Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6085-2022
https://doi.org/10.5194/gmd-15-6085-2022
Model description paper
 | 
03 Aug 2022
Model description paper |  | 03 Aug 2022

Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains

Léo Pujol, Pierre-André Garambois, and Jérôme Monnier

Related authors

Benchmark dataset for hydraulic simulations of flash floods in the French Mediterranean region
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-472,https://doi.org/10.5194/essd-2024-472, 2024
Preprint under review for ESSD
Short summary
Spatially distributed calibration of a hydrological model with variational optimization constrained by physiographic maps for flash flood forecasting in France
Maxime Jay-Allemand, Julie Demargne, Pierre-André Garambois, Pierre Javelle, Igor Gejadze, François Colleoni, Didier Organde, Patrick Arnaud, and Catherine Fouchier
Proc. IAHS, 385, 281–290, https://doi.org/10.5194/piahs-385-281-2024,https://doi.org/10.5194/piahs-385-281-2024, 2024
Short summary
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024,https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022,https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Adjoint-based spatially distributed calibration of a grid GR-based parsimonious hydrological model over 312 French catchments with SMASH platform
François Colleoni, Pierre-André Garambois, Pierre Javelle, Maxime Jay-Allemand, and Patrick Arnaud
EGUsphere, https://doi.org/10.5194/egusphere-2022-506,https://doi.org/10.5194/egusphere-2022-506, 2022
Preprint archived
Short summary

Related subject area

Numerical methods
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary

Cited articles

Allen, M., Antwi-Agyei, P., Aragon-Durand, F., Babiker, M., Bertoldi, P., Bind, M., Brown, S., Buckeridge, M., Camilloni, I., Cartwright, A., Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterterfield, T. (Eds.): Technical Summary: Global warming of 1.5 C, An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, http://pure.iiasa.ac.at/15716 (last access: 27 June 2022), 2019. a
Amara, M., Capatina-Papaghiuc, D., and Trujillo, D.: Hydrodynamical modelling and multidimensional approximation of estuarian river flows, Comput. Vis. Sci., 6, 39–46, https://doi.org/10.1007/s00791-003-0106-z, 2004. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, Fundamentals of Algorithms, SIAM, https://hal.inria.fr/hal-01402885 (last access: 27 June 2022), 2016. a
Audusse, E. and Bristeau, M.-O.: A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes, J. Comput. Phys., 206, 311–333, https://doi.org/10.1016/j.jcp.2004.12.016, 2005. a
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., and Perthame, B.: A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM J. Sci. Comput., 25, 2050–2065, https://doi.org/10.1137/S1064827503431090, 2004. a
Download
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.