Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Adama Sylla
CORRESPONDING AUTHOR
CECI, CNRS, CERFACS, Université de Toulouse, Toulouse, France
Laboratoire de Physique de l'Atmosphère et de l'Ocean Simeon Fongang (LPAO-SF/ESP/UCAD), Dakar, Senegal
Emilia Sanchez Gomez
CECI, CNRS, CERFACS, Université de Toulouse, Toulouse, France
Juliette Mignot
CNRS/IRD/MNHN, LOCEAN Laboratory, Sorbonne University, Paris, France
Jorge López-Parages
CECI, CNRS, CERFACS, Université de Toulouse, Toulouse, France
Physical Oceanography Group, University of Málaga, Spain
Related authors
No articles found.
Diego Cortés-Morales, Alban Lazar, Diana Ruiz Pino, and Juliette Mignot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-533, https://doi.org/10.5194/essd-2025-533, 2025
Preprint under review for ESSD
Short summary
Short summary
OLIV3 (Observation-based LInear Vorticity Vertical Velocities) is a new global dataset of large-scale oceanic vertical velocities. It is derived from the geostrophic linear vorticity balance, combining in situ and satellite, meridional velocities and wind stress. Comparisons with reanalysis and observation-based products show that OLIV3 captures the large-scale vertical flow, its climatology, and temporal variability, providing a better description of the ocean interior than Ekman pumping.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Elsa Mohino, Paul-Arthur Monerie, Juliette Mignot, Moussa Diakhaté, Markus Donat, Christopher David Roberts, and Francisco Doblas-Reyes
Earth Syst. Dynam., 15, 15–40, https://doi.org/10.5194/esd-15-15-2024, https://doi.org/10.5194/esd-15-15-2024, 2024
Short summary
Short summary
The impact of the Atlantic multidecadal variability (AMV) on the rainfall distribution and timing of the West African monsoon is not well known. Analysing model output, we find that a positive AMV enhances the number of wet days, daily rainfall intensity, and extremes over the Sahel and tends to prolong the monsoon length through later demise. Heavy rainfall events increase all over the Sahel, while moderate ones only occur in the north. Model biases affect the skill in simulating AMV impact.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Cited articles
Alvarez, I., deCastro, M., Gomez-Gesteira, M., and Prego, R.: Inter-and
intra-annual analysis of the salinity and temperature evolution in the
Galician Rias Baixas-ocean boundary (northwest Spain), J. Geophys. Res., 110,
C04008, https://doi.org/10.1029/2004JC002504, 2005. a, b
Alvarez, I., Gomez-Gesteira, M., deCastro, M., and Dias, J. M.: Spatiotemporal
evolution of upwelling regime along the western coast of the Iberian
Peninsula, J. Geophys. Res., 113, C07020, https://doi.org/10.1029/2008jc004744,
2008. a, b, c
Arístegui, J., Barton, E. D., Tett, P., Montero, M. F.,
García-Muñoz, M., Basterretxea, G., Cussatlegras, A.-S., Ojeda, A.,
and de Armas, D.: Variability in plankton community structure, metabolism,
and vertical carbon fluxes along an upwelling filament (Cape Juby, NW
Africa), Prog. Oceanogr., 62, 95–113,
https://doi.org/10.1016/j.pocean.2004.07.004, 2004. a
Arístegui, J., Barton, E. D., Álvarez-Salgado, X. A., Santos, A.
M. P., Figueiras, F. G., Kifani, S., Hernández-León, S., Mason, E.,
Machú, E., and Demarcq, H.: Sub-regional ecosystem variability in the
Canary Current upwelling, Prog. Oceanogr., 83, 33–48,
https://doi.org/10.1016/j.pocean.2009.07.031, 2009. a, b, c
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith,
D. K., and Gombos, D.: A Cross-calibrated, Multiplatform Ocean Surface Wind
Velocity Product for Meteorological and Oceanographic Applications, B. Am. Meteorol. Soc., 92, 157–174,
https://doi.org/10.1175/2010bams2946.1, 2011. a
Bador, M., Boe, J., Terray, L., Alexander, L., Baker, A., Koenigk, T.,
Putrasahan, D., Roberts, M., Scoccimarro, E., Schiemann, R., Seddon, J.,
Senan, R., and Valcke, S.: Impact of higher spatial atmospheric resolution on
precipitation extremes over land in global climate models, J. Geophys. Res.,
125, e2019JD032184, https://doi.org/10.1029/2019JD032184, 2020. a, b
Bakun, A.: Coastal upwelling indices, west coast of North America, 1946–71,
U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-671, 103 pp., 1973. a
Bakun, A.: Coastal Ocean Upwelling, Science, 247, 198–201,
https://doi.org/10.1126/science.247.4939.198, 1990. a, b
Bakun, A. and Nelson, C. S.: The Seasonal Cycle of Wind-Stress Curl in
Subtropical Eastern Boundary Current Regions, J. Phys.
Oceanogr., 21, 1815–1834,
https://doi.org/10.1175/1520-0485(1991)021<1815:tscows>2.0.co;2, 1991. a
Balaguru, K., Van Roekel, L. P., Leung, L. R., and Veneziani, M.: Subtropical
Eastern North Pacific SST bias in earth system models, J. Geophys.
Res.-Oceans, 126, e2021JC017359, https://doi.org/10.1029/2021JC017359, 2021. a
Barton, E.D, Arístegui, J., Tett, P., Cantón, M., García-Braun, J., Hernández-León, S., Nykjaer, L., Almeida, C., Almunia, J., Ballesteros, S., Basterretxea, G., Escánez, J., Garcı́a-Weill, L., Hernández-Guerra, A., López-Laatzen, F., Molina, R., Montero, M.F., Navarro-Pérez, E., Rodrı́guez, J.M., Van Lenning, K., Vélez, H., and Wild, K.: The transition zone of the Canary current upwelling region, Prog.
Oceanogr., 41, 455–504, 1998. a
Barton, E., Field, D., and Roy, C.: Canary current upwelling: More or less?,
Prog. Oceanogr., 116, 167–178, https://doi.org/10.1016/j.pocean.2013.07.007,
2013. a
Bellucci, A., Athanasiadis, P. J., Scoccimarro, E., Ruggieri, P., Gualdi, S.,
Fedele, G., Haarsma, R. J., Garcia-Serrano, J., Castrillo, M., Putrahasan,
D., Sanchez-Gomez, E., Moine, M.-P., Roberts, C. D., Roberts, M. J., Seddon,
J., and Vidale, P. L.: Air-Sea interaction over the Gulf Stream in an
ensemble of HighResMIP present climate simulations, Clim. Dynam., 56,
2093–2111, https://doi.org/10.1007/s00382-020-05573-z, 2021. a
Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A.,
Lluís Pelegrí, J., and Hervé, D.: An improved coastal upwelling
index from sea surface temperature using satellite-based approach – The case
of the Canary Current upwelling system, Cont. Shelf Res., 81,
38–54, https://doi.org/10.1016/j.csr.2014.03.012, 2014. a, b
Blanton, J. O., Atkinson, L. P., Castillejo, F., and Montero, A. L.: Coastal
upwelling of the Rias Bajas, Galicia, northwest Spain, I; hydrographic
studies, Rapp. P. V. Reun. Cons. Int. Explor. Mer., 183, 179–190, 1984. a
Blanton, J. O., Tenore, K. R., Castillejo, F., Atkinson, L. P., Schwing, F. B.,
and Lavin, A.: The relationship of upwelling to mussel production in the rias
on the western coast of Spain, J. Mar. Res., 45, 497–511,
https://doi.org/10.1357/002224087788401115, 1987. a
Bravo, L., Ramos, M., Astudillo, O., Dewitte, B., and Goubanova, K.: Seasonal variability of the Ekman transport and pumping in the upwelling system off central-northern Chile (∼ 30∘ S) based on a high-resolution atmospheric regional model (WRF), Ocean Sci., 12, 1049–1065, https://doi.org/10.5194/os-12-1049-2016, 2016. a
Bryan, F. O., Tomas, R., Dennis, J. M., Chelton, D. B., Loeb, N. G., and
McClean, J. L.: Frontal Scale Air–Sea Interaction in
High-Resolution Coupled Climate Models, J. Climate, 23, 6277–6291,
https://doi.org/10.1175/2010jcli3665.1, 2010. a
Capet, X. J., Marchesiello, P., and McWilliams, J. C.: Upwelling response to
coastal wind profiles, Geophys. Res. Lett., 31, L13311,
https://doi.org/10.1029/2004gl020123, 2004. a, b
Cardone, V. J., Greenwood, J. G., and Cane, M. A.: On trends in historical
marine wind data, J. Clim., 3, 113–127, 1990. a
Castaño Tierno, A.: Tropical ocean-atmosphere interactions in
coupled models, The case of of the Equatorial thermocline and the northwest
African upwelling, PhD thesis, https://core.ac.uk/download/pdf/288477594.pdf (last access: 12 July 2022), 2020. a
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.: Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model, J. Adv. Model. Earth Sy., 11, 185–209, https://doi.org/10.1029/2018MS001369, 2019. a
Cropper, T. E., Hanna, E., and Bigg, G. R.: Spatial and temporal seasonal
trends in coastal upwelling off Northwest Africa, 1981–2012, Deep-Sea
Res. Pt. I, 86, 94–111,
https://doi.org/10.1016/j.dsr.2014.01.007, 2014. a, b
Czaja, A., Frankignoul, C., Minobe, S., and Vannière, B.: Simulating the
midlatitude atmospheric circulation: what might we gain from high-resolution
modeling of air-sea interactions?, Current Climate Change reports, 5,
390–406, 2019. a
Davey, M., Huddleston, M., Sperber, K., Braconnot, P., Bryan, F., Chen, D.,
Colman, R., Cooper, C., Cubasch, U., Delecluse, P., DeWitt, D., Fairhead, L.,
Flato, G., Gordon, C., Hogan, T., Ji, M., Kimoto, M., Kitoh, A., Knutson, T.,
Latif, M., Treut, H. L., Li, T., Manabe, S., Mechoso, C., Power, S.,
Roeckner, E., Terray, L., Vintzileos, A., Voss, R., Wang, B., Washington, W.,
Yoshikawa, I., Yu, J., Yukimoto, S., Zebiak, S., and Meehl, G.: STOIC: a
study of coupled model climatology and variability in tropical ocean regions,
Clim. Dynam., 18, 403–420, https://doi.org/10.1007/s00382-001-0188-6, 2002. a
de Boyer Montégut, C.: Mixed layer depth over the global ocean: An
examination of profile data and a profile-based climatology, J.
Geophys. Res., 109, C12003, https://doi.org/10.1029/2004jc002378, 2004. a, b, c
deCastro, M., Gomez-Gesteira, M., Alvarez, I., Cabanas, J. M., and Prego, R.:
Characterization of fall-winter upwelling recurrence along the Galician
western coast (NW Spain) from 2000 to 2005: Dependence on atmospheric
forcing, J. Mar. Syst., 72, 145–158, https://doi.org/10.1016/j.jmarsys.2007.04.005,
2008a. a
deCastro, M., Gómez-Gesteira, M., Lorenzo, M., Alvarez, I., and Crespo,
A.: Influence of atmospheric modes on coastal upwelling along the western
coast of the Iberian Peninsula, 1985 to 2005, Clim. Res., 36, 169–179,
https://doi.org/10.3354/cr00742, 2008b. a
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson,
R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C., Vecchi, G. A.,
Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated Climate and Climate
Change in the GFDL CM2.5 High-Resolution Coupled Climate Model, J.
Climate, 25, 2755–2781, https://doi.org/10.1175/jcli-d-11-00316.1, 2012. a
Doi, T., Vecchi, G. A., Rosati, A. J., and Delworth, T. L.: Biases in the
Atlantic ITCZ in seasonal–interannual variations for a coarse-and a
high-resolution coupled climate model, J. Climate, 25, 5494–5511,
2012. a
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping of
ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J.
Geophys. Res.-Oceans, 105, 19477–19498,
https://doi.org/10.1029/2000jc900063, 2000. a
Exarchou, E., Prodhomme, C., Brodeau, L., Guemas, V., and Doblas-Reyes, F.:
Origin of the warm eastern tropical Atlantic SST bias in a climate model,
Clim. Dynam., 51, 1819–1840, 2018. a
Faye, S., Lazar, A., Sow, B. A., and Gaye, A. T.: A model study of the
seasonality of sea surface temperature and circulation in the Atlantic
North-eastern Tropical Upwelling System, Frontiers in Physics, 3, 1–20,
https://doi.org/10.3389/fphy.2015.00076, 2015. a
Fraga, F.: Upwelling off the Galician Coast, Northwest Spain, in: Coastal
Upwelling, Coastal Estuarine, Stud., vol. 1, edited by: Richards, F. A.,
176–182, AGU, Washington, D. C., 1981. a
Freilich, M. H., Long, D. G., and Spencer, M. W.: SeaWinds: A scanning
scatterometer for ADEOS II – Science overview, Proc. Int. Geoscience and
Remote Sensing Symp., Pasadena, CA, IEEE, 960–963, 1994. a
Gomez-Gesteira, M., Moreira, C., Alvarez, I., and deCastro, M.: Ekman transport
along the Galician coast (northwest Spain) calculated from forecasted winds,
J. Geophys. Res., 111, C10005, https://doi.org/10.1029/2005jc003331, 2006. a, b, c
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. a, b, c, d, e
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020. a, b
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a, b, c
Harlass, J., Latif, M., and Park, W.: Improving climate model simulation of
tropical Atlantic sea surface temperature: The importance of enhanced
vertical atmosphere model resolution, Geophys. Res. Lett., 42,
2401–2408, 2015. a
Harlaß, J., Latif, M., and Park, W.: Alleviating tropical Atlantic sector
biases in the Kiel climate model by enhancing horizontal and vertical
atmosphere model resolution: climatology and interannual variability, Clim.
Dynam., 50, 2605–2635, https://doi.org/10.1007/s00382-017-3760-4, 2018. a
Herbland, A. and Voituriez, B.: La production primaire dans l'upwelling mauritanien en mars 1973, Cah. O.R.ST.OM., Sér. Océanogr., 12, 187–201, 1974. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E.,
Chassignet, E. P., Fox-Kemper, B., Hyder, P., Marshall, D. P., Popova, E.,
Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M.,
Kuhlbrodt, T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B.,
Putrasahan, D., Roberts, C. D., Roekel, L. V., and Zhang, Q.: Resolving and
Parameterising the Ocean Mesoscale in Earth System Models, Current Climate
Change Reports, 6, 137–152, https://doi.org/10.1007/s40641-020-00164-w, 2020. a
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T. P., Chepurin, G. A.,
Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.:
Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5):
Upgrades, Validations, and Intercomparisons, J. Climate, 30, 8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1, 2017. a
Huyer, A.: Coastal upwelling in the California current system, Prog.
Oceanogr., 12, 259–284,
https://doi.org/10.1016/0079-6611(83)90010-1, 1983. a
Jacox, M., Moore, A., Edwards, C., and Fiechter, J.: Spatially resolved
upwelling in the California Current System and its connections to climate
variability, Geophys. Res. Lett., 41, 3189–3196, 2014. a
Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J.: Coastal
Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the
U.S. West Coast, J. Geophys. Res.-Oceans, 123, 7332–7350,
https://doi.org/10.1029/2018jc014187, 2018. a
Lathuilière, C., Echevin, V., and Lévy, M.: Seasonal and intraseasonal
surface chlorophyll-a variability along the northwest African coast, J. Geophys. Res., 113, C05007, https://doi.org/10.1029/2007jc004433, 2008. a, b
Ma, J., Xu, S., and Wang, B.: Warm bias of sea surface temperature in Eastern
boundary current regions – a study of effects of horizontal
resolution in CESM, Ocean Dynam., 69, 939–954,
https://doi.org/10.1007/s10236-019-01280-4, 2019. a, b, c
Manabe, S., Stouffer, R. J., Spelman, M. J., and Bryan, K.: Transient Responses
of a Coupled Ocean–Atmosphere Model to Gradual Changes of
Atmospheric CO2. Part I. Annual Mean Response, J. Climate, 4,
785–818, https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2, 1991. a
Marcello, J., Hernández-Guerra, A., Eugenio, F., and Fonte, A.: Seasonal
and temporal study of the northwest African upwelling system, Int.
J. Remote Sens., 32, 1843–1859, https://doi.org/10.1080/01431161003631576,
2011. a
Marchesiello, P. and Estrade, P.: Upwelling limitation by onshore geostrophic
flow, J. Mar. Res., 68, 37–62,
https://doi.org/10.1357/002224010793079004, 2010. a
McGregor, H. V., Dima, M., Fischer, H. W., and Mulitza, S.: Rapid 20th-Century
Increase in Coastal Upwelling off Northwest Africa, Science, 315, 637–639,
https://doi.org/10.1126/science.1134839, 2007. a
Minas, H. J., Codispoti, L. A., and Dugdale, R. C.: Nutrients and primary production in the upwelling regions off northwest Africa, Rapports et Proces-Verbaux des Reunions, Conseil International pour l'Exploraion de la Mer, 180, 148–183, 1982. a
Mittelstaedt, E.: The ocean boundary along the northwest African coast:
Circulation and oceanographic properties at the sea surface, Prog.
Oceanogr., 26, 307–355, https://doi.org/10.1016/0079-6611(91)90011-a, 1991. a, b
Moreno-Chamarro, E., Caron, L.-P., Loosveldt Tomas, S., Vegas-Regidor, J., Gutjahr, O., Moine, M.-P., Putrasahan, D., Roberts, C. D., Roberts, M. J., Senan, R., Terray, L., Tourigny, E., and Vidale, P. L.: Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models, Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, 2022. a
Ndoye, S., Capet, X., Estrade, P., Sow, B., Machu, E., Brochier, T.,
Döring, J., and Brehmer, P.: Dynamics of a “low-enrichment
high-retention” upwelling center over the southern Senegal shelf,
Geophys. Res. Lett., 44, 5034–5043, https://doi.org/10.1002/2017gl072789,
2017. a
Nykjær, L. and Van Camp, L.: Seasonal and interannual variability of
coastal upwelling along northwest Africa and Portugal from 1981 to 1991,
J. Geophys. Res., 99, 14197, https://doi.org/10.1029/94jc00814, 1994. a, b
Oerder, V., Colas, F., Echevin, V., Codron, F., Tam, J., and Belmadani, A.:
Peru-Chile upwelling dynamics under climate change, J. Geophys.
Res.-Oceans, 120, 1152–1172, https://doi.org/10.1002/2014jc010299, 2015. a
Parfitt, R., Czaja, A., and Kwon, Y.-O.: The impact of SST resolution change in
the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea
interaction, Geophys. Res. Lett., 44, 3246–3254, 2017. a
Patricola, C. M., Li, M., Xu, Z., Chang, P., Saravanan, R., and Hsieh, J.-S.:
An investigation of tropical Atlantic bias in a high-resolution coupled
regional climate model, Clim. Dynam., 39, 2443–2463,
https://doi.org/10.1007/s00382-012-1320-5, 2012. a
Pauly, D. and Christensen, V.: Primary production required to sustain global
fisheries, Nature, 374, 255–257, https://doi.org/10.1038/374255a0, 1995. a
Pennington, J., Mahoney, K., Kuwahara, V., Kolber, D., Calienes, R., and
Chavez, F.: Primary production in the easterntropical Pacific, Prog.
Oceanogr., 69, 285–317, 2006. a
Pickett, M. H.: Ekman transport and pumping in the California Current based on
the U.S. Navy's high-resolution atmospheric model (COAMPS), J.
Geophys. Res., 108, 3327, https://doi.org/10.1029/2003jc001902, 2003. a, b
Pires, A. C., Nolasco, R., Rocha, A., and Dubert, J.: Assessing future climate
change in the Iberian Upwelling System, J. Coast. Res., 165,
1909–1914, https://doi.org/10.2112/si65-323.1, 2013. a
Putrasahan, D., Lohmann, K., von Storch, J.-S., Jungclaus, J. H., Gutjahr, O.,
and Haak, H.: Surface flux drivers for the slowdown of the Atlantic
meridional overturning circulation in a high-resolution global coupled
climate model, J. Adv. Model. Earth Sy., 11, 1349–1363,
2019. a
Putrasahan, D. A., Miller, A. J., and Seo, H.: Isolating mesoscale coupled
ocean–atmosphere interactions in the Kuroshio Extension region, Dyn.
Atmos. Oceans, 63, 60–78,
https://doi.org/10.1016/j.dynatmoce.2013.04.001, 2013. a
Raj, J., Bangalath, H. K., and Stenchikov, G.: West African Monsoon: current
state and future projections in a high-resolution AGCM, Clim. Dynam.,
52, 6441–6461, https://doi.org/10.1007/s00382-018-4522-7, 2019. a
Renault, L., Deutsch, C., McWilliams, J. C., Frenzel, H., Liang, J.-H., and
Colas, F.: Partial decoupling of primary productivity from upwelling in the
California Current system, Nat. Geosci., 9, 505–508,
https://doi.org/10.1038/ngeo2722, 2016. a
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface
Temperature, J. Climate, 20, 5473–5496,
https://doi.org/10.1175/2007jcli1824.1, 2007. a
Richter, I.: Climate model biases in the eastern tropical oceans: causes,
impacts and ways forward, Wiley Interdisciplinary Reviews: Climate Change, 6,
345–358, https://doi.org/10.1002/wcc.338, 2015. a, b, c
Richter, I. and Xie, S.-P.: On the origin of equatorial Atlantic biases in
coupled general circulation models, Clim. Dynam., 31, 587–598,
https://doi.org/10.1007/s00382-008-0364-z, 2008. a
Richter, I., Xie, S.-P., Wittenberg, A. T., and Masumoto, Y.: Tropical Atlantic
biases and their relation to surface wind stress and terrestrial
precipitation, Clim. Dynam., 38, 985–1001,
https://doi.org/10.1007/s00382-011-1038-9, 2012. a
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018. a
Roberts, M. J., Hewitt, H. T., Hyder, P., Ferreira, D., Josey, S. A.,
Mizielinski, M., and Shelly, A.: Impact of ocean resolution on coupled
air-sea fluxes and large-scale climate, Geophys. Res. Lett., 43,
10430–10438, https://doi.org/10.1002/2016GL070559, 2016. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a, b, c
Rossi, V., Feng, M., Pattiaratchi, C., Roughan, M., and Waite, A. M.: On the
factors influencing the development of sporadic upwelling in the Leeuwin
Current system, J. Geophys. Res.-Oceans, 118, 3608–3621,
https://doi.org/10.1002/jgrc.20242, 2013. a
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M., Black,
B. A., and Bograd, S. J.: Poleward displacement of coastal
upwelling-favorable winds in the ocean's eastern boundary currents through
the 21st century, Geophys. Res. Lett., 42, 6424–6431,
https://doi.org/10.1002/2015gl064694, 2015. a, b
Santos, F., deCastro, M., Gómez-Gesteira, M., and Álvarez, I.:
Differences in coastal and oceanic SST warming rates along the Canary
upwelling ecosystem from 1982 to 2010, Cont. Shelf Res., 47, 1–6,
https://doi.org/10.1016/j.csr.2012.07.023, 2012. a, b
Schwing, F. B., O'Farrell, M., Steger, J. M., and Baltz, K.: Coastal upwelling
indices, west coast of North America, 1946–1995, Tech. Memo.
NOAA-TM-NMFS-SWFSC-231, 144 pp., NOAA, La Jolla, Calif., 1996. a
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese,
B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J.,
Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D.,
Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F.,
Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan,
A., Kubota, H., Blancq, F. L., Lee, T.-C., Lorrey, A., Luterbacher, J.,
Maugeri, M., Mock, C. J., Moore, G. K., Przybylak, R., Pudmenzky, C., Reason,
C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A.,
Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more
reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. Roy. Meteorol.
Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598, 2019. a
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., Hsu, H.-m., Jochum, M., Lawrence, D., Muñoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.-h., and Vertenstein, M.: A new synoptic scale
resolving global climate simulation using the Community Earth System Model,
J. Adv. Model. Earth Syst., 6, 1065–1094, 2014. a
Small, R. J., Curchitser, E., Hedstrom, K., Kauffman, B., and Large, W. G.: The
Benguela Upwelling System: Quantifying the Sensitivity to Resolution and
Coastal Wind Representation in a Global Climate Model*, J. Climate,
28, 9409–9432, https://doi.org/10.1175/jcli-d-15-0192.1, 2015. a, b, c, d
Smith, R. L.: Upwelling, Oceanogr. Mar. Biol. Ann. Rev., 6, 11–46, 1968. a
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.: The Oceans, Their Physics,
Chemistry and General Biology, 1060 pp., Prentice-Hall, Englewood Cliffs New
Jersey, 1942. a
Sylla, A.: Observations and Reanalyses products, Zenodo [data set], https://doi.org/10.5281/zenodo.7309969, 2022a. a, b, c, d
Sylla, A.: Matlab scripts, in: Geoscientific Model Development, Zenodo [code], https://doi.org/10.5281/zenodo.7309780, 2022b. a
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and
sea-surface temperature data set, version 2: 1. Sea ice concentrations, J.
Geophys. Res., 119, 2864–2889, https://doi.org/10.1002/2013JD020316, 2014. a
Torres, R.: Spatial patterns of wind and sea surface temperature in the
Galician upwelling region, J. Geophys. Res., 108, 3130,
https://doi.org/10.1029/2002jc001361, 2003. a
Tretkoff, E.: Research Spotlight: Coastal cooling and marine productivity
increasing off Peru, Eos, Transactions American Geophysical Union, 92,
184–184, 2011. a
Van Camp, L., Nykjaer, L., Mittelstaedt, E., and Schlittenhardt, P.: Upwelling
and boundary circulation off Northwest Africa as depicted by infrared and
visible satellite observations, Prog. Oceanogr., 26, 357–402, 1991. a
Vanniere, B., Demory, M. E., Vidale, P. L., Schiemann, R., Roberts, M. J.,
Roberts, C. D., and Senan, R.: Multi-model evaluation of the sensitivity
of the global energy budget and hydrological cycle to resolution, Clim.
Dynam., 52, 6817-6846, https://doi.org/10.1007/s00382-018-4547-y, 2019. a
Vazquez, R., Parras-Berrocal, I., Cabos, W., Sein, D. V., Mañanes, R.,
Perez, J. I., and Izquierdo, A.: Climate Evaluation of a High-Resolution
Regional Model over the Canary Current Upwelling System, in: Lecture Notes in
Computer Science, 240–252, Springer International Publishing,
https://doi.org/10.1007/978-3-030-22747-0_19, 2019. a
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., C. J., Guérémy, J. F., Michou, M., Moine, M. P.,
Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke,
S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes,
J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O.,
Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A.,
Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK
experiments with CNRM-CM6-1., J. Adv. Model. Earth Sys.,
11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019. a, b
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification and
spatial homogenization of coastal upwelling under climate change, Nature,
518, 390–394, https://doi.org/10.1038/nature14235, 2015.
a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D.,
Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson,
S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J.
G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L.,
Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and
Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and
GC3.1) Configurations, J. Adv. Model. Earth Sys., 10,
357–380, https://doi.org/10.1002/2017ms001115, 2018. a, b
Worley, S. J., Woodruff, S. D., Reynolds, R. W., Lubker, S. J., and Lott, N.:
ICOADS release 2.1 data and products, Int. J. Climatol.,
25, 823–842, https://doi.org/10.1002/joc.1166, 2005. a
Yoshida, K.: Coastal Upwellig off the California coast, Rec. Oceanogr. Works
Japan, 2, 8–20, 1995. a
Zuidema, P., Chang, P., Medeiros, B., Kirtman, B. P., Mechoso, R., Schneider, E. K., Toniazzo, T., Richter, I., Small, R. J, Bellomo, K., Brandt, P., de Szoeke, S., Farrar, J. T., Jung, E., Kato, S., Li, M., PatriCola, C., Wang, Z., Wood, R., and Xu, Z.:
Challenges and prospects for reducing coupled climate model SST biases in the
eastern tropical Atlantic and Pacific Oceans: The US CLIVAR Eastern Tropical
Oceans Synthesis Working Group, B. Am. Meteorol.
Soc., 97, 2305–2328, 2016. a, b
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the...