Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7767-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7767-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Sebastian D. Eastham
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Laboratory for Aviation and the Environment, Department of
Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA
Y.-H. Henry Chen
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Jennifer Morris
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Sergey Paltsev
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
C. Adam Schlosser
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA
Related authors
No articles found.
William J. Collins, Fiona M. O'Connor, Rachael E. Byrom, Øivind Hodnebrog, Patrick Jöckel, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
Atmos. Chem. Phys., 25, 9031–9060, https://doi.org/10.5194/acp-25-9031-2025, https://doi.org/10.5194/acp-25-9031-2025, 2025
Short summary
Short summary
We used 7 climate models that include atmospheric chemistry and find that in a scenario with weak controls on air quality, the warming effects (over 2015 to 2050) of decreases in ozone-depleting substances and increases in air quality pollutants are approximately equal and would make ozone the second highest contributor to warming over this period. We find that for stratospheric ozone recovery, the standard measure of climate effects underestimates a more comprehensive measure.
Christopher B. Womack, Glenn Flierl, Shahine Bouabid, Andre N. Souza, Paolo Giani, Sebastian D. Eastham, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-3792, https://doi.org/10.5194/egusphere-2025-3792, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Climate emulators allow for rapid projections without the computational costs associated with full-scale climate models. Here, we outline a framework to compare a variety of emulation techniques both theoretically and practically through a series of stress tests that expose common sources of emulator error. Our results help clarify which emulators are best suited for different tasks and show how future climate scenarios can be used to support emulator design.
Anthony Y. H. Wong, Sebastian D. Eastham, Erwan Monier, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2663, https://doi.org/10.5194/egusphere-2025-2663, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a fast and accurate computer tool that predicts how air pollution levels will change around the world under different climate and policy choices. Using machine learning and real model data, our tool can estimate changes in harmful fine particulate pollution in seconds instead of thousands of hours. This makes it easier for researchers and policymakers to explore future air quality and health impacts under a wide range of scenarios.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Caleb Akhtar Martínez, Sebastian D. Eastham, and Jerome P. Jarrett
EGUsphere, https://doi.org/10.5194/egusphere-2025-278, https://doi.org/10.5194/egusphere-2025-278, 2025
Short summary
Short summary
Contrails are clouds that form behind aircraft and can warm the atmosphere as much as carbon dioxide emissions from those planes. This work compares two contrail models of different complexities to understand their lifecycle and impact. The models differ in how contrails evolve over time, implying that we may be significantly underestimating their climate impact. This highlights the need for model diversity and more evaluation against observations of long-lived contrails.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sebastian D. Eastham, Guillaume P. Chossière, Raymond L. Speth, Daniel J. Jacob, and Steven R. H. Barrett
Atmos. Chem. Phys., 24, 2687–2703, https://doi.org/10.5194/acp-24-2687-2024, https://doi.org/10.5194/acp-24-2687-2024, 2024
Short summary
Short summary
Emissions from aircraft are known to cause air quality impacts worldwide, but the scale and mechanisms of this impact are not well understood. This work uses high-resolution computational modeling of the atmosphere to show that air pollution changes from aviation are mostly the result of emissions during cruise (high-altitude) operations, that these impacts are related to how much non-aviation pollution is present, and that prior regional assessments have underestimated these impacts.
Ruijun Dang, Daniel J. Jacob, Viral Shah, Sebastian D. Eastham, Thibaud M. Fritz, Loretta J. Mickley, Tianjia Liu, Yi Wang, and Jun Wang
Atmos. Chem. Phys., 23, 6271–6284, https://doi.org/10.5194/acp-23-6271-2023, https://doi.org/10.5194/acp-23-6271-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to better understand the magnitude and trend in free tropospheric NO2 over the contiguous US. Model underestimate of background NO2 is largely corrected by considering aerosol nitrate photolysis. Increase in aircraft emissions affects satellite retrievals by altering the NO2 shape factor, and this effect is expected to increase in future. We show the importance of properly accounting for the free tropospheric background in interpreting NO2 observations from space.
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022, https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Short summary
Evaluating impacts of emission changes on air quality requires accounting for meteorological variability. Many studies use simple regression methods to correct for meteorology, but little is known about their performance. Using cases in the US and China, we show that widely used regression models do not perform well and can lead to biased estimates of emission-driven trends. We propose a novel machine learning method with lower bias and provide recommendations to policymakers and researchers.
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021, https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Short summary
Emissions are a central component of atmospheric chemistry models. The Harmonized Emissions Component (HEMCO) is a software component for computing emissions from a user-selected ensemble of emission inventories and algorithms. It allows users to select, add, and scale emissions from different sources through a configuration file with no change to the model source code. We demonstrate the implementation of HEMCO in several models, all sharing the same HEMCO core code and database library.
Inés Sanz-Morère, Sebastian D. Eastham, Florian Allroggen, Raymond L. Speth, and Steven R. H. Barrett
Atmos. Chem. Phys., 21, 1649–1681, https://doi.org/10.5194/acp-21-1649-2021, https://doi.org/10.5194/acp-21-1649-2021, 2021
Short summary
Short summary
Contrails cause ~50 % of aviation climate impacts, but this is highly uncertain. This is partly due to the effect of overlap between contrails and other cloud layers. We developed a model to quantify this effect, finding that overlap with natural clouds increased contrails' radiative forcing in 2015. This suggests that cloud avoidance may help in reducing aviation's climate impacts. We also find that contrail–contrail overlap reduces impacts by ~3 %, increasing non-linearly with optical depth.
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020, https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
Short summary
This study presents the development and evaluation of a new climate chemistry model, BCC-GEOS-Chem v1.0, which couples the GEOS-Chem chemical transport model as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model. A 3-year (2012–2014) simulation of BCC-GEOS-Chem v1.0 shows that the model captures well the spatiotemporal distributions of tropospheric ozone, other gaseous pollutants, and aerosols.
Cited articles
Aguiar, A., Chepeliev, M., Corong, E. L., McDougall, R., and Mensbrugghe, D.
van der: The GTAP Data Base: Version 10, J. Glob. Econ. Anal., 4, 1–27,
https://doi.org/10.21642/JGEA.040101AF, 2019.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C.,
Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P.,
Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective
control of air quality and greenhouse gases in Europe: Modeling and policy
applications, Environ. Model. Softw., 26, 1489–1501,
https://doi.org/10.1016/j.envsoft.2011.07.012, 2011.
Amann, M., Kiesewetter, G., Schoepp, W., Klimont, Z., Winiwarter, W.,
Cofala, J., Rafaj, P., Hoeglund-Isaksson, L., Gomez-Sabriana, A., Heyes, C.,
Purohit, P., Borken-Kleefeld, J., Wagner, F., Sander, R., Fagerli, H.,
Nyiri, A., Cozzi, L., and Pavarini, C.: Reducing global air pollution: the
scope for further policy interventions, Philos. Trans. R. Soc.-Math. Phys.
Eng. Sci., 378, 1–27, https://doi.org/10.1098/rsta.2019.0331, 2020.
Atkinson, W., Eastham, S. D., Chen, Y.-H. H., Morris, J., Paltsev, S.,
Schlosser, C. A., and Selin, N. E.: Code and data used in “A Tool for Air
Pollution Scenarios (TAPS v1.0) to enable global, long-term, and flexible
study of climate and air quality policies”, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7158380, 2022.
Chen, Y.-H. H., Paltsev, S., Reilly, J., Morris, J., and Babiker, M. H.: The
MIT EPPA6 Model: Economic Growth, Energy Use, and Food Consumption, MIT
Joint Program on the Science and Policy of Global Change, Report 278, 1–46, https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt278.pdf (last access: 12 October 2022), 2015.
Chen, Y.-H. H., Paltsev, S., Reilly, J., Morris, J., Karplus, V. J., Gurgel,
A., Winchester, N., Kishimoto, P., Blanc, E., and Babiker, M. H.: The MIT
Economic Projection and Policy Analysis (EPPA) Model: Version 5, MIT Joint
Program on the Science and Policy of Global Change, Technical Note 16, 1–34, https://globalchange.mit.edu/sites/default/files/MITJPSPGC_TechNote16.pdf (last access: 12 October 2022), 2017.
Chen, Y.-H. H., Paltsev, S., Gurgel, A., Reilly, J. M., and Morris, J.: A
Multisectoral Dynamic Model for Energy, Economic, and Climate Scenario
Analysis, Low Carbon Econ., 13, 70–111,
https://doi.org/10.4236/lce.2022.132005, 2022.
Chepeliev, M.: Development of the Air Pollution Database for the GTAP 10A
Data Base, GTAP Res. Memo. No 33, 1–40, http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6163 (last access: 12 October 2022), 2020.
CIESIN: Gridded Population of the World, Version 4 (GPWv4): Population Count
Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11, NASA [data set],
https://doi.org/10.7927/H4PN93PB, 2018.
Danesh Yazdi, M., Wang, Y., Di, Q., Wei, Y., Requia, W. J., Shi,
L., Sabath, M. B., Dominici, F., Coull, B. A., Evans,
J. S., Koutrakis, P., and Schwartz, J. D.: Long-Term Association of
Air Pollution and Hospital Admissions Among Medicare Participants Using a
Doubly Robust Additive Model, Am. Heart Assoc., 143, 1584–1596,
https://doi.org/10.1161/CIRCULATIONAHA.120.050252, 2019.
Dimanchev, E. G., Paltsev, S., Yuan, M., Rothenberg, D., Tessum, C. W.,
Marshall, J. D., and Selin, N. E.: Health co-benefits of sub-national
renewable energy policy in the US, Environ. Res. Lett., 14, 085012,
https://doi.org/10.1088/1748-9326/ab31d9, 2019.
Eastham, S. D. and Barrett, S. R. H.: Aviation-attributable ozone as a
driver for changes in mortality related to air quality and skin cancer,
Atmos. Environ., 144, 17–23,
https://doi.org/10.1016/j.atmosenv.2016.08.040, 2016.
FAO: The future of food and agriculture – Alternative pathways to 2050, FAO [data set], https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en/ (last access: 21 January 2022),
2018.
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020.
GAINS Developer Team: GAINS 4.01 release notes,
https://gains.iiasa.ac.at/gains/download/release_notes.pdf?version=4.01, last access: 6 December 2021a.
GAINS Developer Team: GAINS 4.01 IAM model outputs, IIASA [data set], https://gains.iiasa.ac.at/models/ (last access: 12 October 2022), 2021b.
Gallagher, C. L. and Holloway, T.: Integrating Air Quality and Public Health
Benefits in U.S. Decarbonization Strategies, Front. Public Health, 8, 563358,
https://doi.org/10.3389/fpubh.2020.563358, 2020.
GEOS-Chem: Emissions, https://geos-chem.seas.harvard.edu/geos-chem-narrative#emis,
last access: 18 May 2021.
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019 (data available at: https://tntcat.iiasa.ac.at/SspDb/, last access: 30 April 2021).
Gomez Sanabria, A., Kiesewetter, G., Klimont, Z., Schöpp, W., and
Haberl, H.: Potential for future reductions of global GHG and air pollutants from circular waste management systems, Nat. Commun., 13, 106, https://doi.org/10.1038/s41467-021-27624-7, 2022.
Hamilton, I., Kennard, H., McGushin, A., Höglund-Isaksson, L.,
Kiesewetter, G., Lott, M., Milner, J., Purohit, P., Rafaj, P., Sharma, R.,
Springmann, M., Woodcock, J., and Watts, N.: The public health implications
of the Paris Agreement: a modelling study, Lancet Planet. Health, 5,
e74–e83, https://doi.org/10.1016/S2542-5196(20)30249-7, 2021.
Hess, J. J., Ranadive, N., Boyer, C., Aleksandrowicz, L., Anenberg, S. C., Aunan, K., Belesova, K., Bell, M. L., Bickersteth, S., Bowen, K., Burden, M., Campbell-Lendrum, D., Carlton, E., Cissé, G., Cohen, F., Dai, H., Dangour, A. D., Dasgupta, P., Frumkin, H., Gong, P., Gould, R.J., Haines, A., Hales, S., Hamilton, I., Hasegawa, T., Hashizume, M., Honda, Y., Horton, D.E., Karambelas, A., Kim, H., Kim, S.E., Kinney, P.L., Kone, I., Knowlton, K., Lelieveld, J., Limaye, V.S., Liu, Q., Madaniyazi, L., Martinez, M.E., Mauzerall, D.L., Milner, J., Neville, T., Nieuwenhuijsen, M., Pachauri, S., Perera, F., Pineo, H., Remais, J. V., Saari, R.K., Sampedro, J., Scheelbeek, P., Schwartz, J., Shindell, D., Shyamsundar, P., Taylor, T. J., Tonne, C., van Vuuren, D., Wang, C., Watts, N., West, J. J., Wilkinson, P., Wood, S. A., Woodcock, J., Woodward, A., Xie, Y., Zhang, Y., and Ebi, K. L.: Guidelines for modeling and reporting health effects of climate change mitigation actions, Environ. Health Perspect., 128, 1–10, https://doi.org/10.1289/EHP6745, 2020.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
IIASA ECLIPSE V6: Global emission fields, IIASA [data set],
https://iiasa.ac.at/web/home/research/researchPrograms/air/ECLIPSEv6b.html,
last access: 1 June 2021.
Kanaya, Y., Yamaji, K., Miyakawa, T., Taketani, F., Zhu, C., Choi, Y., Komazaki, Y., Ikeda, K., Kondo, Y., and Klimont, Z.: Rapid reduction in black carbon emissions from China: evidence from 2009–2019 observations on Fukue Island, Japan, Atmos. Chem. Phys., 20, 6339–6356, https://doi.org/10.5194/acp-20-6339-2020, 2020.
Karlsson, M., Alfredsson, E., and Westling, N.: Climate policy co-benefits:
a review, Clim. Policy, 20, 292–316,
https://doi.org/10.1080/14693062.2020.1724070, 2020.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A.,
and Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission
removal on public health and climate, P. Natl. Acad. Sci. USA, 116,
7192–7197, https://doi.org/10.1073/pnas.1819989116, 2019.
Markandya, A., Sampedro, J., Smith, S. J., Van Dingenen, R., Pizarro-Irizar,
C., Arto, I., and González-Eguino, M.: Health co-benefits from air
pollution and mitigation costs of the Paris Agreement: a modelling study,
Lancet Planet. Health, 2, e126–e133,
https://doi.org/10.1016/S2542-5196(18)30029-9, 2018.
McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, 2020a.
McDuffie, E., Smith, S., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E., Zheng, B., Crippa, M., Brauer, M., and Martin, R.: CEDS_GBD-MAPS: Global Anthropogenic Emission Inventory of NOx, SO2, CO, NH3, NMVOCs, BC, and OC from 1970–2017 (2020_v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.3754964, 2020b.
McDuffie, E., Hoesly, R., O'Rourke, P., Braun, C., Feng, L., Smith, S. J., Pitkanen, T., Seibert, J. J., Vu, L., Presley, M., Bolt, R., Goldstein, B., and Kholod, N.: CEDS_GBD-MAPS_SourceCode_2020_v1.0, Zenodo [data set], https://doi.org/10.5281/zenodo.3865670, 2020c.
McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R., Smith, S. J.,
O'Rourke, P., Hammer, M. S., van Donkelaar, A., Bindle, L., Shah, V.,
Jaeglé, L., Luo, G., Yu, F., Adeniran, J. A., Lin, J., and Brauer, M.:
Source sector and fuel contributions to ambient PM2.5 and attributable
mortality across multiple spatial scales, Nat. Commun., 12, 3594,
https://doi.org/10.1038/s41467-021-23853-y, 2021.
Morris, J., Libardoni, A., Sokolov, A., Forest, C., Paltsev, S., Reilly, J.,
Schlosser, C. A., Prinn, R., and Jacoby, H.: A consistent framework for
uncertainty in coupled human-Earth system models | MIT Global Change,
MIT Joint Program on the Science and Policy of Global Change, Report 349, 1–33, https://globalchange.mit.edu/publication/17574 (last access: 12 October 2022), 2021.
Morris, J., Reilly, J., Paltsev, S., Sokolov, A., and Cox, K.: Representing
Socio-Economic Uncertainty in Human System Models, Earth's Future, 10, e2021HEF002239, https://doi.org/10.1029/2021EF002239, 2022.
Murray, C. J. L. and GBD 2019 Risk Factors Collaborators: Global burden of
87 risk factors in 204 countries and territories, 1990–2019: a systematic
analysis for the Global Burden of Disease Study 2019, Lancet Lond. Engl.,
396, 1223–1249, https://doi.org/10.1016/S0140-6736(20)30752-2, 2020.
Nam, K.-M., Waugh, C. J., Paltsev, S., Reilly, J. M., and Karplus, V. J.:
Carbon co-benefits of tighter SO2 and NOx regulations in China, Glob.
Environ. Change, 23, 1648–1661,
https://doi.org/10.1016/j.gloenvcha.2013.09.003, 2013.
Nemet, G. F., Holloway, T., and Meier, P.: Implications of incorporating
air-quality co-benefits into climate change policymaking, Environ. Res.
Lett., 5, 014007, https://doi.org/10.1088/1748-9326/5/1/014007, 2010.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Glob.
Environ. Change-Hum. Policy Dimens., 42, 169–180,
https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Paltsev, S., McFarland, J., Reilly, J. M., Jacoby, H. D., Eckaus, R. S.,
Sarofim, M., Asadoorian, M., and Babiker, M.: The MIT Emissions Prediction
and Policy Analysis (EPPA) Model: Version 4, MIT Joint Program on the
Science and Policy of Global Change, Report 125, 1–78, https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt125.pdf (last access: 12 October 2022), 2005.
Paltsev, S., Schlosser, C. A., Chen, H., Gao, X., Gurgel, A., Jacoby, H.,
Morris, J., Prinn, R., Sokolov, A., and Strzepek, K.: 2021 Global Change
Outlook, MIT Joint Program on the Science and Policy of Global Change, 1–52, https://globalchange.mit.edu/publications/signature/2021-global-change-outlook (last access: 12 October 2022), 2021 (data available at: https://globalchange.mit.edu/research/research-tools/human-system-model, last access: 7 May 2021).
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020, 2020.
Pienkosz, B. D., Saari, R. K., Monier, E., and Garcia-Menendez, F.: Natural
Variability in Projections of Climate Change Impacts on Fine Particulate
Matter Pollution, Earth's Future, 7, 762–770,
https://doi.org/10.1029/2019EF001195, 2019.
Polonik, P., Ricke, K., and Burney, J.: Paris Agreement's Ambiguity About
Aerosols Drives Uncertain Health and Climate Outcomes, Earth's Future, 9,
e2020EF001787, https://doi.org/10.1029/2020EF001787, 2021.
Radu, O. B., van den Berg, M., Klimont, Z., Deetman, S., Janssens-Maenhout,
G., Muntean, M., Heyes, C., Dentener, F., and van Vuuren, D. P.: Exploring
synergies between climate and air quality policies using long-term global
and regional emission scenarios, Atmos. Environ., 140, 577–591,
https://doi.org/10.1016/j.atmosenv.2016.05.021, 2016.
Rafaj, P., Kiesewetter, G., Krey, V., Schoepp, W., Bertram, C., Drouet, L.,
Fricko, O., Fujimori, S., Harmsen, M., Hilaire, J., Huppmann, D., Klimont,
Z., Kolp, P., Reis, L. A., and van Vuuren, D.: Air quality and health
implications of 1.5 ∘C–2 ∘C climate pathways under
considerations of ageing population: a multi-model scenario analysis,
Environ. Res. Lett., 16, 045005, https://doi.org/10.1088/1748-9326/abdf0b,
2021.
Rao, S., Klimont, Z., Leitao, J., Riahi, K., van Dingenen, R., Reis, L. A.,
Calvin, K., Dentener, F., Drouet, L., Fujimori, S., Harmsen, M., Luderer,
G., Heyes, C., Strefler, J., Tavoni, M., and van Vuuren, D. P.: A
multi-model assessment of the co-benefits of climate mitigation for global
air quality, Environ. Res. Lett., 11, 124013,
https://doi.org/10.1088/1748-9326/11/12/124013, 2016.
Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman,
L., Riahi, K., Amann, M., Bodirsky, B. L., van Vuuren, D. P., Aleluia Reis,
L., Calvin, K., Drouet, L., Fricko, O., Fujimori, S., Gernaat, D., Havlik,
P., Harmsen, M., Hasegawa, T., Heyes, C., Hilaire, J., Luderer, G., Masui,
T., Stehfest, E., Strefler, J., van der Sluis, S., and Tavoni, M.: Future
air pollution in the Shared Socio-economic Pathways, Glob. Environ. Change,
42, 346–358, https://doi.org/10.1016/j.gloenvcha.2016.05.012, 2017.
Reis, L. A., Drouet, L., and Tavoni, M.: Internalising health-economic
impacts of air pollution into climate policy: a global modelling study,
Lancet Planet. Health, 6, e40–e48,
https://doi.org/10.1016/S2542-5196(21)00259-X, 2022.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Glob. Environ.
Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017 (data available at: https://tntcat.iiasa.ac.at/SspDb/, last access: 30 April 2021).
Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., Samir, KC, Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlík, P., Humpenöder, F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: SSP Public Database Version 2.0, IIASA [data set],
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about, last
access: 6 December 2020.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R.,
Vilariño, M. V., Calvin, K., Emmerling, J., Fuss, S., Gillett, N., He,
C., Hertwich, E., Höglund-Isaksson, L., Huppmann, D., Luderer, G.,
McCollum, D. L., Meinshausen, M., Millar, R., Popp, A., Purohit, P., Riahi,
K., Ribes, A., Saunders, H., Schädel, C., Smith, P., Trutnevyte, E.,
Xiu, Y., Zhou, W., Zickfeld, K., Flato, G., Fuglestvedt, J., Mrabet, R., and
Schaeffer, R.: Mitigation Pathways Compatible with 1.5 ∘C in the
Context of Sustainable Development, 82, IPCC SR1.5, Chapter 2, 1–112, https://www.ipcc.ch/site/assets/uploads/2018/11/sr15_chapter2.pdf (last access: 12 October 2022), 2018.
Saari, R. K., Thompson, T. M., and Selin, N. E.: Human Health and Economic
Impacts of Ozone Reductions by Income Group, Environ. Sci. Technol., 51,
1953–1961, https://doi.org/10.1021/acs.est.6b04708, 2017.
Saari, R. K., Mei, Y., Monier, E., and Garcia-Menendez, F.: Effect of
Health-Related Uncertainty and Natural Variability on Health Impacts and
Cobenefits of Climate Policy, Environ. Sci. Technol., 53, 1098–1108,
https://doi.org/10.1021/acs.est.8b05094, 2019.
Sampedro, J., Waldhoff, S. T., Van de Ven, D.-J., Pardo, G., Van Dingenen,
R., Arto, I., del Prado, A., and Sanz, M. J.: Future impacts of ozone driven
damages on agricultural systems, Atmos. Environ., 231, 117538,
https://doi.org/10.1016/j.atmosenv.2020.117538, 2020a.
Sampedro, J., Smith, S. J., Arto, I., Gonzalez-Eguino, M., Markandya, A.,
Mulvaney, K. M., Pizarro-Irizar, C., and Van Dingenen, R.: Health
co-benefits and mitigation costs as per the Paris Agreement under different
technological pathways for energy supply, Environ. Int., 136, 105513,
https://doi.org/10.1016/j.envint.2020.105513, 2020b.
Sarofim, M.: Climate Policy Design: Interactions among Carbon Dioxide,
Methane, and Urban Air Pollution Constraints, Massachusetts Institute of
Technology, PhD thesis, Massachusetts Institute of Technology, https://globalchange.mit.edu/sites/default/files/Sarofim_PhD_07.pdf (last access: 12 October 2022), 2007.
Scovronick, N., Budolfson, M., Dennig, F., Errickson, F., Fleurbaey, M.,
Peng, W., Socolow, R. H., Spears, D., and Wagner, F.: The impact of human
health co-benefits on evaluations of global climate policy, Nat. Commun.,
10, 2095, https://doi.org/10.1038/s41467-019-09499-x, 2019.
Selin, N.: Beyond “Co-Benefits”: A New Framework for Assessing
Sustainability, in: 2021 Global Change Outlook, MIT Joint Program on the
Science and Policy of Global Change, 1–52, https://globalchange.mit.edu/publications/signature/2021-global-change-outlook (last access: 12 October 2022), 2021.
Shindell, D., Ru, M., Zhang, Y., Seltzer, K., Faluvegi, G., Nazarenko, L.,
Schmidt, G. A., Parsons, L., Challapalli, A., Yang, L., and Glick, A.:
Temporal and spatial distribution of health, labor, and crop benefits of
climate change mitigation in the United States, P. Natl. Acad. Sci. USA, 118, e2104061118,
https://doi.org/10.1073/pnas.2104061118, 2021.
Simone, N. W., Stettler, M. E. J., and Barrett, S. R. H.: Rapid estimation
of global civil aviation emissions with uncertainty quantification, Transp.
Res. Part Transp. Environ., 25, 33–41,
https://doi.org/10.1016/j.trd.2013.07.001, 2013.
Smith, S. J., Klimont, Z., Drouet, L., Harmsen, M., Luderer, G., Riahi, K.,
van Vuuren, D. P., and Weyant, J. P.: The Energy Modeling Forum (EMF)-30
study on short-lived climate forcers: introduction and overview, Climatic
Change, 163, 1399–1408, https://doi.org/10.1007/s10584-020-02938-5, 2020.
Sokolov, A., Kicklighter, D., Schlosser, A., Wang, C., Monier, E.,
Brown-Steiner, B., Prinn, R., Forest, C., Gao, X., Libardoni, A., and
Eastham, S.: Description and Evaluation of the MIT Earth System Model
(MESM), J. Adv. Model. Earth Syst., 10, 1759–1789,
https://doi.org/10.1029/2018MS001277, 2018.
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, 2015.
Thompson, T. M., Rausch, S., Saari, R. K., and Selin, N. E.: A systems
approach to evaluating the air quality co-benefits of US carbon policies,
Nat. Clim. Change, 4, 917–923, https://doi.org/10.1038/nclimate2342, 2014.
Tong, D., Geng, G., Zhang, Q., Cheng, J., Qin, X., Hong, C., He, K., and
Davis, S. J.: Health co-benefits of climate change mitigation depend on
strategic power plant retirements and pollution controls, Nat. Clim. Change,
11, 1077–1083, https://doi.org/10.1038/s41558-021-01216-1, 2021.
Turner, M. C., Jerrett, M., Pope, C. A., Krewski, D., Gapstur, S. M., Diver,
W. R., Beckerman, B. S., Marshall, J. D., Su, J., Crouse, D. L., and
Burnett, R. T.: Long-Term Ozone Exposure and Mortality in a Large
Prospective Study, Am. J. Respir. Crit. Care Med., 193, 1134–1142,
https://doi.org/10.1164/rccm.201508-1633OC, 2016.
Valpergue De Masin, A.: Economic Modeling of Urban Pollution and Climate
Policy Interactions, Master of Science Thesis, MIT Technology and Policy
Program, and Department of Civil and Environmental Engineering, https://globalchange.mit.edu/publication/13900 (last access: 12 October 2022), 2003.
Vandyck, T., Keramidas, K., Kitous, A., Spadaro, J. V., Van Dingenen, R.,
Holland, M., and Saveyn, B.: Air quality co-benefits for human health and
agriculture counterbalance costs to meet Paris Agreement pledges, Nat.
Commun., 9, 4939, https://doi.org/10.1038/s41467-018-06885-9, 2018.
Vandyck, T., Keramidas, K., Tchung-Ming, S., Weitzel, M., and Van Dingenen,
R.: Quantifying air quality co-benefits of climate policy across sectors and
regions, Climatic Change, 163, 1501–1517, https://doi.org/10.1007/s10584-020-02685-7, 2020.
Vandyck, T., Rauner, S., Sampedro, J., Lanzi, E., Reis, L. A., Springmann,
M., and Dingenen, R. V.: Integrate health into decision-making to foster
climate action, Environ. Res. Lett., 16, 041005,
https://doi.org/10.1088/1748-9326/abef8d, 2021.
Waugh, C. J.: An Integrated Assessment of Air Pollutant Abatement
Opportunities in a Computable General Equilibrium Framework, Master of Science Thesis, Massachusetts Institute of Technology, https://globalchange.mit.edu/sites/default/files/Waugh_MS_2012.pdf (last access: 12 October 2022), 2012.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S.,; Yue, C., Kaiser, J. W., and van der Werf, G. R.: input4MIPs.CMIP6.CMIP.VUA. Version 20151015, Earth System Grid Federation, World Climate Research Programme [data set], https://doi.org/10.22033/ESGF/input4MIPs.10455, 2016.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
Workman, A., Blashki, G., Bowen, K. J., Karoly, D. J., and Wiseman, J.: The
Political Economy of Health Co-Benefits: Embedding Health in the Climate
Change Agenda, Int. J. Environ. Res. Public. Health, 15, 674,
https://doi.org/10.3390/ijerph15040674, 2018.
Yang, Y., Liu, L., Bai, Z., Xu, W., Zhang, F., Zhang, X., Liu, X., and Xie,
Y.: Comprehensive quantification of global cropland ammonia emissions and
potential abatement, Sci. Total Environ., 812, 151450,
https://doi.org/10.1016/j.scitotenv.2021.151450, 2021.
Yuan, M., Rausch, S., Caron, J., Paltsev, S., and Reilly, J.: The MIT U.S.
Regional Energy Policy (USREP) Model: The Base Model and Revisions, MIT
Joint Program on the Science and Policy of Global Change, Technical Note 18, 1–26, https://globalchange.mit.edu/sites/default/files/MITJPSPGC_TechNote18.pdf (last access: 12 October 2022), 2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Understanding policy effects on human-caused air pollutant emissions is key for assessing...