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Abstract. Oceanic tides are seldom represented in Earth sys-
tem models (ESMs) owing to the need for high horizontal
resolution to accurately represent the associated barotropic
waves close to coasts. This paper presents results of tides im-
plemented in the Model for Prediction Across Scales–Ocean
or MPAS-Ocean, which is the ocean component within
the U.S. Department of Energy developed Energy Exascale
Earth System Model (E3SM). MPAS-Ocean circumvents the
limitation of low resolution using unstructured global mesh-
ing. We are at this stage simulating the largest semidiur-
nal (M2, S2, N2) and diurnal (K1, O1) tidal constituents
in a single-layer version of MPAS-O. First, we show that
the tidal constituents calculated using MPAS-Ocean closely
agree with the results of the global tidal prediction model
TPXO8 when suitably tuned topographic wave drag and bot-
tom drag coefficients are employed. Thereafter, we present
the sensitivity of global tidal evolution due to the presence
of Antarctic ice shelf cavities. The effect of ice shelves on
the amplitude and phase of tidal constituents are presented.
Lower values of complex errors (with respect to TPXO8 re-
sults) for the M2 tidal constituents are observed when the ice
shelf is added in the simulations, with particularly strong im-
provement in the Southern Ocean. Our work points towards
future research with varying Antarctic ice shelf geometries
and sea ice coupling that might lead to better comparison

and prediction of tides and thus better prediction of sea-level
rise and also the future climate variability.

1 Introduction

Ocean tides are generated due to the gravitational force
from celestial bodies – the Sun, Moon and the Earth. Such
gravitational dynamics causes the sea surface height of the
global ocean to oscillate at well-defined amplitude and fre-
quency (Mellor, 1996). These oscillations are dominated by
diurnal (daily) and semidiurnal (twice daily) constituents or
frequencies. The tide plays an important role in a broad range
of global oceanic processes including oceanic mixing and
heat, salt and biogeochemical (BGC) fluxes (Vic et al., 2019;
Ledwell et al., 2000; Munk, 1997), sedimentation (Kidder,
2011), and biological processes and resulting habitats (Knox
et al., 2018). Oceanic mixing due to tides, winds and waves
contributes to the redistribution of heat from the Equator to
the poles. Thus understanding and predicting tides and tidal
mixing is essential to predicting global climate variability.
Accurate representation of tides is necessary, not only to pre-
dict ocean currents and future climate variability but also
to remove tidal noise during satellite altimetry or satellite
gravimetry (Coleman, 2001; Zaron and DeCarvalho, 2016)
since tidal signals affect different kinds of observational data,
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ranging from space geodetic observations to the measure-
ment of ocean currents.

In this paper, we focus on the mechanical interactions of
the ocean tides with the Antarctic ice shelf cavities. Needless
to say, accurately representing such tidal interactions with ice
shelves is indispensable in the current scenario of a warm-
ing climate, melting ice shelves and constantly evolving ice
shelf geometries (De Kleermaeker et al., 2017; Blakely et al.,
2022; Wang et al., 2021; Richter et al., 2022; Verfaillie et al.,
2022). Ice shelves are permanent floating sheets of ice that
are connected or “grounded” to a landmass (see Fig. 1). Most
of the world’s ice shelves hug the coast of Antarctica. How-
ever, ice shelves can also form wherever ice flows from land
into cold ocean waters, including some glaciers in the North-
ern Hemisphere. The point at which the ice shelf loses con-
tact with the bed is called the “grounding line”. This ground-
ing line can migrate with the tide, due to the elastic interac-
tions between the tides and ice or the tidal flexure on the sur-
face of an ice shelf (Brunt et al., 2010; Padman et al., 2018).
The region over which the ice shelf loses contact with the
bedrock and just floats in open ocean is called the “grounding
zone”, and in this region the ice shelves directly interact with
oceans and thus ocean tides. There are a number of detailed
works on ocean–ice-shelf interactions (Jacobs et al., 1992;
Straneo et al., 2013; Warburton et al., 2020; Turner et al.,
2017). In this work, we present the impacts of the Antarc-
tic ice shelf cavities on the dynamics of global tides, sim-
ulated using the Los Alamos National Laboratory (LANL)-
led global ocean model known as the Model for Prediction
Across Scales–Ocean or MPAS-Ocean (Ringler et al., 2013;
Petersen et al., 2015). We have modified MPAS-Ocean to
work in a barotropic or “single-layer” framework to increase
computational efficiency.

The barotropic, or single-layer, global tide model within
MPAS-Ocean is supplemented with specific schemes to dis-
sipate tidal energy. The total energy of the tidal motion in the
oceans across the world is about 3.5 TW (Egbert and Ray,
2003), which was originally believed to be dissipated only
through bottom friction in shallow coastal shelf seas (Taylor,
1920). Thus, in the early barotropic tide models the tidal dis-
sipation term was either linear or quadratic bottom drag in
the coastal oceans, with the drag coefficients appropriately
tuned to match observations (Schwiderski, 1980; Le Provost
et al., 1994). However, works of Egbert and Ray (2000)
showed that about a third of the barotropic tidal dissipa-
tion occurs in the deep ocean, thus debunking previous as-
sumptions that all tidal energy is dissipated in shallow water.
Works of Munk (1966) and Munk and Wunsch (1998) estab-
lished that baroclinic tides contribute strongly to tidal energy
dissipation. Tidal currents flowing over topography in a strat-
ified ocean can give rise to tidal-period oscillations, known
as internal or baroclinic tides. In fact, energy is transferred
from the barotropic to the baroclinic tide in rough topogra-
phy (Munk and Wunsch, 1998). The energy conversion from
barotropic to the baroclinic tide in rough topography is rep-

resented through a linear wave drag term (Stigebrandt, 1999;
Jayne and St. Laurent, 2001). Such wave drags are com-
monly known as “internal wave drag” in the literature (Eg-
bert et al., 2004; Arbic et al., 2004) and have been shown to
improve tidal elevations by reducing root-mean-square eleva-
tion error with observations (Egbert et al., 2004; Arbic et al.,
2004; Green and Nycander, 2013; Lyard et al., 2006). The
internal wave drag scheme can be implemented with or with-
out a tunable parameter. In our work, which is an early effort
at introducing a linear wave drag scheme in a tide model im-
plemented in MPAS-Ocean, we use a scalar wave drag for-
mulation with a tunable parameter. Our scheme, originally
implemented by Jayne and St. Laurent (2001), is based on a
linear scaling relationship and strongly depends on a tunable
parameter. As we show later, our tuning parameter essentially
sets the length scale associated with dissipation.

Some drag schemes (Egbert et al., 2004) are derived using
linear transformations of the bottom topography (Bell, 1975)
and do not have a tunable parameter. Such schemes have
been shown to perform better when applied to barotropic
models, with global dissipation rates close to TPXO7.2
(Green and Nycander, 2013). However, the drawback of
schemes without a tunable parameter is that the dissipation
rates and root-mean-square errors strongly depend on the
global bathymetry and stratification databases and thus do
not guarantee an optimal prediction of elevation and dissipa-
tion rates. For example, bathymetric databases might not re-
solve all abyssal features. The analytically computed Nycan-
der scheme has been shown to increase regional and global
dissipation rates due to the inclusion of abyssal hill rough-
ness on ocean spreading ridges (Melet et al., 2013). On the
other hand, high-resolution bathymetric databases increase
the linear wave drag strength indicating a need for more tun-
ing (Nycander, 2005; Zilberman et al., 2009). The reason for
such an increase in wave drag has been attributed to a su-
percritical topography (Nikurashin and Ferrari, 2011; Scott
et al., 2011), but a tunable parameter is still needed to correct
the effect.

The particular scalar drag scheme that we utilize in this
study is the Jayne and St. Laurent (2001) scheme. This drag
acts on a barotropic global ocean model forced with five
major tidal constituents: M2, S2, N2, K1 and O1. We show
that our model performs very well with respect to root-
mean-square tidal elevation comparisons against TPXO8
data (https://doi.org/10.5281/zenodo.7084790; Pal, 2023).
We present a sensitivity study using meshes of varying res-
olution and show that the root-mean-square error values im-
prove when we use high-resolution meshes. In the last sec-
tion of the paper, we focus on the mechanical interactions of
the ocean tides with the Antarctic ice shelf cavities and show
that inclusion of ice shelf cavities improves the tidal eleva-
tion comparison results against TPXO8 data.

One other important factor that must be accounted for in
global tide models is the self-attraction and loading (SAL).
SAL accounts for a combination of effects: the deforma-

Geosci. Model Dev., 16, 1297–1314, 2023 https://doi.org/10.5194/gmd-16-1297-2023

https://doi.org/10.5281/zenodo.7084790


N. Pal et al.: Barotropic tides in MPAS-Ocean (E3SM V2) 1299

tion of the Earth’s crust due to mass loading and the self-
gravitation of the load-deformed Earth as well as of the ocean
tide itself (Hendershott, 1972). Self-attraction and loading
can change tidal amplitudes to first order (up to 20 % in some
regions) and also significantly impact tidal phases and am-
phidromic points (Gordeev et al., 1977). A full calculation
of SAL calls for the convolution of tidal elevation with a
proper Green’s function or a multiplication with load Love
numbers in the spectral – i.e., spherical harmonic – domain
(Ray, 1998). However, due to computational efficiency, we
have used a scalar SAL term in the major part of this study
(Accad and Pekeris, 1978). A full calculation of SAL has
been recently investigated in detail in Barton et al. (2023)
and Brus et al. (2023).

The paper is organized as follows. In Sect. 2, we present
a brief overview of our model components, with a focus
on new modifications and developments within the MPAS-
Ocean framework. In Sect. 3, we show some verification
and validation results for our barotropic single-layer MPAS-
Ocean ocean framework against analytical solutions from a
planar two-dimensional ocean test case. We show that our
barotropic ocean model reproduces known theoretical re-
sults. In Sect. 4, we present some background on TPXO8
data and the MPAS-Ocean mesh used for the simulations. In
Sect. 5, we present the MPAS-Ocean model’s sea surface el-
evation root-mean-square error results against observational
TPXO8 data, the sensitivity of the results to different meshes,
the impact of adding Antarctic ice shelf cavities, and the ef-
fect of adding a full (inline) self-attraction and loading term
in our simulations. We finish our paper with discussions, con-
clusions and future directions in Sect. 6.

2 Model formulation and equations

This work is a systematic analysis of tides implemented in
MPAS-Ocean, including the addition of ice shelf cavities.
MPAS-Ocean is the ocean component of the DOE’s En-
ergy Exascale Earth System Model (E3SM) (Golaz et al.,
2019; Petersen et al., 2019) (we use E3SM version V2 here).
MPAS-Ocean is solved using finite-volume methods (FVMs)
on an unstructured grid, and this is where our work has an
extra edge. The MPAS-Ocean code has the ability to run on
unstructured meshes, which helps resolve sharp bathymetry
critical for tides. This multi-resolution approach is built upon
two key components: a variable-resolution mesh with ex-
ceptional mesh-quality characteristics and a finite-volume
method that maintains all of its conservation properties even
when implemented on a highly nonuniform grid. The un-
structured variable-resolution mesh is required to resolve
coastal processes in greater detail, while maintaining a rela-
tively low resolution for the open-ocean processes which are
relatively simpler to parameterize. Such variable resolution
is achieved using the spherical centroidal Voronoi tessella-
tions or SCVTs (Ringler et al., 2008). Numerical algorithms

specifically designed for these grids guarantee that volume
and energy are conserved (Ringler et al., 2010). The time-
stepping scheme is the fourth-order Runge–Kutta method.

We present results of global tidal evolution over a num-
ber of horizontal mesh configurations, ranging from uniform
64 to 8 km configurations as well as variable-resolution de-
signs. Such single-layer framework is ideal for a seamless
implementation and testing of new features (e.g., the topo-
graphic wave drag and bottom friction schemes that we use).
The governing momentum equations for MPAS-O that we
use in our study are the shallow-water equations, written in
so-called vector-invariant form (Ringler et al., 2010):

∂u

∂t
+ (∇ ×u+ f k)×u

=−∇K − g∇
(
η− ηSAL− ηEQ

)
−
∇ps

ρ0
−χ

Cu
H
−

CD|u|u
H

, (1)

∂h

∂t
+∇ · (hu)= 0, (2)

p(x,y,z)= ps(x,y)+ ρ0gh, (3)

where u represents the depth-averaged horizontal velocity, t
is the time coordinate, f is the Coriolis parameter, k is the
vertical unit vector, K = |u|2/2 is the kinetic energy, g is
the gravitational acceleration constant, η is the sea surface
height relative to the unperturbed ocean surface, ηEQ is the
equilibrium tide, ηSAL is the perturbation of tidal elevations
due to SAL, χ is a tunable scalar dimensionless wave drag
coefficient, C

h
is a topographic wave drag timescale, H is the

resting depth of the ocean, CD is the bottom friction coeffi-
cient, and h is the total ocean thickness such that H +η = h.
The full form of the drag terms in Eq. (1) would use the total
thickness h, but our implementation uses the linearized ver-
sion with the resting depth H . For the linear drag scheme,
we use the formulation due to Jayne and St. Laurent (2001),
with the inverse timescale H

C computed according to Buijs-
man et al. (2016). Further details are provided in Sect. 2.3.
Here ps represents the surface pressure on the ocean due to
the floating ice shelf cavities (see Sect. 2.5), and p refers to
the total pressure on the vertical column of water.

We have the following important modification to MPAS-
Ocean in our model: (a) we introduce an external forcing due
to astronomical tides (Barton et al., 2023; Brus et al., 2023);
(b) we introduce a new drag scheme due to friction with the
seabed representing the log law of wall turbulence and a new
drag scheme called topographic wave drag due to scattering
with rough topography; (c) dynamics due to Antarctic ice
shelf cavities, together with a full inline SAL.

2.1 Tidal forcing

The tidal forcing is obtained from an astronomical potential
among celestial bodies (see Barton et al., 2023, for details).
Here we just state the governing equations for the sea surface
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height perturbation due to tides. The perturbation to the sea
surface height ηEQ is a combination of principal semidiurnal
and diurnal tides:

ηEQsd,c = Acfc(tref)Lcos2(φ)cos[ωc(t − tref)

+χc(tref)+ νc(tref)+ 2λ], (4)

ηEQd,c = Acfc(tref)Lsin(2φ)cos[ωc(t − tref)

+χc(tref)+ νc(tref)+ λ], (5)

where these terms are valid for semidiurnal (sd) and diurnal
(d) tidal constituents (Arbic et al., 2018). The total forcing
comes from summing over each of the constituents, c. Here
A and ω are the forcing amplitude and frequency, respec-
tively, dependent on the tidal constituent; tref is a specified
reference time; t is time; φ is latitude; λ is longitude; χ(tref)

is an astronomical argument dependent on tidal constituent;
and f (tref) and ν(tref) are amplitude and phase nodal factors
accounting for small known astronomical modulations in the
tidal forcing. L= 1+ k2−h2 represents the body tide Love
numbers accounting for changes in the gravitational potential
(k2) due to deformation of the Earth’s crust and mantle from
tidal forcing (h2).

2.2 Drag based on ocean bottom roughness

An ocean bottom-depth-based friction coefficient is impor-
tant when we want to use a smaller value in deep water (for
non-tidal energetic tuning, say) and a high value for tides in
shallow regions. We implement a bottom friction coefficient
based on the ocean bottom roughness, in the MPAS-Ocean
model code. The friction coefficient CD in Eq. (1) is evalu-
ated according to the following formula (Oey, 2006):

CD =max
[

κ2

[ln(zb/z0)]2
,CD,min

]
, (6)

where κ = 0.4 is the von Kármán constant (Von Kármán,
1931), z0 is the roughness parameter and zb is the ocean
layer thickness (i.e., the sea surface height + the ocean bot-
tom depth). CD,min is the minimum quadratic bottom fric-
tion coefficient. Typically, in previous studies, z0 = 10 mm
and CD,min = 0.0025. The derivation of CD is given in Oey
(2006) and is obtained by matching the near-bottom mod-
eled velocity to the law of the wall (Schlichting and Gersten,
2016).

2.3 Topographic wave drag

As we discuss in the Introduction, we utilize the Jayne and
St. Laurent (2001) scheme to calculate the topographic wave
drag in this study. This is a scalar scheme, in which the wave
drag strength is independent of the flow direction. Works by
Egbert et al. (2004) show that the scalar scheme produces
reasonable agreement with observations after being appro-
priately tuned. This scalar scheme is easier to implement
than the more sophisticated tensor-based scheme (Nycander,

2005). In the tensor-based scheme, the tensor components are
functions of the directionality of topographic roughness, and
hence, the wave drag strength depends on the flow direction
relative to the rough topography.

The term χ
Cu
H

represents the topographic wave drag on

the velocity u. The factor
C
H

is an inverse timescale, and
χ is a tunable drag coefficient. As we discussed in the In-
troduction, this is a scalar linear wave drag scheme, or the
Jayne and St. Laurent formulation for wave drag (Jayne and
St. Laurent, 2001; Buijsman et al., 2015):

C =
π

L
Ĥ 2Nb. (7)

Here Ĥ is the bottom roughness, Nb is the buoyancy fre-
quency at the bottom, and L is the wavelength of the bot-
tom topography typically set as 10 km (Jayne and St. Lau-
rent, 2001; Buijsman et al., 2015). We implement the wave
drag term as χCu representing a linear drag on the velocity
u. The factor C (= Ĥ 2Nb) is a data field we obtain following
the procedure described in Buijsman et al. (2015), and χ is a
tunable drag coefficient. It is interesting to note here that af-
ter tuning, the optimum value of χ settles at a value between
1.08 and 1.44 for the high-resolution meshes, which is in the
same range as the pre-factor

π

L
in Eq. (7).

2.4 Self-attraction and loading (SAL)

In the first part of the work, SAL is implemented in MPAS-
Ocean via the scalar approximation (Accad and Pekeris,
1978; Ray, 1998):

ηSAL = βη, (8)

where η is the sea surface height prior to alterations and
β = 0.09 is a scalar parameter used to approximate the influ-
ence of SAL. This approximation is a computationally inex-
pensive method that is sufficiently accurate for many cases.
However, this does not capture the spatial dependence and
large-scale smoothing of the full calculation.

To capture the full spatial dependence, in the latter part of
the paper, SAL is implemented as additional body force via
the sea surface height gradient term in Eq. (1). As detailed
in Barton et al. (2023), we express the inline SAL for tides
in terms of the spherical harmonic decomposition of the sea
surface height (Hendershott, 1972):

ηSAL =
∑
n

3ρ0

ρearth(2n+ 1)
(1+ k′n−h

′
n)ηn, (9)

where each spherical harmonic sea surface height term ηn
is multiplied by a scalar coefficient (Wang et al., 2012).
Here ρ0 is the average density of seawater, ρearth is the av-
erage density of the solid Earth, and the multiplicative term
(1+k′n−h

′
n) represents load Love numbers corresponding to
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physical effects of SAL. The “1”, k′n and h′n terms account for
gravitational self-attraction of the ocean, gravitational self-
attraction of the deformed solid Earth, and deformation due
to loading of the solid Earth, respectively. However, the us-
age of sea surface height for calculating SAL is only appro-
priate for tides and wind-driven barotropic motions. For other
motions one must use bottom pressure anomalies.

2.5 Ice shelf cavities and their connection to pressure

Within MPAS-Ocean the ocean domain is extended to in-
clude cavities under Antarctic ice shelves (Fig. 1, Jeong et al.,
2020; Comeau et al., 2022). In our work, we do not study the
dynamic ice-sheet–ocean coupling, so the ice-shelf–ocean
interface is essentially static in time, adjusting only to the rel-
atively small changes in dynamic pressure from the ocean.
We use a constant density, salinity and temperature in our
study and thus do not evolve these tracers separately. Since
we have a single vertical ocean layer, we use a hydrostatic
formulation for pressure with a linear dependency on the
height of the vertical column (see Eq. 3). The implementa-
tion of ice shelf cavities require introducing an extra pressure
term to Eq. (1) to account for the depression of sea surface
height below the Antarctic ice sheet and above the continen-
tal shelf (see Fig. 1). This extra pressure ps represents the
weight of floating ice shelves. The vertical coordinate below
ice shelves in multi-layer MPAS-O is described in Comeau
et al. (2022). For the single-layer version, the pressure is sim-
ply computed as ps

= ρgD, where D is the ice shelf draft
below the open-ocean sea surface datum and ρ is the density
of the displaced water (Fig. 1b).

3 Idealized experiments

In this section we show that Eqs. (1)–(3), with the tidal forc-
ing set to zero, reproduce known theoretical results for the
ideal test cases: (a) the aquaplanet gravity wave test case and
(b) Stommel’s solution on a planar ocean basin. These two
test cases are used to verify to operation of the single-layer
shallow-water equations on the sphere, including the spatial
discretization of the advection, Coriolis and pressure gradi-
ent terms and the time-stepping scheme.

An aquaplanet is a planet without any continents. If ini-
tialized with a Gaussian hump sea surface height test case,
the Gaussian hump spreads at the speed of gravity waves in
the ocean. The speed of gravity waves would be c =

√
gH ,

where g is the acceleration due to gravity= 9.8 m s−2 andH
is the bottom depth of the ocean (here 1000 m). We have ver-
ified that our MPAS-Ocean simulations do indeed produce
a gravity wave speed of c =

√
gH (details in Sect. A in the

Appendix).
Next we check the Stommel solutions for a planar, flat-

bottomed ocean basin. Stommel assumed a rectangular ocean
with the origin of a Cartesian coordinate system at the south-

west corner. The y axis points northward; the x axis is east-
ward. The shores of the ocean are at x = 0,λ and y = 0,b.
The values of these variables are listed in Table B1 in the
Appendix. The ocean is regarded as a homogeneous layer
of constant depth D when at rest. We observe that MPAS-
Ocean simulation results agree very well with the analytical
functions derived originally in Stommel (1948).

The system is initialized with a sinusoidal wind forcing as
shown in the Appendix, Fig. B1b, and we simulate Eq. (1)
for different values of Coriolis parameter. Below we show
simulation results and also the corresponding analytical so-
lutions, for a typical f plane test case, in which the Coriolis
parameter is a constant (f = 2.5×10−4). The comparison of
the MPAS-Ocean simulation results with the analytical re-
sults is shown in Fig. 2. A table with the system parameters
is provided in Table B1 in the Appendix.

4 Global tidal dynamics: simulation details

4.1 Icosahedral mesh design

The horizontal meshes used throughout this study consist
of quasi-uniform spherical centroidal Voronoi tessellations
(SCVTs) based on a semi-structured icosahedral decompo-
sition of the sphere. The coarsest grid is composed of 12
pentagonal Voronoi cells (primal grid) and an underlying
dual triangular grid (dual grid). Refinements of this mesh
are obtained by incremental bisection of the spherical tri-
angle edges and application of an SCVT optimization pro-
cedure, which iteratively re-positions triangle vertices to lie
at the center of mass of their associated Voronoi cells (Ju
et al., 2011). The computational grids used in this study
were generated using the JIGSAW unstructured meshing li-
brary (Engwirda, 2017). To facilitate mesh convergence anal-
ysis, we employ a set of four quasi-uniform, icosahedral-
type meshes in this study, with between 7 and 10 levels of
structured refinement. The icosahedron 7 configuration re-
sults in approximately 60 km global mesh spacing, while the
highest-resolution icosahedron 10 configuration leads to ap-
proximately 8 km global resolution.

4.2 Variable-resolution mesh design

In addition to quasi-uniform icosahedral configurations, we
also explore the use of unstructured, variable-resolution
meshes to enhance the representation of coastal features and
regions of high tidal dissipation through selective mesh re-
finement. Following previous work of Pringle et al. (2021)
and consistent with Barton et al. (2023) and Brus et al.
(2023), we employ a 45-to-5 km variable-resolution configu-
ration with mesh spacing l(x) tailored to resolve barotropic
wavelengths and sharp bathymetric gradients:

lwav(x)= βwavTM2

√
gH̃ , (10)
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Figure 1. (a) Schematic of ice shelf cavity. The grounding line (between the ice shelf and continental shelf) is marked with a white circle (b).
Schematic showing the dynamic water thickness h, reference thickness H , ice draft D and surface pressure ps.

Figure 2. Comparison of MPAS-Ocean results against theoretical predictions by Stommel (1948) for the f plane case: simulation (a, d, g);
analytical solutions (b, e, h) and their difference (c, f, i) for the sea surface height (m), zonal velocity u and meridional velocity v (m s−1).
Comparisons were made at 39 d, after the model reached an equilibrium solution. Horizontal axes are x and y (m).

lslp(x)= βslp
2πH̃
˜∇H
, (11)

l∗(x)=max
(
min

(
lwav(x), lslp(x), lmax

)
, lmin

)
, (12)

l∗→ |∇l| ≤ γ . (13)

Here, lwav(x) and lslp(x) are barotropic tidal length-scale
heuristics, with lwav increasing mesh resolution in shallow
regions to resolve the wavelength of shallow-water dynam-
ics and lslp increasing mesh resolution in areas of sharp
bathymetry. βwav and βslp are tunable “mesh-spacing” pa-
rameters, set to βwav =

1
80 and βslp =

1
4 in this study. To con-

trol grid-scale noise, H̃ and ˜∇H are Gaussian-filtered (σ =
1
2 ) depths and gradients obtained from the GEBCO2021

bathymetry (GEBCO Compilation Group, 2020). l∗(x) is a
combined estimate of mesh spacing throughout the domain,
clipping lwav, lslp to lmin = 5 km and lmax = 45 km globally.
To control the gradation of the mesh overall, l∗(x) is limited
to enforce a sufficiently slow growth in length scale. We use
γ = 1

8 in this study.

4.3 TPXO8 and tidal evaluation

To assess the accuracy of the implemented of tidal forcing,
we compare the amplitude and phase of the tidal constituents
obtained from the MPAS-Ocean simulations against those
of data-assimilated TPXO8. We use a number of different
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meshes to assess their impact on the accuracy of our re-
sults. The meshes used are as follows: (1) a globally uniform
icosahedron 7 mesh with a low resolution of 64 km; (2) a
globally uniform icosahedron 8 mesh with a medium resolu-
tion 30 km; (3) a globally uniform icosahedron 9 mesh with
a high resolution of 15 km; (4) a globally uniform icosahe-
dron 10 mesh with an ultra-high resolution of 8 km; (5) a
variable-resolution mesh ranging from 45 to 5 km. A single-
layer global ocean configuration was initialized for each of
the above meshes, and without any external wind forcing.
An initial ramp-up time of 15 d was allowed for the tidal po-
tential forcing, after which we observe a steady oscillation in
the global mean kinetic energy. We compare the five major
tidal constituents, of which three are semidiurnal, i.e., M2,
S2, N2, and two are diurnal, i.e., K1, O1 as obtained from
our MPAS-Ocean simulations against observational TPXO8
data. The mean harmonic decomposition of each tidal con-
stituent over a period of 90 d was calculated from the MPAS-
Ocean simulations. As a comparison metric, we choose the
global complex root mean square error (RMSE) defined as
follows:

RMSE=
(

0.5
[
A2

o+A
2
m− 2AoAm · cos(θo− θm)

]) 1
2
, (14)

where A is the tidal amplitude, θ is the phase lag, and the
subscripts “o” and “m” refer to the observed and modeled
values, respectively. The amplitude RMSE is defined as the
limit of RMSE when θo = θm, i.e.,

amplitude RMSE=
(

0.5(Ao−Am)
2
) 1

2
, (15)

RMSEA =

√∫ ∫
RMSE2dA∫ ∫

dA
. (16)

The quantity RMSEA is weighted by the area dA of each
cell. In our study, we perform the tidal analysis calculations
for the M2 constituent of the tide only.

5 Results

This section is organized in the following way: in Sect. 5.1
we show the tuning of the linear wave drag coefficient, χ ,
for different mesh resolutions. Thereafter, in the same sec-
tion we show the impact of adding ice shelf cavities to the
global tidal analysis results (in particular the amplitude and
phase of the M2 tidal constituent) on the different meshes. In
Sect. 5.2 we show the impact of adding inline SAL (see Bar-
ton et al., 2023, for details) to the MPAS-Ocean simulations
on a variable-resolution mesh. In Sect. 5.3 we show com-
parisons of MPAS-Ocean simulation results against data ob-
tained from tide gauge measurements. In Sect. 5.4 we com-
pare the results from the different MPAS-Ocean meshes in
bar chart plots. Finally, we wrap up our paper with some dis-
cussions and conclusions in Sect. 6.

Figure 3. Tuning of the topographic wave drag coefficient χ for
runs Icos8n (solid red with crosses) and Icos8is (dashed red with
crosses), Icos9n (solid green with circles) and Icos9is (dashed green
with circles), and Icos10n (solid blue with triangles) and Icos10is
(dashed blue with triangles). See Table 1 for reference.

5.1 TPXO8 comparisons and wave drag tuning

Due to the presence of a tunable parameter, χ , in the in-
ternal wave drag formulation, we carry out a series of sim-
ulations on each mesh configuration (icosahedron 8, 9 and
10) to find the optimum χ which gives the best agreement
against TPXO8 data, i.e., the lowest value of RMSEA (see
Sect. 4.3 for details). These simulations were carried out with
and without adding ice shelf cavities. From these runs, we
conclude that the optimum χ lies between 0.5 and 2.5 (see
Fig. 3). The icosahedron N mesh is henceforth referred to
as IcosNis and IcosNn for cases with and without ice shelf,
respectively (here N = 7,8,9,10). Note that the optimum
value of χ for Icos9is (χ = 1.08) and Icos9n (χ = 1.44) are
different. Similarly for the Icos10is and Icos10n meshes. In
particular, the optimum value of χ is lower when there are
ice shelf cavities in the simulation. This fact suggests that ice
shelf cavities are responsible for the extra dissipation arising
from a lower wave drag in the ocean. The lowest error ob-
tained from these icosahedron mesh simulations is 0.088 m
(Icos10is). It must be noted that we have used a scalar SAL
term in these simulations.

The effects of tuning χ on the spatially varying RMSE of
the M2 constituent, for Icos8n,is, Icos9n,is and Icos10n,is, are
shown in Fig. 4b–g. Evidently, RMSEA improves when ice
shelf cavities are added in the simulation. In particular, the
global RMSEA decreases from 8.77 cm (Fig. 4b) to 8.3 cm
(Fig. 4c) for the Icos8n,is meshes. The global RMSEA de-
creases from 8.0 cm (Fig. 4d) to 7.6 cm (Fig. 4e) for the
Icos9n,is meshes and similarly from 7.9 cm (Fig. 4f) to 7.4 cm
(Fig. 4g) for the Icos10n,is meshes.

As Fig. 4 shows, we perform two simulations for each
mesh resolution: one with no Antarctic ice shelf cavities and
one with Antarctic ice shelf cavities. As is apparent from a vi-
sual comparison of Fig. 4f and g, the Antarctic ice shelf cavi-
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Figure 4. Icosahedral global tidal simulation results: (a) reference TPXO8 re-analysis mean M2 amplitude (cm) with overlays of 90◦ phase
contours. Complex RMSE (global, no depth or latitude restrictions) of M2 constituent for (b) Icos8n, (c) Icos8is, (d) Icos9n, (e) Icos9is,
(f) Icos10n and (g) Icos10is.

Figure 5. Difference in complex RMSE between Icos10n and Icos10is of (a) global and (b) South Polar projection. See Fig. 4f and g for
reference.
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Table 1. RMSE values of the M2 tidal constituent, calculated for different simulations (Icos7n–VRis). “M2RMSE (global)” refers to the
global RMSE value calculated without any ocean depth restrictions; “M2RMSE deep” refers to the global RMSE value calculated over ocean
depths > 1000 m. M2RMSER refers to RMSE values calculated between 66◦ N and 66◦ S and for ocean depths > 1000 m. M2RMSESO
refers to the RMSE values calculated over the Southern Ocean only, i.e., for latitudes south of 60◦ S; RMSETG refers to RMSE values
obtained from the “Truth Pelagic” tide gauge database; RMSETGA refers to RMSE values obtained from the UHSLC tide gauge database
along the Antarctic coastline.

Run χ Minimum Ice SAL M2 RMSE M2RMSE M2RMSER M2RMSESO RMSETG RMSETGA
depth shelf (global) [m] deep [m] [m] [m]

Icos7n (≈ 63 km) 1.8 8 m × scalar 0.14 0.12 0.125 0.144
Icos7is (≈ 63 km) 1.8 X scalar 0.135 0.125 0.12 0.01 0.12 0.115
Icos8n (≈ 30 km) 1.44 8 m × scalar 0.123 0.11 0.11 0.157 0.105 0.17
Icos8is (≈ 30 km) 1.44 X scalar 0.115 0.1 0.105 0.9 0.10 0.11
Icos9n (≈ 15 km) 1.44 8 m × scalar 0.11 0.09 0.09 0.161 0.095 0.18
Icos9is (≈ 15 km) 1.08 X scalar 0.101 0.083 0.083 0.083 0.09 0.0815
Icos10n (8 km) 1.44 8 m × scalar 0.11 0.102 0.10 0.18 0.103 0.18
Icos10is (8 km) 1.08 8 m X scalar 0.093 0.088 0.088 0.076 0.1 0.085
VRn (45–5 km) 0.54 0.5 m × inline 0.11 0.053 0.053 0.12 0.053 0.12
VRis (45–5 km) 0.54 0.5 m X inline 0.071 0.047 0.044 0.051 0.053 0.06

Figure 6. M2 RMSE for the variable-resolution mesh and inline SAL (a) without and (b) with ice shelf cavities. The differences between
plots (a) and (b) are shown in (c), along with a South Polar projection in (d).

ties have the impact of reducing the errors along the Antarctic
coastline. For a quantitative estimate of the reduction in er-
rors, in Fig. 5a we show the difference in complex RMSE as
obtained from Icos10n and Icos10is. Figure 5b shows a South
Polar projection of the difference in RMSE between Icos10n
and Icos10is.

5.2 Effect of ice shelf cavities and SAL

In this subsection we show that adding inline SAL (described
in Sect. 2.4) improves the quality of MPAS-Ocean simula-

tions substantially. In addition, the RMSE values show fur-
ther improvement when we add Antarctic ice shelf cavities to
our simulation. We use a variable-resolution horizontal mesh
for this part of our work. We show the M2 RMSE plots for
the MPAS-Ocean simulations without and with ice (VRn and
VRis) in Fig. 6. The global deep water RMSE is 0.053 m for
VR45–5n, which improves to 0.044 m (VR45–5is) when ice
shelf cavities are added. The compounded effect of the in-
line SAL, ice shelf cavity forcing and the variable-resolution
mesh results in the improvement in RMSE values for these
two simulations. This is the lowest error achieved using the
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current stage of development of tides within MPAS-Ocean.
As discussed later in this paper, state-of-the-art simulations
by Schindelegger et al. (2018) and Shihora et al. (2022) have
errors of 0.044 and 0.034 m, which are very close to the
RMSE values in this study. We have shown that carefully
tuned internal tide parameter, inline-SAL, ice shelves and a
locally high-resolution mesh are all necessary to obtain ac-
curate, high-quality tides simulations.

5.3 Tide gauge comparison

To further investigate the impact of ice shelf cavities on tidal
dynamics, we compare the results of MPAS-Ocean to tide
gauge datasets including the “ground truth” stations from the
University of Hawaii Sea Level Center (UHSLC). The loca-
tions of these tide gauges are shown in Fig. 7e. Tidal har-
monic data at these stations were consolidated by Pringle
(2019). These data include directly provided tidal harmon-
ics or those derived from using the Matlab Function for Uni-
fied Tidal Analysis and Prediction (UTIDE) (Codiga, 2011)
on time level histories. Figure 7a–d show the model vs. tide
gauge amplitudes and phases for runs VRn and VRis. These
plots include gauges at latitudes south of 60◦ S. Figure 7a
and b show scatterplots of the mean amplitude and phase of
the tidal M2 constituent for the run VRn (i.e., no ice shelf
cavity case). Similarly, Fig. 7c and d show scatterplots of the
mean amplitude and phase of the tidal M2 constituent for the
run VRis (i.e., with ice shelf cavity case). For the phase data,
we shifted the values so that the phase differences were all
within 180◦. The RMSE when comparing against the 21 UH-
SLC stations is 0.07 m for the variable-resolution mesh and
0.085 m for the 8 km quasi-uniform mesh (Table 1), which is
consistent with the results seen from the TPXO8 comparison
of 0.06 and 0.088 m, respectively, for the Southern Ocean.

We show values of correlation coefficient or the coefficient
of determination R2 defined as follows:

R2
=

n
∑
xy− (

∑
x)(
∑
y)[√

n
∑
x2− (

∑
x)2
][
n
∑
y2− (

∑
y)2
] . (17)

Here x denotes M2 amplitude (in Fig. 7a and c) and M2
phase (in Fig. 7b and d) from MPAS-Ocean simulation data.
y denotes M2 amplitude (in Fig. 7a and c) and M2 phase (in
Fig. 7b and d) from tide gauge measurements. When there
is no ice shelf in the simulation, the R2 values of the ampli-
tude and phases are 0.8 and 0.83, respectively. Including ice
shelf cavities increases the R2 values to 0.955 and 0.96, re-
spectively. The ice shelf cavities, although static, provide an
accurate boundary condition along the Antarctic coastline,
and thus the tidal errors reduce appreciably in the Southern
Ocean. The locations of the stations from which we record
the tide gauge data are shown in Fig. 7e. Figure 7e shows a
South Polar projection of the Southern Ocean, in particular,
ocean between latitudes −90◦ and −60◦.

Figure 7. Tide gauge comparison between the variable-resolution
model simulation (horizontal axes) and observations (vertical axes)
for M2 amplitude (a, c) and M2 phase (b, d), where the simulation
is without ice shelves (VRn, a, b) and with ice shelves (VRis, c,
d). These tide gauges are near the Antarctic coast and Drake Pas-
sage (e).

5.4 Summary of all runs

Finally, Fig. 8 shows three bar chart plots exhibiting how ice
shelf cavity forcing improves the RMSE in the different re-
gions of the global ocean. In particular, the bar charts are in
three categories: (a) the global ocean; (b) the Southern Ocean
only (latitudes south of 60◦ S); (c) ocean for latitudes north
of 60◦ S. Although the RMSE shows improvement with ice
shelf cavities for all three categories, the strongest improve-
ment is observed for the Southern Ocean (i.e., latitudes south
of 60◦ S. This result further confirms that Antarctic ice shelf
cavities are indeed required to accurately capture tides in an
Earth system model.

The lowest error achieved is on the 45 to 5 km variable-
resolutions mesh, with inline SAL and ice shelf cavities
(VRis with a deep M2 RMSE of 0.044 m). As a point of com-
parison, Schindelegger et al. (2018) and Shihora et al. (2022)
both included full inline SAL calculations in a barotropic
tide model and found deep-ocean M2 RMSEs of 0.044 and
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Figure 8. Error for the icosahedron 7, 8, 9 and 10 meshes, with and without ice shelf cavities for (a) the global RMSE, (b) RMSE at latitudes
<−60◦ and (c) RMSE at latitudes >−60◦.

0.034 m, respectively. M2 RMSEs with the advanced circu-
lation model ADCIRC were found to be 0.0287 m by Pringle
et al. (2021), further lowered to 0.0194 m by Blakely et al.
(2022). All four of the previous studies used a more opti-
mized wave drag, and the last study implemented SAL by
reading in SAL from a data-assimilated model. Stammer
et al. (2014) includes a comparison of errors for various
purely hydrodynamical, non-data assimilative models rang-
ing from 0.0525–0.0776 m.

6 Conclusion

In this paper we have shown the effect of adding tides in
a global ocean model and have explored the effects of drag
and ice shelf cavities on global tides. We have computed the
tidal analysis on meshes of different resolutions, in partic-
ular, the icosahedron meshes and also a variable-resolution
mesh. In particular, we use a linear wave drag scheme, and
show that a systematic tuning of the wave drag coefficient,
χ , results in very accurate tides. We also found that the op-
timum value of χ is lower (see Fig. 3) when there are ice
shelf cavities in the simulation, indicating the ice shelf cav-
ities provide the extra dissipation. The detailed analysis of
simulations with and without ice shelf cavities indicates that
introducing static ice shelf cavities reduces the RMSEs ap-
preciably along the Antarctic coastline (see Figs. 4 and 5).
Finally, we have shown that using an inline self-attraction
and loading term, along with ice shelf cavities, results in very
accurate tides, as shown by comparison against observational

TPXO8 data (see Fig. 6). Our results are further validated by
comparison against tide gauge datasets (Fig. 7).

The computation of the full SAL term has been explored
in detail in Barton et al. (2023) and Brus et al. (2023). In
those works, the full SAL has been shown to predict bet-
ter tides compared to a constant SAL coefficient. Although a
detailed discussion of SAL is beyond the scope of this paper,
we have shown (using one reference simulation) that inline
SAL, along with ice shelf cavity forcing, reduces tidal errors
appreciably.

It is clear from this work that ice shelf cavities improve
tidal predictions. However, the ice shelf cavities have a fixed
geometry in this work. This paper paves the way for future
investigations of impacts of varying ice shelf cavity geome-
tries on global tides. Since tides also affect the melting and
freezing of ice shelf cavities as shown in Rosier et al. (2014),
a two-way interaction between tides and ice shelf cavities
will potentially improve tidal predictions. In this work we
have primarily focused on tidal errors in the open ocean near
the ice shelf cavities. However, a more detailed analysis of
tides and tidal pressures near the grounding line is possible as
shown by Begeman et al. (2020). Also, investigations of sea
ice dynamics and floating ice shelves are expected to improve
tidal errors (Sun et al., 2022; Lei et al., 2017). We would like
to conduct more detailed investigations of these factors in a
future effort.
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Appendix A: Aquaplanet gravity wave test case

The gravity wave speed on an aquaplanet domain, with no
continents, is used to validate the barotropic model. If initial-
ized with a Gaussian hump sea surface height test case (see
Fig. A1a), the Gaussian hump spreads at the speed of gravity
waves in the ocean (Fig. A1b–d represent the Gaussian pro-
files at times t = 3.7, 6.1, 10 s, respectively). We calculate
the velocity of propagation by tracking the position of a point
at the edge of the circular patch in Fig. A1a–d. In particular,
we track the maximum longitudinal coordinate where the sea
surface height has a value 0.2 m. The speed of gravity waves
would be c =

√
gH , where g is the acceleration due to grav-

ity = 9.8 m s−2 and H is the bottom depth of the ocean (here
1000 m). Thus the gravity wave speed is ∼ 99.8 m s−1. The
formula for gravity waves is the solution to the linear wave
equation. Since we are running the MPAS-Ocean model with
the nonlinear term, the speed will be slightly lower as shown
in Fig. B1. The simulation parameters are shown in Table A1.

Table A1. Parameters for an Aquaplanet test case simulated using
MPAS-Ocean.

Run Resolution Mean speed
[km] [m s−1]

AQ1 240 97.9
AQ2 120 98.1
AQ3 60 96.6
AQ4 30 96.4

Figure A1. Surface gravity wave on a sphere initiated by a Gaussian hump in sea surface height (ssh, m), at (a) t = 0 s, (b) t = 3.7 s,
(c) t = 6.1 s and (d) t = 10 s.
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Appendix B: Stommel basin test case

Next we check the Stommel solutions for a planar, flat-
bottomed ocean basin. Stommel assumed a rectangular ocean
with the origin of a Cartesian coordinate system at the south-
west corner. The y axis points northward; the x axis is east-
ward. The shores of the ocean are at x = 0,λ and y = 0,b.
The ocean is regarded as a homogeneous layer of constant
depth D when at rest. Below we show the equations of mo-
tion according to Stommel (1948).

0= f (D+h)v−F cos(πy/b)

−Ru− g(D+h)∂h/∂x (B1)
0= f (D+h)u−Rv− g(D+h)∂h/∂y (B2)

Here f is the Coriolis parameter, D is the bottom depth
(200 m in our test case), h is the height above the sea sur-
face, u is the x component of velocity, v is the y component
of velocity and R is the Rayleigh friction coefficient.

Equations (B1)–(B2) are the steady-state Navier–Stokes
equations. In Stommel (1948), Stommel derived analytical
expressions for the sea surface height and the horizontal and
vertical velocities for a planar domain and for different val-
ues of the Coriolis parameter f . The analytical solutions can
be exactly verified against the MPAS-Ocean model solutions
in the steady state, provided the domain configurations are
the same as in Stommel (1948). Thus in MPAS, we choose a
rectangular domain with the horizontal edges at xmin,xmax so
that λ= xmax− xmin and the vertical edges at ymin and ymax
so that b = ymax− ymin.

Also, the coefficients in Eqs. (B1)–(B2) can be compared
with those of Eq. (1). Rayleigh drag R in Eqs. (B1)–(B2) is
[L][T ]1, but the Rayleigh drag in MPAS is [T ]−1. Thus R =

0.02 m s−1 in Eqs. (B1)–(B2) corresponds to R =
0.02
H
=

0.0001 s−1 in MPAS, where H = 200 m. The external force
is provided by wind stress, which, for the sake of simplic-
ity we consider to be a regular periodic function (Stommel,
1948). The wind force is given by F = F0 cos

(πy
b

)
. This

simple functional form of the external force allows evalua-
tion of analytical solution of Eqs. (B1)–(B2). The wind forc-
ing amplitude is F0 = 1 N m2 in MPAS, which when divided
by the density ρ gives the amplitude force per unit mass as
F0

ρ
= 1×10−3 m2 s−2. In Table B1 we give the different pa-

rameters, which are the same for the simulations in this sec-
tion. We show a visualization of the wind forcing in the rect-
angular domain in Fig. B1.

There is a wind forcing at t = 0, with the initial condition
shown in Fig. B1. We simulate Eq. (1) for different values
of Coriolis parameter and list the cases below. We also pro-
vide the corresponding analytical solutions and compare the
simulation results with the analytical results.

Figure B1. Plot of the initial wind stress profile for the Stommel
basin test case.

B1 Non-rotating ocean, f = 0

If the Coriolis parameter is 0, the zonal and meridional veloc-
ities and the sea surface heights have the following analytical
solutions in the steady state:

u= γ (b/π)2 cos(πy/b)(peAx + qeBx − 1), (B3)

v =−γ (b/π)2 sin(πy/b)(pAeAx + qBeBx), (B4)

h(x,y)=−(F/gD)(peAx/A+ qeBx/B)

− (b/π)2(F/gD)(pAeAx + qBeBx)

· [cos(πy/b)− 1], (B5)

p = e−πλ/b, q = 1.

The corresponding comparisons are shown in Fig. 2.

B2 Ocean rotating at a constant angular velocity, i.e.,
f = constant

Here we have f = 2.5× 10−4 (see Table B1).
The x and y component of velocities and the sea surface

height have the following expressions:

u= γ (b/π)cos(πy/b)(peAx + qeBx − 1), (B6)

v =−γ (b/π)2 sin(πy/b)(pAeAx + qBeBx), (B7)

h(x,y)=−(F/gD)(peAx/A+ qeBx/B)

− (b/π)2(F/gD)(pAeAx + qBeBx)

· [cos(πy/b)− 1]

−
f γ

g

(
b

π

)2

sin
(πy
b

)
(peAx + qeBx − 1). (B8)
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Table B1. Simulation parameters for the Stommel test case on a planar ocean basin.

Run Nx Ny D (m) λ (km) b (km) F0 (m2 s−2) f (s−1) β

ST 1 100 72 200 9950000.0 6148780.36 1.0 0 0
ST 2 100 72 200 9950000.0 6148780.36 1.0 2.5× 10−4 0
ST 3 100 72 200 9950000.0 6148780.36 1.0 2.5× 10−4 10−10

Figure B2. Comparison of MPAS-Ocean results against theoretical predictions by Stommel (1948) for the non-rotating case (f = 0): sim-
ulation (a, d, g); analytical solutions (b, e, h) and their difference (c, f, i) for the sea surface height (m), zonal velocity u and meridional
velocity v (m s−1). Horizontal axes are x and y (m). Comparisons were made after the model reached an equilibrium solution.

B3 Rotating ocean: f = f0 +βy

Here, the Coriolis force varies linearly with latitude, i.e.,
f0 = 2.5× 10−4, β = 10−10.

The x and y components of velocity and the sea surface
height expressions are the following:

u= γ (b/π)cos(πy/b)(peAx + qeBx − 1), (B9)

v =−γ (b/π)2 sin(πy/b)(pAeAx + qBeBx),

h(x,y)=−(F/gD)(peAx/A+ qeBx/B)

− (b/π)2(F/gD)(pAeAx + qBeBx)

[cos(πy/b)− 1]

−

(
f γ

g

(
b

π

)2

sin
(πy
b

)
−
∂f

∂y

γ

g

(
b

π

)3

[cos
(πy
b

)
− 1]

)
· (peAx + qeBx − 1). (B10)
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