Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6085-2022
https://doi.org/10.5194/gmd-15-6085-2022
Model description paper
 | 
03 Aug 2022
Model description paper |  | 03 Aug 2022

Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains

Léo Pujol, Pierre-André Garambois, and Jérôme Monnier

Related authors

SMASH v1.0: A Differentiable and Regionalizable High-Resolution Hydrological Modeling and Data Assimilation Framework
François Colleoni, Ngo Nghi Truyen Huynh, Pierre-André Garambois, Maxime Jay-Allemand, Didier Organde, Benjamin Renard, Thomas De Fournas, Apolline El Baz, Julie Demargne, and Pierre Javelle
EGUsphere, https://doi.org/10.5194/egusphere-2025-690,https://doi.org/10.5194/egusphere-2025-690, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A Distributed Hybrid Physics-AI Framework for Learning Corrections of Internal Hydrological Fluxes and Enhancing High-Resolution Regionalized Flood Modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3665,https://doi.org/10.5194/egusphere-2024-3665, 2025
Short summary
Benchmark dataset for hydraulic simulations of flash floods in the French Mediterranean region
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-472,https://doi.org/10.5194/essd-2024-472, 2024
Revised manuscript accepted for ESSD
Short summary
Spatially distributed calibration of a hydrological model with variational optimization constrained by physiographic maps for flash flood forecasting in France
Maxime Jay-Allemand, Julie Demargne, Pierre-André Garambois, Pierre Javelle, Igor Gejadze, François Colleoni, Didier Organde, Patrick Arnaud, and Catherine Fouchier
Proc. IAHS, 385, 281–290, https://doi.org/10.5194/piahs-385-281-2024,https://doi.org/10.5194/piahs-385-281-2024, 2024
Short summary
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024,https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary

Related subject area

Numerical methods
CLAQC v1.0 – Country Level Air Quality Calculator: an empirical modeling approach
Stefania Renna, Francesco Granella, Lara Aleluia Reis, and Paulina Schulz-Antipa
Geosci. Model Dev., 18, 2373–2408, https://doi.org/10.5194/gmd-18-2373-2025,https://doi.org/10.5194/gmd-18-2373-2025, 2025
Short summary
Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Geosci. Model Dev., 18, 1395–1411, https://doi.org/10.5194/gmd-18-1395-2025,https://doi.org/10.5194/gmd-18-1395-2025, 2025
Short summary
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary

Cited articles

Allen, M., Antwi-Agyei, P., Aragon-Durand, F., Babiker, M., Bertoldi, P., Bind, M., Brown, S., Buckeridge, M., Camilloni, I., Cartwright, A., Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterterfield, T. (Eds.): Technical Summary: Global warming of 1.5 C, An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, http://pure.iiasa.ac.at/15716 (last access: 27 June 2022), 2019. a
Amara, M., Capatina-Papaghiuc, D., and Trujillo, D.: Hydrodynamical modelling and multidimensional approximation of estuarian river flows, Comput. Vis. Sci., 6, 39–46, https://doi.org/10.1007/s00791-003-0106-z, 2004. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, Fundamentals of Algorithms, SIAM, https://hal.inria.fr/hal-01402885 (last access: 27 June 2022), 2016. a
Audusse, E. and Bristeau, M.-O.: A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes, J. Comput. Phys., 206, 311–333, https://doi.org/10.1016/j.jcp.2004.12.016, 2005. a
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., and Perthame, B.: A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM J. Sci. Comput., 25, 2050–2065, https://doi.org/10.1137/S1064827503431090, 2004. a
Download
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.
Share