab Functions. Technical Report 2011-01. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. 59 pp., ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf (last access: 27 April 2022), 2011. a
Coleman, R.: Satellite altimetry and earth sciences: A handbook of techniques and applications, Eos Transactions American Geophysical Union, 82, 376–376, 2001. a
Comeau, D., Asay-Davis, X. S., Begeman, C. B., Hoffman, M. J., Lin, W.,
Petersen, M. R., Price, S. F., Roberts, A. F., Van Roekel, L. P., Veneziani,
M., Wolfe, J. D., Fyke, J. G., Ringler, T. D., and Turner, A. K.: The DOE
E3SM v1.2 Cryosphere Configuration: Description and Simulated Antarctic
Ice-Shelf Basal Melting, J. Adv. Model. Earth Sy., 14,
e2021MS002468, https://doi.org/10.1029/2021MS002468, 2022. a, b
De Kleermaeker, S., Verlaan, M., Mortlock, T., Rego, J. L., Apecechea, M. I.,
Yan, K., and Twigt, D.: Global-to-local scale storm surge modelling on
tropical cyclone affected coasts, Australasian Coasts & Ports, 358–364,
2017. a
Egbert, G. and Ray, R.: Significant dissipation of tidal energy in the deep
ocean inferred from satellite altimeter data, Nature, 405, 775–778, 2000. a
Egbert, G. D. and Ray, R. D.: Semi-diurnal and diurnal tidal dissipation from
TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30, 17, https://doi.org/10.1029/2003GL017676, 2003. a
Egbert, G. D., Ray, R. D., and Bills, B. G.: Numerical modeling of the global
semidiurnal tide in the present day and in the last glacial maximum, J. Geophys. Res.-Oceans, 109, C3, https://doi.org/10.1029/2003JC001973, 2004. a, b, c, d
Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117–2140, https://doi.org/10.5194/gmd-10-2117-2017, 2017. a
GEBCO Compilation Group: GEBCO 2020 Grid, British Oceanographic Data Center [data set],
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020. a
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H.-Y., Lin, W., Lipscomb, W. H., Ma, P.-L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S.,Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The
DOE E3SM Coupled Model Version 1: Overview and Evaluation at
Standard Resolution, J. Adv. Model. Earth Sy., 11,
2089–2129, https://doi.org/10.1029/2018MS001603, 2019. a
Gordeev, R., Kagan, B., and Polyakov, E.: The effects of loading and
self-attraction on global ocean tides: the model and the results of a
numerical experiment, J. Phys. Oceanogr., 7, 161–170, 1977. a
Jacobs, S., Helmer, H., Doake, C., Jenkins, A., and Frolich, R.: Melting of ice
shelves and the mass balance of Antarctica, J. Glaciol., 38,
375–387, 1992. a
Jeong, H., Asay-Davis, X. S., Turner, A. K., Comeau, D. S., Price, S. F.,
Abernathey, R. P., Veneziani, M., Petersen, M. R., Hoffman, M. J., Mazloff,
M. R., and Ringler, T. D.: Impacts of Ice-Shelf Melting on Water-Mass
Transformation in the Southern Ocean from E3SM Simulations, J.
Climate, 33, 5787–5807, https://doi.org/10.1175/JCLI-D-19-0683.1, 2020. a
Ju, L., Ringler, T., and Gunzburger, M.: Voronoi tessellations and their
application to climate and global modeling, in: Numerical techniques for
global atmospheric models, edited by: Lauritzen, P., Jablonowski, C., Taylor,
M.,
and Nair, R., Springer, 313–342, https://doi.org/10.1007/978-3-642-11640-7_10, 2011. a
Kidder, D. L.: Facies models 4, Geoscience Canada, 38, 141–144, 2011. a
Knox, S., Windham-Myers, L., Anderson, F., Sturtevant, C., and Bergamaschi, B.:
Direct and indirect effects of tides on ecosystem-scale CO2 exchange in a
brackish tidal marsh in Northern California, J. Geophys. Res.-Biogeo., 123, 787–806, 2018. a
Le Provost, C., Genco, M., Lyard, F., Vincent, P., and Canceil, P.:
Spectroscopy of the world ocean tides from a finite element hydrodynamic
model, J. Geophys. Res.-Oceans, 99, 24777–24797, 1994. a
Ledwell, J., Montgomery, E., Polzin, K., St Laurent, L., Schmitt, R., and
Toole, J.: Evidence for enhanced mixing over rough topography in the abyssal
ocean, Nature, 403, 179–182, 2000. a
Lei, J., Li, F., Zhang, S., Ke, H., Zhang, Q., and Li, W.: Accuracy assessment
of recent global ocean tide models around Antarctica, The International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
42, 1521, https://doi.org/10.3389/feart.2022.757821, 2017. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
2006. a
Melet, A., Nikurashin, M., Muller, C., Falahat, S., Nycander, J., Timko, P. G.,
Arbic, B. K., and Goff, J. A.: Internal tide generation by abyssal hills
using analytical theory, J. Geophys. Res.-Oceans, 118,
6303–6318, 2013. a
Mellor, G. L. (Ed.): Introduction to physical oceanography, Springer, vol. 260, 1996. a
Munk, W.: Once again: once again – tidal friction, Prog. Oceanogr.,
40, 7–35, 1997. a
Munk, W. H.: Abyssal recipes, in: Deep Sea Research and Oceanographic
Abstracts, Elsevier, 13, 707–730, 1966. a
Nikurashin, M. and Ferrari, R.: Global energy conversion rate from geostrophic
flows into internal lee waves in the deep ocean, Geophys. Res. Lett., 38, 8, https://doi.org/10.1029/2011GL046576, 2011. a
Nycander, J.: Generation of internal waves in the deep ocean by tides,
J. Geophys. Res.-Oceans, 110, C10, https://doi.org/10.1029/2004JC002487, 2005. a, b
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean tide influences on the
Antarctic and Greenland ice sheets, Rev. Geophys., 56, 142–184,
2018. a
Pal, N.: Dataset for Barotropic tides in MPAS-Ocean (E3SM V2): impact of ice shelf cavities (GMD, 2023), Zenodo [data set], https://doi.org/10.5281/zenodo.7084790, 2023. a, b
Pal, N., Barton, K., Petersen, M., Brus, S. R., Engwirda, D., Arbic, B., Roberts, A. F., Westerink, J. J., and Wirasaet, D.: nPal/E3SM:MPAS-Ocean Tidal Dynamics in Presence of Ice Shelf Cavities, in a Barotropic Ocean, Zenodo, [code and data], https://doi.org/10.5281/zenodo.7084857, 2022. a
Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., and Maltrud,
M. E.: Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate
method in the MPAS-Ocean model, Ocean Model., 86, 93–113, 2015. a
Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N.,
Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Maltrud, M. E., Price, S. F.,
Ringler, T. D., Streletz, G. J., Turner, A. K., Van Roekel, L. P., Veneziani,
M., Wolfe, J. D., Wolfram, P. J., and Woodring, J. L.: An Evaluation of
the Ocean and Sea Ice Climate of E3SM Using MPAS and
Interannual CORE-II Forcing, J. Adv. Model. Earth
Sy., 11, 1438–1458, https://doi.org/10.1029/2018MS001373, 2019. a
Pringle, W.: Global Tide Gauge Database [data set],
https://www.google.com/maps/d/u/0/viewer?mid=1yvnYoLUFS9kcB5LnJEdyxk2qz6g&ll=-3.81666561775622e-14,101.96502786483464&z=2,
2019. a
Pringle, W. J., Wirasaet, D., Roberts, K. J., and Westerink, J. J.: Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance, Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021, 2021. a, b
Richter, O., Gwyther, D. E., King, M. A., and Galton-Fenzi, B. K.: The impact of tides on Antarctic ice shelf melting, The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, 2022. a
Ringler, T., Ju, L., and Gunzburger, M.: A multiresolution method for climate
system modeling: Application of spherical centroidal Voronoi tessellations,
Ocean Dynam., 58, 475–498, 2008. a
Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and
Maltrud, M.: A multi-resolution approach to global ocean modeling, Ocean Model., 69, 211–232, 2013. a
Rosier, S., Green, J., Scourse, J., and Winkelmann, R.: Modeling Antarctic
tides in response to ice shelf thinning and retreat, J. Geophys.
Res.-Oceans, 119, 87–97, 2014. a
Schlichting, H. and Gersten, K.: Boundary-layer theory, Springer, https://doi.org/10.1115/1.3641813, 2016. a
Schwiderski, E. W.: On charting global ocean tides, Rev. Geophys., 18,
243–268, 1980. a
Scott, R., Goff, J., Naveira Garabato, A., and Nurser, A.: Global rate and
spectral characteristics of internal gravity wave generation by geostrophic
flow over topography, J. Geophys. Res.-Oceans, 116, C9, https://doi.org/10.1029/2011JC007005, 2011. a
Shihora, L., Sulzbach, R., Dobslaw, H., and Thomas, M.: Self-attraction and
loading feedback on ocean dynamics in both shallow water equations and
primitive equations, Ocean Model., 169, 101914, https://doi.org/10.1016/j.ocemod.2021.101914, 2022. a, b
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.: Accuracy assessment of
global barotropic ocean tide models, Rev. Geophys., 52, 243–282,
2014. a
Stigebrandt, A.: Resistance to barotropic tidal flow in straits by baroclinic
wave drag, J. Phys. Oceanogr., 29, 191–197, 1999. a
Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G.,Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer, W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M., and Vieli, A.: Challenges to
understanding the dynamic response of Greenland's marine terminating glaciers
to oceanic and atmospheric forcing, B. Am. Meteorol.
Soc., 94, 1131–1144, 2013. a
Sun, W., Zhou, X., Zhou, D., and Sun, Y.: Advances and accuracy assessment of
ocean tide models in the Antarctic Ocean, Front. Earth Sci., 10, 757821, https://doi.org/10.3389/feart.2022.757821,
2022. a
Taylor, G. I.: I. Tidal friction in the Irish Sea, Philos. T. Roy. Soc. Lond. A, 220, 1–33, 1920. a
Turner, J., Orr, A., Gudmundsson, G. H., Jenkins, A., Bingham, R. G.,
Hillenbrand, C.-D., and Bracegirdle, T. J.: Atmosphere-ocean-ice interactions
in the Amundsen Sea embayment, West Antarctica, Rev. Geophys., 55,
235–276, 2017. a
Verfaillie, D., Pelletier, C., Goosse, H., Jourdain, N. C., Bull, C., Dalaiden,
Q., Favier, V., Fichefet, T., and Wille, J. D.: The circum-Antarctic
ice-shelves respond to a more positive Southern Annular Mode with regionally
varied melting, Commun. Earth Environ., 3, 1–12, 2022. a
Vic, C., Naveira Garabato, A. C., Green, J., Waterhouse, A. F., Zhao, Z.,
Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.:
Deep-ocean mixing driven by small-scale internal tides, Nat.
Commun., 10, 1–9, 2019. a
Von Kármán, T.: Mechanical similitude and turbulence, Tech. Mem., Report No. 611, Washington D.C., NACA, 1931. a
Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., and Gao, P.: Load
Love numbers and Green's functions for elastic Earth models PREM, iasp91,
ak135, and modified models with refined crustal structure from Crust 2.0,
Comput. Geosci., 49, 190–199, 2012. a
Wang, P., Bernier, N. B., Thompson, K. R., and Kodaira, T.: Evaluation of a
global total water level model in the presence of radiational S2 tide, Ocean Model., 168, 101893, https://doi.org/10.1016/j.ocemod.2021.101893, 2021. a
Warburton, K., Hewitt, D., and Neufeld, J.: Tidal grounding-line migration
modulated by subglacial hydrology, Geophys. Res. Lett., 47,
e2020GL089088, https://doi.org/10.1029/2020GL089088, 2020. a
Zaron, E. D. and DeCarvalho, R.: Identification and reduction of
retracker-related noise in altimeter-derived sea surface height measurements,
J. Atmos. Ocean. Tech., 33, 201–210, 2016. a
Zilberman, N., Becker, J., Merrifield, M., and Carter, G.: Model estimates of M 2 internal tide generation over Mid-Atlantic Ridge topography, J. Phys. Oceanogr., 39, 2635–2651, 2009. a
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Understanding tides is essential to accurately predict ocean currents. Over the next several...