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Abstract. This contribution presents a novel multi-
dimensional (multi-D) hydraulic–hydrological numerical
model with variational data assimilation capabilities. It al-
lows multi-scale modeling over large domains, combining in
situ observations with high-resolution hydrometeorology and
satellite data. The multi-D hydraulic model relies on the 2D
shallow-water equations solved with a 1D–2D adapted sin-
gle finite-volume solver. One-dimensional-like reaches are
built through meshing methods that cause the 2D solver to
degenerate into 1D. They are connected to 2D portions that
act as local zooms, for modeling complex flow zones such as
floodplains and confluences, via 1D-like–2D interfaces. An
existing parsimonious hydrological model, GR4H, is imple-
mented and coupled to the hydraulic model. The forward-
inverse multi-D computational model is successfully vali-
dated on virtual and real cases of increasing complexity, in-
cluding using the second-order scheme version. Assimilat-
ing multiple observations of flow signatures leads to accu-
rate inferences of multi-variate and spatially distributed pa-
rameters among bathymetry friction, upstream and lateral
hydrographs and hydrological model parameters. This no-
tably demonstrates the possibility for information feedback
towards upstream hydrological catchments, that is, backward
hydrology. A 1D-like model of part of the Garonne River is
built and accurately reproduces flow lines and propagations
of a 2D reference model. A multi-D model of the complex
Adour basin network, with inflow from the semi-distributed
hydrological model, is built. High-resolution flow simula-
tions are obtained on a large domain, including fine zooms

on floodplains, with a relatively low computational cost since
the network contains mostly 1D-like reaches. The current
work constitutes an upgrade of the DassFlow computational
platform. The adjoint of the whole tool chain is obtained by
automatic code differentiation.

1 Introduction

The accurate estimation of storage and fluxes in surface hy-
drology is an essential scientific question linked to major
socio-economic issues in flood and drought forecasting, par-
ticularly with regards to the ongoing climate change and
potential intensification of the water cycle and hydrological
hazard (Allen et al., 2019; Iturbide et al., 2020). In this con-
text, advanced numerical modeling tools are crucially needed
to both perform meaningful and detailed representations of
basin-scale hydrological processes and provide sensible lo-
cal forecasts. The quantities of interest range from discharge
hydrographs on upstream ungauged parts of the drainage net-
work to their translation into flow depth, velocities and sub-
mersion times on downstream floodplains. This information
is difficult to access, especially for floods over large terri-
tories. Indeed, given the complexity of physical processes
involved, their limited observability and the resulting hydro-
logical responses, hydrological modeling remains a hard task
and internal state fluxes are generally tinged with uncertain-
ties (Beven, 1993; Schuite et al., 2019; Milly, 1994). More-
over, the accuracy of high-resolution hydraulic computations
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may still be affected by complex dynamics with wet–dry
fronts, multi-scale and uncertain topography structures and
flow model parameters (e.g., friction), uncertain quantities at
open boundaries (upstream inflows but also lateral ones due
to sudden local runoff, downstream controls and backwater
effects), internal inflows or outflows in urban areas, and large
computational domains (Monnier et al., 2016). Thus, inte-
grated hydrological–hydraulic approaches are required (e.g.,
Nguyen et al., 2016; Hocini et al., 2020). Such approaches
are now enabled by the increasing informative richness of
multi-source datasets provided by high-resolution hydrom-
eteorology and satellite remote sensing in complement to
in situ measurements. Nevertheless, reaching high-resolution
accuracy and computational efficiency for large-scale appli-
cations remains a difficult challenge because of multi-scale
non-linear hydrodynamic processes over large computational
domains and multiple uncertainty sources.

These uncertainties could be reduced by the optimal com-
bination of models and multi-source datasets, including high-
resolution maps and spatially sparse in situ flow measure-
ments but also the growing amount of earth observation data
provided by new generations of satellites, drones and sen-
sors (e.g., Biancamaria et al., 2016, 2017; Schumann and
Domeneghetti, 2016, among others). Indeed, remote sens-
ing provides very interesting cartographic observations of the
variabilities of worldwide catchments characteristics (topog-
raphy, soil occupation, surface moisture, snow cover, etc.), as
well as an unprecedented and increasing hydraulic visibility
over river networks (Garambois et al., 2017; Montazem et al.,
2019; Rodríguez et al., 2020). This growing wealth of multi-
sensed information is a key to the design and improvement
of basin-scale models, as shown for accurate river network
1D hydraulic modeling enabled by recent multi-source alti-
metric and optical satellite data in Pujol et al. (2020) and in
Malou et al. (2021) (see also references therein) or accurate
2D local floodplain models with radar-sensed flooding extent
(Hostache et al., 2010).

Still, the underlying issue of the adequate combination
of numerical models and multi-source data that is hetero-
geneous in nature and of varied spatio-temporal resolutions
remains. In order to exploit this wealth of hydrological and
hydraulic information, the complexity of integrated mod-
els has to be adapted to observation types and patterns,
while retaining a good representation of spatial and tem-
poral river network variabilities and relatively low compu-
tational costs over entire catchments, i.e., large computa-
tional domains. The challenging search for consistency be-
tween such datasets and models, generally involves the cali-
bration of high-dimensional multi-variate parameter vectors,
and corresponding inverse problems are often ill-posed or
even ill-conditioned – see discussions about “equifinality”
(Bertalanffy, 1968; Beven, 2000) in hydraulic inverse prob-
lems in Garambois and Monnier (2015), Larnier et al. (2020),
Garambois et al. (2020), and Pujol et al. (2020) for river reach
parameter inference from satellite altimetric data.

Cascades of 2D hydrological–hydraulic models have been
proposed in recent literature, for inundation mapping at large
scales using a worldwide digital elevation model (DEM,
e.g., Grimaldi et al., 2018; Fleischmann et al., 2020; Uhe
et al., 2020) with simplified non-inertial hydraulic modeling)
or at a finer scale, e.g., at catchment scale for flash floods
in Nguyen et al. (2016) and Hocini et al. (2020). In those
studies, conceptual hydrological models of upstream-lateral
sub-catchments are used as the inflow for hydraulic mod-
els of river network and floodplains in a weak coupling ap-
proach, mostly performed via external coupling of numer-
ical models. In Grimaldi et al. (2018), Fleischmann et al.
(2020) and Uhe et al. (2020), a simple 2D storage cell inun-
dation model obtained from a 1D non-inertial model (Bates
et al., 2010, following Hunter et al., 2008, implemented in
the LISFLOOD-FP model) enables raster-based inundation
modeling over very large domains at relatively low compu-
tational cost (see also Fleischmann et al., 2020, for coupling
of this non-inertial model with the large-scale hydrological
model MGB; Collischonn et al., 2007, Pontes et al., 2017).
In Hocini et al. (2020), an original 2D hydraulic modeling ap-
proach is used to compute steady inundation maps of various
return periods at high resolution (5 m) for river networks and
floodplains at catchment scale of several thousands of square
kilometers (up to 5050 km2). It uses “precipiton” for the res-
olution of the full shallow-water model, which consists in
propagating elementary water volumes on the water surface,
as proposed by Davy et al. (2017). In Nguyen et al. (2016),
an unsteady full 2D shallow-water model (Sanders et al.,
2010) is applied at relatively high resolution (10 or 30 m)
in the river network and floodplains on a 808 km2 catch-
ment. Note that sequential data assimilation methods based
on the Kalmann filter have been carried out extensively for
mono-variate data assimilation with such models (see, e.g.,
Brêda et al., 2019, with simplified hydraulics in a satellite
observability context; references therein and Table 1) at vary-
ing spatio-temporal resolutions. Current model development
strives to propose combinations of high-resolution accuracy
and fast computation times over large domains and to incor-
porate multi-source data assimilation methods for state-flux-
parameter estimation.

In order to combine local accuracy and computational ef-
ficiency, the association of 1D and 2D full shallow-water hy-
draulic models is an appropriate approach for simulating a
basin-scale network in a way that is both practical and ade-
quately accurate. Methods for coupling models of different
dimensions have been developed (Miglio et al., 2005a, b;
Amara et al., 2004), classically using domain decomposi-
tion (Gervasio et al., 2001) or more recently by coupling
1.5D and 2D equations, so as to model local 2D zooms
of overflows overlapping with a 1D domain for in-bank
flows, in a variational data assimilation framework in Ge-
jadze and Monnier (2007) and Marin and Monnier (2009).
An iterative coupling strategy is applied in Barthélémy et al.
(2018) between a 1D Mascaret and a 2D Telemac opera-
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Table 1. Some established freeware hydraulic models. “SWE” stands for shallow-water equation. The equations resolved are either for-
mulated in (A,Q) (flow section

[
m2] and at-a-section discharge

[
m3 s−1]) or in (h,u,v) (water depth [m] and 2D depth-integrated flow

velocities
[
ms−1]). “Max order” refers to the maximum demonstrated scheme order. “Sources available” means that the source code is

freely accessible, either through direct download or upon request.

Platform Model Mathematical model Max order 1D–2D SWE Parallel Data assimilation Sources
coupling computation available

HEC-RAS 1D–2D (A,Q) and (h,u,v), 1 Internal No – No
(Brunner, 1995) both locally non-inertial (two solvers)

SWE

BreZo 2D (h,u,v), porosity 2 No Yes – No
(Sanders et al., 2010)

FullSWOF 1D and 2D (h,u,v) for both, 1 No Yes – Yes
(Delestre et al., 2017) full SWE

SW2D-LEMON 2D (h,u,v), porosity 1 No No – Yes
(Steinstraesser et al., 2021
Guinot et al., 2018)

Floodos 2D (h,u,v), non-inertial 1 No No – Yes
(Davy et al., 2017) SWE

b-flood 2D (h,u,v), full SWE 1 No Yes – Yes
(Kirstetter et al., 2021)

Telemac-Mascaret 1D and 2D (A,Q) and (h,u,v), 1 External Yes Ensemble Kalman Yes
(Galland et al., 1991; full SWE (two solvers) filter (EnKF)
Goutal and Maurel, 2002)

LISFLOOD-FP 1D–2D-like (A,Q) non-inertial 1 No Yes EnKF Yes
(Bates et al., 2013) SWE

DassFlow2D 2D–1D-like (h,u,v), full SWE 2 Internal Yes Variational Yes
(Monnier et al., 2016) (same solver)

DassFlow1D 1D (A,Q), full SWE 1 No No Var Yes
(Brisset et al., 2018)

tional numerical model, and a sequential data assimilation
technique is performed for correcting water level forecasting.
A summary of some established 1D and 2D numerical hy-
draulic models, external coupling methods and optimization–
assimilation methods is presented in Table 1. Note that large-
scale modeling of river routing–flooding is still generally
performed with simplified models and/or external couplings,
while enhancing the computational efficiency and realism
of multi-dimensional models is important in the field of
hydrological–hydraulic modeling. Furthermore, it is essen-
tial to investigate state-parameter estimation, from multi-
source datasets, for improving the accuracy of hydrodynamic
variables estimated with such models. Variational data as-
similation (VDA) is an adequate method to tackle such high-
dimensional and multi-variate hydrodynamic inverse prob-
lems from heterogeneous datasets (Lai and Monnier, 2009;
Monnier et al., 2016; Brisset et al., 2018; Larnier et al., 2020;
Garambois et al., 2020; Pujol et al., 2020; Malou et al., 2021).
One can identify DassFlow2D (Monnier et al., 2016) as the
only 2D full hydraulic model with a second-order solver with
accurate wet–dry front treatment, parallel computation and
adjoint-based variational data assimilation capabilities.

This work focuses on the following scientific problems:
(i) the effective representation of river network flows through
multi-D basin-scale hydraulic–hydrological numerical mod-
eling, (ii) the inference from multi-source data of spatio-
temporally distributed river channel parameters and inflows
through a VDA approach, and (iii) the upstream informa-
tional feedback of river network observations to integrated
hydrological models.

The present study details upgrades to the DassFlow vari-
ational data assimilation framework (DassFlow2D-V2, see
Monnier et al., 2016) in the form of (i) a new multi-D hy-
draulic computational code relying on an internal mesh cou-
pling and a single finite-volume solver and (ii) the integration
and differentiation of a GR4 hydrological module, (iii) with
the implementation of a regularization strategy based on
Larnier et al. (2020), leading to DassFlow2D-V3.

One strength of the DassFlow platform is its varia-
tional data assimilation (VDA) algorithm. It can solve high-
dimensional optimization problems with descent algorithms
using gradients computed with the adjoint model. The ad-
joint model is obtained via the automatic differentiation tool
Tapenade (Hascoet and Pascual, 2013). This allows the si-
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multaneous inference of numerous model parameters, which
may be needed over large domains. Let us remark that this
is not the case for stochastic methods, where computational
cost can increase dramatically with the number of sought pa-
rameters. The variational method also enables tackling multi-
variate data assimilation problems, i.e., with composite con-
trol vectors (bathymetry, friction, boundary conditions, hy-
drological parameters), given multi-source datasets, hetero-
geneous in nature, and spatio-temporal resolutions (see, e.g.,
Brisset et al., 2018, Larnier et al., 2020, Pujol et al., 2020,
and Malou et al., 2021).

To apply these unique capabilities at the scale of a river
network, there is a need to develop a model with both suf-
ficient complexity and a reasonably low computational cost.
In this work, we also focus on tool simplicity, both for di-
rect and inverse modeling, by proposing this model as a sin-
gle hydraulic–hydrological tool and/or code. The proposed
multi-D hydraulic code consists in a single finite-volume
solver applied to a 2D river network. The network is dis-
cretized into “1D-like” reaches connected to high-resolution
2D meshes in a single formulation of the shallow-water equa-
tions (SWEs). The resulting product allows building large
1D-like river networks, connected to fine local zooms. Com-
pared to a full 2D model, this allows computing large net-
works with low computational costs while maintaining the
possibility to model dynamics locally at a fine scale.

The complete hydraulic–hydrological modeling of river
network is achieved by coupling this hydraulic domain with
a well-established conceptual hydrological model (GR4H
“state–space” Santos et al., 2018) in a semi-distributed setup.
The resulting integrated tool chain has been differentiated
and via the VDA algorithm enables information feedback
within the whole computational domain (basin) and espe-
cially from downstream to upstream.

The source code and synthetic cases pre-
sented in this study are available online
(https://doi.org/10.5281/zenodo.6342723, Pujol et al.,
2022), and the current updated version of the code is avail-
able upon simple request (http://www.math.univ-toulouse.
fr/DassFlow, last access: 27 June 2022).

The remainder of this article is organized as follows. In
Sect. 2, the modeling hypothesis, the computational resolu-
tion and inverse methods are detailed. In Sect. 3, the multi-D
coupling scheme is validated on a series of academic cases
and several academic and real-like inference setups are inves-
tigated. The study is concluded in Sect. 4, which also outlines
potential applications and improvement perspectives that the
proposed method and findings bring.

2 The computational hydrological–hydraulic chain

This section presents the integrated and multi-dimensional
hydrological–hydraulic model and the data assimilation
approach. The model is designed for simulating spatio-

temporal flow variabilities over an entire river network,
from upstream hydrological responses to complex flow zones
(confluences, multichannel portions, floodplains, etc.).

The modeling approach which is detailed below, is based
on the following ingredients:

– an integrated multi-D hydraulic model – the 2D SWE
with finite-volume solvers from Monnier et al. (2016) is
applied to 1D-like–2D composite meshes of river net-
works using a numerical flux splitting method and an
effective friction power law depending on flow depth;

– a numerically coupled hydrological model, the widely
used GR4 model from Perrin et al. (2003) in its state–
space version (Santos et al., 2018), for the sake of model
differentiability;

– a computational inverse method based on VDA algo-
rithms from Monnier et al. (2016), Brisset et al. (2018)
and Larnier et al. (2020) enabling spatially distributed
calibration and variational data assimilation with the
whole chain.

2.1 Multi-D hydraulic–hydrological modeling principle

The flow model consists in a spatially distributed modeling
of hydrological responses coupled to, i.e., inflowing, a seam-
less multi-scale 1D-like–2D hydraulic model of a river net-
work within a 2D river basin domain denoted �⊂ R2 . The
core idea of this work is to numerically solve the 2D shallow-
water hydraulic model on a multi-D discretization Dhy ⊂ R2

of the computational hydraulic domain �hy ⊂� . This dis-
cretization (mesh) Dhy is composed ofN mixed unstructured
triangular and/or quadrangular cells with internal interfaces
between 1D-like and 2D zones (see Sect. 2.2.3).

Let the basin domain � be composed of a hydrological
domain �rr connected to a hydraulic domain �hy (Fig. 1)
such that

(
�rr ∪�hy

)
⊆�, their borders being denoted 0rr

and 0hy and the hydrological–hydraulic coupling interface
between �rr and �hy being denoted 0rh such that 0rh ⊂ 0hy.
In other words, the border 0hy of the hydraulic domain �hy
contains interfaces with the border 0rr of the hydrological
domain �rr. Let us also consider Drr, a 2D discretization of
the hydrological domain �rr.

Finally, an unstructured lattice D =Drr ∪Dhy covers the
basin domain �, and a hydrological model and a hydraulic
model will be resolved, respectively, on the hydrological and
hydraulic subdomains and coupled via hydrological runoff
flowing into the hydraulic model at the interface 0rh, as de-
tailed in this section along with the inverse algorithm applied
to the whole hydrological–hydraulic numerical chain.

2.2 Hydraulic module

Numerical hydraulic models describing open-channel flows
generally rely on the resolution of cross-sectionally or depth-
integrated flow equations: respectively, the 1D Saint-Venant
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Figure 1. Conceptual meshing approach for integrated hydraulic–
hydrological and multi-dimensional modeling of a river network.
The computational domain � is composed of the hydrological do-
main�rr connected to the hydraulic domain�hy.�hy contains 1D-
like meshes interfaced with classical 2D meshes, Hydrological in-
flows generated in �rr can be injected into �hy at the 0rh domain
interfaces.

equations or 2D SWE (see, e.g., Guinot, 2010). While 1D
hydraulic models enable a physically sound representation of
river flows variabilities in terms of wetted Section A and dis-
charge Q for instance, 2D hydraulic models in flow depth h
and depth-integrated velocity u= (u,v)T enable us to tackle
more complex flow zones such as confluences and/or dif-
fluences and floodplain flows. The 2D shallow-water model
used in the proposed approach is presented here with the
adaptation of the finite-volume solver from Monnier et al.
(2016) for multi-D modeling. Note that 1D Saint-Venant
equations are presented in Appendix B along with their res-
olution method in DassFlow1D (Brisset et al., 2018; Larnier
et al., 2020), which is used for comparison in this study.

2.2.1 Mathematical flow model

On the hydraulic computational domain �hy ⊂ R2 and for
a time interval [0,T ], the 2D SWEs with the Manning–
Strickler friction term, in their conservative form, are written
as follows:

∂tU+ ∂xF(U)+ ∂yG(U)= Sg(U)+Sf(U),

U=

 h

hu

hv

 , F(U)=

 hu

hu2
+
gh2

2
huv

 ,

G(U)=

 hv

huv

hv2
+
gh2

2

 , Sg(U)=
[

0
−gh∇b

]
,

Sf(U)=

[
0

−g
n2
||u||

h1/3 u,

]
(1)

with h being the water depth [m] and u= (u,v)T , the depth-
averaged velocity [m s−1], being the flow state variables. g is
the gravity magnitude [m s−2], b the bed elevation [m] and
n the Manning–Strickler friction coefficient [s m−1/3], i.e.,
the flow model parameters. U is the vector of state variables
and F(U) (G(U)) is its flux over the x (y) direction. Sg is
a gravitational term and Sf is a friction term. Classical initial
and boundary conditions adapted to real cases are considered
(see Monnier et al., 2016, 2019, for details).

An effective friction law consisting in a simple power law
n= αhβ is introduced, as previously done for 1D SWE for
effective modeling with simplified multichannel river geom-
etry in Garambois et al. (2017) and Brisset et al. (2018).

2.2.2 Building up equivalencies between 2D and 1D
flow states

One-dimensional-like reaches refer to river reaches where
the following meshing strategy has been applied: quadrangu-
lar cells are built such that their interfaces are perpendicular
to the main flow direction and span the whole river (“bank-
full”) width as a traditional 1D cross-section (XS) would.
This leads to a series of quadrangular cells, each linked to a
single upstream and downstream cell. The 1D-like approach
implicitly assumes a rectangular XS shape which potentially
impacts the representation of (i) a section hydraulic geometry
(Leopold and Maddock, 1953) and (ii) longitudinal hydraulic
controls and flow variabilities.

With a view to putting the multi-D model in coherence
with real flow physics, a continuity condition between 1D
and 1D-like models states and parameters is required. This
continuity condition is enforced at a section, in a prismatic
channel such that the uniform permanent flows, that is, equi-
librium, are preserved.

Let us consider a reference 1D model in (A,Q) variables
with the bankfull width value W1D. The friction term reads
Sf,1D =

n2Q|Q|

A2R
4/3
h

(Appendix B). In the corresponding 1D-like

model in (h,u,v) variables (see Sect. 2.2.1), the friction term
reads Sf,1Dlike =

n2
||u||

h1/3 u
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Considering 1D flow states over an idealized river section
(Fig. 2a) and the hypothesis of local flow equilibrium (uni-
form, steady-state) with identical wetted areas A and water
surface (WS) widthsW , the continuity condition implies that

n1Dlike = n1D

√√√√ A

W

h
1/3
1Dlike

R
4/3
h,1D

, (2)

where n1Dlike (h1Dlike) is the Manning–Strickler friction co-
efficient (flow depth) in the 1D-like model i.e., the coefficient
in the 2D SWE (Eq. 1).

With the additional assumption of a rectangular XS (as
it will be assumed in some test cases), we have h1Dlike =

A/W1D, which leads to n1Dlike = n1D

(
h1D
Rh,1D

)2/3
.

This “1D-like equivalent friction” leads to a perfect fit in
WS elevation of a 1D-like model and a 1D model in a straight
prismatic channel at the given uniform regime (results not
shown here for brevity). Figure 2b shows the evolution of the
ratio h/Rh vs. h. For rectangular and parabolic XS, the ra-
tio n1Dlike/n1D is expected to increase with h. Thus, one can
naturally expect an overestimation (underestimation) of the
actual friction coefficient by n1Dlike at lower flows (greater
flows). This would lead to an overestimation (underestima-
tion) of the 1D WS elevation by the “equivalent” 1D-like
model. However, later it will be considered a power law in h
to model the friction coefficient (Sect. 2.2.1), which provides
a better fit to the 1D WS elevations outside of the considered
permanent flow.

Note that longitudinal controls and flow variabilities
in 1D-like models are assessed using synthetic cases in
Sect. 3.2.

2.2.3 Multi-dimensional hydraulic model

Over a given cell K ∈�hy of area mK , the piecewise con-
stant values UK = 1

mK

∫
K

UdK are approximated. Recall that
the finite-volume approach applied to the homogeneous part
of the hyperbolic system of Eq. (1) (that is, without the fric-
tion source term Sf but including a consistent discretization
of the gravitational source term Sg) is written as follows:

Ūn+1
K = UnK −

1tn

mK

∑
e∈∂K

meFe
(
UnK,i,U

n
Ke
,nei,K

)
, (3)

where UnK and Un+1
K are the piecewise constant approxima-

tions of U= (h,hu,hv)T at time tn and tn+1 (with tn+1
=

tn+1tn), and Fe stands for Riemann fluxes through each
edge e of the border ∂K of the cell K , with each adjacent
cell Ke. The length of edge e is me, and ne,K is the unit nor-
mal to e oriented from K to Ke.

The finite-volume schemes are those developed in Coud-
erc et al. (2013) and Monnier et al. (2016). The discretization
of the friction source term is described in Appendix A.

Based on the first- and second-order finite-volume solvers
of Couderc et al. (2013) and Monnier et al. (2016), a “1D–

2D” coupling technique is introduced following a similar
concept to Finaud-Guyot et al. (2018) (urban geometries and
porosity context) to compute numerical fluxes on each inter-
face between a 1D-like quadrangular mesh cell connected to
several 2D cells as schematized in Fig. 3.

At the multi-D interfaces, that is, in the case of n > 1 cells
xK,i i ∈ [1. . .n] adjacent to the same interface of another cell
Ke (see Fig. 3 for notations and Sect. 3.3.2 for a real-like
example), a special treatment is applied. It consists in the
Riemann fluxes being calculated for each cell Ki using the
state from the same corresponding Ke cell over an interface
of length mei . In the end, the flux crossing the interface e =
∪ei is equal to the sum of the fluxes crossing the ei interfaces:
Fe =

∑
i=1...nmeiFei

(
UnKi

,UnKe,nei,K

)
.

This type of internal interface has been implemented in the
numerical solvers from Monnier et al. (2016) in the Dass-
Flow platform, which includes a solver with second-order
accuracy in space. This solver, developed in Couderc et al.
(2013) and Monnier et al. (2016), is accurate and robust for
wet–dry front propagations and fully applies in the present
context. Note that the lateral distribution of variables across
the 1D–2D interface is not constrained. The source code and
synthetic cases are available upon simple request.

2.3 Hydrological module

In order to simulate the hydrological response of upstream
and lateral sub-catchments flowing into the river network
within a river basin, a hydrological module is coupled to the
2D SW hydraulic model, in a semi-distributed manner for
simplicity here.

Over the hydrological domain �rr, we consider the dis-
cretization Drr here into C sub-catchments {bv1, . . .,bvC}
and corresponding disjointed sub-domains�rr,i∈[1...C] ⊂�rr,
the outlet coordinates of which are xi ∈�rr,i ∈ [1. . .C]. For a
given sub-catchment, the hydrological model is a dynamic
operator, consisting in coupled state equations (ordinary dif-
ferential equations, ODEs) and output equations, that reads

Mrr :


dh
dt

(
x, t ′

)
= f

(
h
(
x, t ′

)
,P
(
x, t ′

)
,E
(
x, t ′

)
;θ(x)

)
,∀x ∈�rr,i, i ∈ [1. . .C], t ′ ∈ [0, t]

Q(x, t)= g
(
h
(
x, t ′

)
,P
(
x, t ′

)
,E
(
x, t ′

)
;θ(x)

)
,

(4)

where h(x, t) is the state variable vector, P (x, t) andE(x, t)
is the observable rainfall and evapotranspiration inputs (here
spatially averaged over the area of each sub-catchment i for
semi-distributed modeling), Q(x, t) is the “observable” out-
put discharge, and θ (x) is the “unobservable” parameter vec-
tor.

The widely used, parsimonious and robust conceptual hy-
drological model GR4 (Perrin et al., 2003), in its state–space
version from Santos et al. (2018), was chosen in this study for
parsimony and differentiability reasons. The original lumped
hydrological numerical model has been deployed in a semi-
distributed manner in the DassFlow framework.
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Figure 2. Equivalency of 1D and 2D flow states at equilibrium (permanent uniform flows): effective friction and bathymetry. (a) Equivalency
between a 1D idealized XS (blue) and a 2D single-cell rectangular XS (green), with the same flow section A and WS elevation. (b) Variation
in the hydraulic radius Rh (h) for three XS shapes (of similar dimensions). This showcases the potential over- and underestimation of state
variables using “1D-like equivalent friction” from Eq. (2).

Figure 3. Internal multi-D domain interface, general case. At
each cell center x, the state variables U= (h,hu,hv)T and the
bathymetry b are defined. The total numerical flux is conserved:
Fe =

∑
i=1...n

mei Fei

(
Un
K,i,U

n
Ke
,nei,K

)
.

The model is composed of two non-linear stores for pro-
duction (soil moisture accounting) and routing and a Nash
cascade composed of a series of linear stores replacing the
unit hydrograph from Perrin et al. (2003). Being a set of
ODEs with explicit dependency to parameters, this hydrolog-
ical model (Eq. 4, see detailed GR4 equations in Appendix C)
is differentiable. Moreover, the Fortran code is differentiable
with the automatic differentiation tool Tapenade (Hascoet
and Pascual, 2013).

The evolution of reservoir states and model outputs and
inputs is presented for a sample rain event in Fig. 4.

The input of the hydrological model is the evapotranspi-
ration and precipitation En and Pn; the output is discharge
q (t)=Qr +Qd [mm h−1]. En and Pn are classically im-
posed from data time series as a piecewise constant at the
fixed temporal resolution (e.g., hourly). The numerical res-
olution is achieved with an implicit Euler algorithm with an
adaptive sub-step algorithm enabling us to reduce numerical
errors especially for high flows (Santos et al., 2018). The ini-

tial states of the stores is given by a 1-year warm-up run. The
discharge q is injected into �hy at a sub-interface of 0hy-rr,
either as an upstream or lateral flow.

The calibrated parameters will be the classical four pa-
rameters θrr =

(
ck,i
)
k∈1...4,i∈1...C of GR4, i.e., the reservoir

capacities in millimeters for each sub-catchment i ∈ 1. . .C.
They will constitute the parameter vector θrr considered in
the forthcoming VDA experiments. Other parameters, such
as several drainage law exponents or the number of Nash
cascade stores, are not optimized as classically done with the
GR4 model (Perrin et al., 2003). They are set at values from
Santos et al. (2018).

2.4 Inverse algorithm: variational data assimilation

Given spatio-temporal flow observables, provided by in situ
and airborne sensors for instance, the inverse algorithm con-
sisting in variational data assimilation (VDA) aims at es-
timating the unknown or uncertain “input parameters” of
the hydrological–hydraulic chain composed of a hydraulic
model, presented in Sect. 2.2, and a hydrological model,
presented in Sect. 2.3. Detailed know-how on VDA may
be found in online courses (see, e.g., Bouttier and Courtier,
2002, and Monnier, 2014). This group of VDA algorithms re-
lies on cost gradients, i.e., variations, here computed by the
adjoint model, to minimize a misfit to the observed reality
(see Fig. 5). The adjoint model of the whole toolchain com-
posed of DassFlow multi-D with GR4 modules is obtained
by automatic differentiation with the Tapenade engine (Has-
coet and Pascual, 2013). Note that 2D, 1D-like and 1D–2D
models are functionally identical from the point of view of
the adjoint code and the assimilation process.

We consider the following set of spatio-temporal observa-
tions of water surface and discharge over the river domain
�⊂ R2:

Zo,k (t) ,k ∈
[
1. . .No,Z

]
, Qo,k (t) , ∀k ∈

[
1. . .No,Q

]
, (5)
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Figure 4. Evolution of GR4 inputs, output and reservoirs states during a sample rain event. (a) Temporal forcings (rain and evaporation) and
modeled output (discharge). (b) Hydrological model states (reservoir levels).

Figure 5. Complete VDA hydraulic–hydrological tool chain.

with Zo the observed WS elevation [m] above reference el-
evation, Qo the observed discharge [m3 s−1], No,Z the num-
ber of altimetric observation points and No,Q the number of
observed discharges over �.

Note that observed discharge Qo may be a value of a hy-
draulic discharge at a flow XS in�hy or within the hydrologi-
cal domain�rr and especially at the outlet of a sub-catchment
here. Also note that other water surface observables could be
considered, such as water surface velocity observations or
dynamic water masks, but this is beyond the scope of this
study.

Given river stage and/or discharge observations, the aim
here is to estimate unknown or uncertain quantities of the
hydrological–hydraulic model among discharge hydrographs
Qi (t) , i ∈ [1,N ] on the border of the hydraulic domain (in
1D-like and/or 2D parts), spatially distributed hydraulic pa-
rameters over a river network (bathymetry elevation b or fric-
tion n) and hydrological parameters θ rr =

(
ck,i
)
k∈1...4,i∈1...C

for all sub-catchments ∪Ci=1�rr,i =�rr.

Geosci. Model Dev., 15, 6085–6113, 2022 https://doi.org/10.5194/gmd-15-6085-2022



L. Pujol et al.: Multi-dimensional hydrological–hydraulic model 6093

The control vector containing the sought quantities is de-
noted θ in what follows:

θ =
(
θhy , θ rr

)
=

((
Q0

1, . . .,Q
T
1 , . . .,Q

1
N, . . .,Q

T
N ,

n1, . . .,nM , b1, . . .,bM) ,
(
ck,i
)
k∈1...4,i∈1...C

)
, (6)

with θhy and θ rr the control vectors of, respectively, the hy-
draulic and the hydrological modules, N the number of in-
flows control points in space and T the number of inflow
values in time, M the number of bathymetry-friction control
cells, and P the number of hydrological units.

We consider a cost function jobs aiming at measuring the
discrepancy between simulated and observed flow quanti-
ties on the hydraulic–hydrological computational domain �.
This cost function is defined as

jobs (θ)= jQ (θ) orjobs (θ)= jZ (θ) . (7)

This cost function contains either misfit to WS eleva-
tion, jZ (θ)= 1

2‖Zo (t)−Z(θ , t)‖
2
OZ

, or misfit to discharge,
jQ (θ)=

1
2‖Qo (t)−Q(θ , t)‖

2
OQ

.
The metrics (symmetric positive definite matrices) OZ

and OQ are based on the inverse of the observation error co-
variances. This enables us to regularize the inverse problem;
see, e.g., Bouttier and Courtier, 2002, Monnier, 2021, Asch
et al., 2016, and references therein for related discussions.

Moreover, we classically enrich the cost function
with a regularization term: j (θ)= jobs (θ)+ γ jreg (θ) with
jreg a Tikhonov-type regularization term. Here we con-
sider a regularization on the bathymetry only: jreg (θ)=

1
2
∑M

i=1

(
(∂xbi)

2
+
(
∂ybi

)2) with θ defined by Eq. (6).
The regularization term adds convexity to the cost func-

tion. Moreover, it here dampens the bathymetry highest fre-
quencies. Recall that low Froude flows; i.e., subcritical flows
naturally act as a low-pass filtering of the bathymetry shape;
see Martin and Monnier (2015) and Gudmundsson (2003).

The total cost function j is minimized starting from a
background value θ (0). Following Lorenc et al. (2000) (see
also Larnier et al., 2020), the following change in variables
is applied:

k = B−1/2
(
θ − θ (0)

)
, (8)

with B being the covariance matrix of the background error.
Then by setting J (k)= j (θ), the optimization problem

which is solved is actually the following:

k∗ = argminJ (k) . (9)

The first-order optimality condition of this optimization
problem (Eq. 9) reads B1/2

∇j (θ)= 0. The change in vari-
ables based on the covariance matrix B acts as a precondi-
tioning of the optimization problem. This optimization prob-
lem is solved using a first-order gradient-based algorithm,

more precisely the classical limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) quasi-Newton algo-
rithm (Zhu et al., 1997) or, in some cases in this study, its
bounded version L-BFGS-B (Zhu et al., 1997) but without
variable change (Eq. 8).

The choice of the covariance matrix B, represents an im-
portant a priori information and greatly influences the com-
puted solution of the inverse problem. Assuming the un-
known parameters are independent variables, the matrix B
is defined as a block diagonal matrix:

B= blockdiag
(
B�hy ,B�rr

)
, with

B�hy = blockdiag
(
BQ,Bn,Bzb

)
.

Each block matrix of B�hy is defined as a covariance ma-
trix (positive definite matrix) using 2D kernels for spatial
controls. Here following Larnier et al. (2020), we consider

(
BQ
)

i,j =
(
σQ
)2exp

(
−

∣∣tj − ti∣∣
LQ

)
, (10)

(Bb)i,j = (σb)
2exp

(
−

∣∣xj − xi
∣∣+ ∣∣yj − yi

∣∣
Lb

)
,

(Bn)i,j = (σn)2exp

(
−

∣∣xj − xi
∣∣+ ∣∣yj − yi

∣∣
Ln

)
. (11)

The parameters LQ and (Lb,Ln) act as correlation lengths.
These parameters are usually empirically defined. However
the expression of Bb and the correlation lengths can be de-
rived from physically based estimations following Malou and
Monnier (2021).

The following stopping criteria are used to stop the itera-
tive optimization process if (i) the cost function does not de-
crease over a set number of iterations or (ii) the current cost
gradient, normalized by the initial cost gradient, goes under a
set objective value. The multi-D hydrological–hydraulic tool
chain presented above has been implemented in the latest
version of Monnier et al. (2019).

3 Results and discussion

3.1 Numerical experiments design

Both synthetic and real cases are considered to test the for-
ward and inverse modeling capabilities of the proposed com-
putational chain for river network and floodplain simulation.

First, the multi-D hydraulic model (Sect. 2.2.3) is vali-
dated against reference hydraulic models on synthetic cases
corresponding to typical hydraulic complexities: (i) simple
straight channel, (ii) confluence, and (iii) straight, rectangu-
lar and parabolic, channels with effective parameterization
of friction and bathymetry. For fluvial regimes in the con-
text of altimetry, these hydraulic complexities generate hy-
draulic controls. Following Montazem et al. (2019), we de-
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fine hydraulic controls as characterized by a maximal devi-
ation of the water depth from the normal depth (see, e.g.,
Chow, 1959, and Dingman, 2009, for definition) at the reach
scale.

A series of inference cases are considered in twin exper-
iment setups. In a twin experiment, a reference model acts
as a synthetic truth and is used to generate observations of
model variables (e.g., b+h in �hy or Q in �rr). No obser-
vation noise is considered in this study. The VDA method is
then applied with these observations on an altered version of
the reference model. Inferences of temporal forcings, chan-
nel parameters and hydrological parameters are carried out.

3.2 Synthetic cases

First, the proposed multi-D hydraulic solver (Sect. 2.2.3) is
evaluated and compared to a fine 2D reference model on
two simple configurations, a straight channel and a con-
fluence, that feature frontal interfaces between 1D-like and
2D meshes. Next, to investigate the reproducibility of hy-
draulic controls using a 1D-like meshing approach and ef-
fective modeling, this approach is compared to a 1D refer-
ence model in three typical channel configurations. Finally,
inferences of inflow hydrographs Qi (t) , i ∈ [1. . .N ] and of
a friction power law n= αhβ are carried out using WS ob-
servables.

3.2.1 Forward multi-D hydraulic cases

Straight channel case

A prismatic rectangular channel and a multi-D mesh are con-
sidered (1D-like to 2D to 1D-like, see Fig. 6). The channel
width is 300 m and its length is 2300 m. A rating curve is
imposed downstream. This multi-D model is compared to a
reference 2D model with a refined mesh (mesh not shown,
2400 cells, average edge length v25 m). The multi-D wa-
terline is validated against the 2D model at permanent flow(
Q= 100m3 s−1) and the modeled downstream discharges

are compared for a flood hydrograph (Fig. 6b). Both first-
(not shown) and second-order numerical solvers allow a
close fit to the target water line (Fig. 6a, bottom diagram).

At permanent flow, a slight misfit is observed between
the 2D and multi-D WS elevations with the second-order
scheme (Fig. 6a, top diagram, relative misfit < 0.15 % at
1000 m). This is due to the approximation error in the multi-
D model caused by large spatial steps in 1D-like reaches
(dx = 200 m). Indeed, this misfit is reduced by reducing the
1D-like cell length (not shown). This is confirmed and show-
cased in the next subsection.

At the interface between 1D-like and 2D meshes, a slight
jump in WS elevations can be observed at all 2D cells
(Fig. 6a, top diagram). This is due to the second-order
scheme, which is currently not designed for multi-D inter-
faces. Recall that no constraint is imposed on the lateral dis-

tribution of computed variables. The technical implementa-
tion of this reconstruction for 1D–2D interfaces will be done
in the next version of DassFlow.

During a varied flow event, the outflow of both models is
close to identical (Fig. 6a, middle diagram). The flow is cor-
rectly transmitted at multi-D interfaces and, at this scale, the
1D-like meshes are adequate to model a flood wave propaga-
tion.

Simple confluence case

A simple symmetrical confluence is modeled using a multi-D
mesh. The channel width is 300 m in the downstream reach
and 150m in the upstream reaches. Two inflow hydrographs
are imposed at the two upstream interfaces. The maximum
abscissa of the mesh points are 0 and 2075m. The 2D part
(average edge length v5m) contains a confluence flow zone
(Fig. 6), while the 1D-like mesh (dx = 100m) covers the
upstream and downstream reaches. At permanent flow, the
multi-D model compares well with the reference 2D fine
model (mesh not shown, 15000 cells, average edge length
v5m) and leads to similar conclusions to the above para-
graphs. Using a shorter spatial step in the 1D-like reaches
(10m) reduces the difference between reference and multi-
D model and allows for a nearly perfect fit to the reference
WS elevation at permanent flow (Fig. 6a, middle diagram).
During a varied flow event, the outflows modeled with the
multi-D model are very close to reference ones: slight differ-
ences during rising and falling limbs, same peak time, and
Nash–Sutcliffe efficiency (NSE)= 0.996.

Hydraulic controls and effective friction

To investigate the reproducibility of hydraulic controls for
fluvial flows, which are characterized by a maximal devia-
tion of the water depth from the normal depth at the reach
scale (see definition in Montazem et al., 2019), using a 1D-
like approach, a set of typical channel variabilities and hy-
draulic controls are considered. Let us compare 1D and 1D-
like waterlines in a series of synthetic cases: (i) a straight
rectangular channel, (ii) a straight rectangular channel with a
mid-channel slope break and (iii) a straight parabolic chan-
nel.

Direct calibration

Recall the equivalent friction formulation (Eq. 2) designed to
match the water line at a section and at equilibrium. For each
1D-like case, waterlines with 1D friction (n= 0.05sm−1/3)
and effective equivalent friction are generated. Effective fric-
tion values are calculated using Eq. (2) and results from the
corresponding 1D case. Reference 1D flow lines are com-
puted with DassFlow solving 1D Saint-Venant equations in
(A,Q) state variables with a Preissmann scheme (see Ap-
pendix B and also Larnier et al., 2020).
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Figure 6. Multi-D straight channel case results with second-order scheme. The flow is subcritical with a maximum Froude value of 0.06.
(a) Top: waterlines for a permanent flow of 100 m3 s−1: reference 2D waterline (red); waterline for the mesh in (b) (blue);he total misfit at
the 1D–2D upstream interface (at 1000 m) is around 10−3 m, for a relative misfit < 0.15 % of the local depth. Middle: upstream discharge
during sample varied flow event (blue); downstream simulated flow for the considered meshes (total overlap; red/blue). Bottom: WS elevation
observations for the varied flow event (total overlap). (b) Multi-D mesh. Station locations are noted as blue dots.

In a straight rectangular prismatic channel, with the 1D
normal water depth imposed downstream (Fig. 8a), a back-
water curve is computed by the DassFlow1D model (in red).
With a 1D homogeneous friction (n= 0.05sm−1/3), the 1D-
like approach yields an underestimated waterline (in blue). A
homogeneous effective friction allows us to correct the un-
derestimation and to better match the 1D normal water depth
over the whole domain (in green). The remaining misfit can
be attributed to numerical errors, especially numerical diffu-

sion from the Preissmann scheme (1D model spatial step is
dx1D = 100m).

A first complexification of this case consists in the in-
troduction of a local hydraulic control point in the form of
a slope break at x = 10 km (Fig. 8b). In this setup, both
1D and 1D-like models generate M2 backwater curves; see,
e.g., Dingman (2009). The hydraulic control generated at
the slope break is well represented with a 1D-like approach,
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Figure 7. Multi-D confluence case results with second-order scheme. (a) Top: waterlines for a permanent flow of 100 m3 s−1 at both upstream
boundaries; reference 2D waterline (red); waterline for the mesh in (b) (blue); waterline for a denser 1D–2D mesh (not shown, green).
Middle: total upstream discharge during sample varied flow event (evenly distributed between upstream boundaries, blue); downstream
simulated flow for the considered meshes (red/green/blue). Bottom: WS elevation observations for the varied flow event. (b) Multi-D mesh.
Station locations are noted as black dots.
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Figure 8. Effective friction analysis for steady waterline in academic cases: (a) rectangular channel with constant slope, (b) rectangular
channel with slope break, (c) parabolic channel with constant slope. Values of effective friction parameter α

[
sm−1/3]: (a) 5.06× 10−2,

(b)
(
5.06× 10−2, 5.04× 10−2), (c) 5.46× 10−2. Bathymetric shift δb [m]: (a) 0, (b) 0, (c) 0.591. One-dimensional reference model: fixed

time step 5 s, spatial step 100 m. Average Courant number equals 0.26 1D-like models: adaptive time step with mean value of 9 s. One-
dimensional-like cell length 100 m; average Courant number equals 0.48.

given the aforementioned numerical errors due to the coarse
grid.

Another complexification of the first case consists in
changing from a rectangular XS to a parabolic one (Fig. 2).
In this case, both equivalent friction – a single homogeneous
patch – and effective bathymetry, in the form of a homo-
geneous shift δb of the reference bathymetry, are needed to
match the 1D WS elevation. Equivalent friction only allows
us to model identical wetted sections at permanent bankfull
flow for a given channel width (Sect. 2.2.2). In this case,
matching the 1D wetted section does not equate to match-
ing its WS elevation; thus an effective bathymetry is used.

According to the above model comparisons, effective pa-
rameterization of channel parameters is sufficient to repro-
duce 1D behaviors with a 1D-like approach for permanent
bankfull flows in simple geometries. Outside of the perma-

nent bankfull flow, a friction power law n= αhβ can be used
(Sect. 2.2.1). This friction aims at better 1D-like represen-
tativity when modeled wetted surfaces (and other XS vari-
ables) are different in 1D and 1D-like models for the same
WS elevation.

Inverse calibration

In the following comparison, power-law parameters α and
β are obtained using VDA in a twin experiment setup. Ob-
servations are taken at two stations (Fig. 9). Prior values are
α = 0.05 s m−1/3 and β = 0.

The classic friction law and a power law with calibrated
parameters are compared in Fig. 9 during a varied flow event
(assimilation time window of 270 d). A range of water depth
higher than the bankfull depth used to calculate equivalent
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Figure 9. Effective friction analysis for an unsteady waterline in case (i). The power law is given by n= αhβ , with α = 0.0446 and β =
0.0634. The injected hydrograph is symmetrical. observation stations are at x = 2.5 km and x = 7.5 km. Adaptive time step with average
value of 13 s. One-dimensional-like cell length: 200 m. Average Courant number: 0.33.

friction parameters is simulated. This results in an increase in
misfit to the 1D WS elevation at high flow (Fig. 9, in blue and
red). The calibrated friction power law (in orange) somewhat
reduces the misfit during high flows in this simple synthetic
channel and within the simulated water depth range.

3.2.2 Multi-D hydraulic–hydrological data assimilation

Temporal forcing inference

Simple inference tests are carried on the confluence case
from Sect. 3.2.1, following Pujol et al. (2020), in a twin ex-
periment setup. A control vector c = (Q1 (t) ,Q2 (t)) is con-
sidered, whereQ1 andQ2 are sinusoidal inflow hydrographs
injected at the upstream cell of the two upstream reaches.
Pujol et al. (2020) shows that the minimal requirement to
infer multiple spatially distributed temporal forcings simul-
taneously is to observe either (i) both of their “unmixed” sig-
natures, at one point each, or (ii) one of their unmixed sig-
natures at one point and their mixed signatures at a second
point. We verify this for configuration (ii). Unmixed signa-
ture observations are generated at a 1D-like cell of the up-
stream reaches; mixed signature observations are generated
at a cell in the 2D part (Fig. 10a, red crosses). Prior values
for the inflow hydrographs are constant and set to their aver-
age value

(
Q1 (t)=Q2 (t)= 100m3 s−1). Using sets of two

observation points over a 5 h period (see Fig. 10), we are able
to reproduce the results of Pujol et al. (2020) but with the
proposed multi-D hydraulic model: the VDA algorithm en-
ables us to infer Q1 and Q2 close to perfectly from configu-
rations (i) and (ii) (Fig. 10b).

Hydrological parameter inference

In this second twin experiment, the issue of the spatially
distributed calibration of a hydrological model is studied,
from multi-source observations of the river network. The
confluence case above is used and this time, the upstream
inflows are generated by the GR4H module applied to two
upstream catchments flowing into the hydraulic module. For
each catchment, synthetic rain and evaporation time series
and a hydrological parameter set θrr = (c1, . . .,c4) are used
to generate a discharge time series over a 1-year period (not
shown). Mixed observables are used: WS elevation is ob-
served at a single downstream point, and hydrological model
discharge is observed at the outlet of one of the catchments,
over 360 d. They provide the same signal observability –
mixed and unmixed signals – as in the above paragraph but
with observations of a different nature. Since the observed
variables are of a different nature and amplitude, we in-
troduce a normalization. The cost function is here jobs =

jZ + jQ, with each term being normalized by the number of
observations and by their range of variation such that

jZ =
No,ZTZ

No,ZTZ +No,QTQ

1(
Zo,max−Zo,min

)2 [1]

No,Z
∑

[1]TZ
∑

(Zo (t)−Z(θ, t))
2

and

jQ =
No,QTQ

No,ZTZ +No,QTQ

1(
Qo,max−Qo,min

)2 [1]

No,Q
∑

[1]TQ
∑

(Qo (t)−Q(θ, t))
2.

Those correspond to two separate normalized squared
RMSE with No,Q and No,Z denoting the number of observa-
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Figure 10. Inflow hydrographs inference on confluence synthetic case in observation setup (b) with one station on a reach upstream of
the confluence and one observing mixed flows downstream in the 2D part. Given sufficient observability and an unbiased prior, inferred
hydrographs (in blue and orange) are both at target (blue, total overlap). The flow is subcritical with a maximum Froude value of 0.05.

tion stations and TQ and TZ the number of observation time
steps.

The control vector c =
(
θrr1,θrr2

)
contains the two sets of

four hydrological parameters each. For this synthetic case,
an inequality constraint of the control parameters is imposed
with the bounded L-BFGS-B algorithm (Zhu et al., 1997). In-
deed, restricted research intervals are considered for the three
first parameters of each catchment, namely a 5 % bracket
around their target values used as a prior, while c4 is sought
in its expected variation range from an erroneous prior (Ta-
ble 2). Expected ranges for GR4H parameters are provided
in Le Lay (2006), for the classical GR4 formulation.

In this setup, both jQ and jZ are reduced during the it-
erative steps and the inferred value for both c4 parameters
are very close to the target value starting from an erroneous
prior (Fig. 11b). Bounded parameters c1 and c2 vary slightly
between their bounds, while c3 is locked at its lower bound
from the first iteration.

3.3 Real cases

3.3.1 Garonne River: 1D-like effective model of a 2D
reference case

A 1D-like model of a reach of the Garonne River, in southern
France, is built from real data and calibrated here via assim-
ilation of spatially distributed WS observations in a twin ex-
periment setup. A full 2D model of 75km of the Garonne
River (not shown, 867500 cells including floodplains, av-
erage edge length v25 m) is used to generate real-like ob-
servables on this well-known case (Garambois and Monnier,
2015; Brisset et al., 2018; Larnier et al., 2020; Monnier et al.,
2016). First, river extent is derived from the 2D model out-
put at bankfull flow Q= 400 m3 s−1 with a homogeneous
friction n= 0.05 s m−1/3. This extent is in turn used to build

a 1D-like mesh, over the whole reach: single quadrangular
cells cover the whole river width and are linked sequentially
along the river reach (Fig. 12). One-dimensional-like cell in-
terfaces are perpendicular to the flow direction, as would
be cross sections (XSs) in a 1D model. Each cell is about
100 m in longitudinal length. This mesh was generated us-
ing the SMS.1 Cell bathymetry is first set using the lowest
bathymetry point at each corresponding 2D XS.

Permanent bankfull flow calibration

A first expectedly imperfect 1D-like model (Model A1) is
built using the 1D-like coarse mesh and expectedly under-
estimated bathymetry elevation and a homogeneous friction
parameter of 0.05 s m−1/3. The simulated steady WS ele-
vation at bankfull flow is lower than that of the 2D model
(average misfit of 0.858 m), which is expected since the 1D
bathymetry is that of the lowest point of the 2D XS (Fig. 2).
Furthermore, the 1D-like friction is underestimated and leads
to an underestimated simulated water depth (and flow sur-
face). The WS elevation misfit does not seem to follow a
significant trend from upstream to downstream, although it
varies sharply at points of width variation (Fig. 13, e.g.,
around cell 410). Recall that the goal of this effective model-
ing approach is to accurately reproduce water surface signa-
tures, including WS elevation and, tangentially, flow section
(Sect. 2.2.2).

Calibration by hand. We here propose to reduce the misfit
using, on the one hand, effective friction and, on the other
hand, bathymetry as follows. In Model A2, the introduction
of an equivalent friction parameter (Eq. 2), calculated at each
1D cell using observations from 2D XS, improves the WS
elevation misfit (mean friction of n= 0.062 s m−1/3, average

1https://www.aquaveo.com/software (last access: 27 June 2022);
a software including comprehensive meshing tools.
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Table 2. Hydrological parameter inference results. Prior values are taken as identical to target values, except for parameter c4, where under-
and overestimated prior value are considered. Inferred values for all parameters including c4 are very close to the target. The “/” separates
values for the two distinct hydrological units.

Parameters c1 c2 c3 c4

Target
520.01 −3.523 78.75

0.137
Prior 0.167 / 0.107

Inferred 520.00 / 519.46 −3.654 / −3.820 80/80 0.136 / 0.137

Figure 11. Simultaneous inference of GR4H hydrological parameters in two catchments from multi-source observations: WS elevation and
flow observations. (a) Multi-D hydraulic mesh and modeled hydrological catchments. Hydrological discharge at the outlet of �rr flows in
upstream in �hy. Observation stations (red cross and red line) are used for inferring hydrological parameters. (b) Inference of two sets of
four hydrological parameters: normalized costs and parameter values over the course of the iterative optimum search. The x4 background
values are erroneous. x1, x2 and x4 background values are set to target values.

WS elevation misfit of 0.562 m). It reduces misfit overall but
has no significant local influence (Fig. 13). In Model A3, we
use the average WS elevation misfit from Model A2 to create
a simple bathymetry shift δb that helps fit the observations.
Equivalent friction parameters from Model A2 are kept and
all bathymetry points are shifted by δb = 0.562 m (the bot-
tom slope is conserved). The average WS elevation misfit at
bankfull flow reaches 0.003 m for Model A3, which is a very
satisfying result.

Calibration by VDA. Now, the same calibration problem is
addressed with an inference based on the VDA method. It is
applied to the same reference model permanent flow water-
line, observed at each cell. The control vector contains a sin-
gle homogeneous friction parameter, as before, and spatial-
ized bathymetry b (x) for each cell. To constrain the param-
eter search, two VDA processes are performed separately:
a bathymetry regularization and a change in variable. Infer-
ence with bathymetry regularization leads to Model B1, with
γ = 1 (Sect. 2.4). Inference with change in variable (Eq. 8)
leads to Model B2, with Lb = 500 m (Eq. 11). Both models
lead to average misfits close to that of Model A3: 0.0839 and
0.0844 m, respectively.

Two other inference setups based on Model B1 are con-
sidered. The number of observations is divided by 10: 72 sta-
tions, homogeneously distributed at 1 per each 1 km, are con-

sidered. In Model B1a, no regularization term is considered
(γ = 0). In Model B1b, a regularization is added (γ = 1,
chosen by trial and error). This weight can be optimally de-
termined using iterative regularization (Malou and Monnier,
2022). It is dependent on the spatial scales of observed sig-
nals and on the discretization of inferred parameters. As pre-
sented in Fig. 13 and in Table 3, both inferences lead to low
misfits of the 2D permanent WS elevation. The regulariza-
tion tends to reduce extreme bathymetric variations that tend
to appear far from the observation points. The iterative min-
imization process can be followed through the cost function
value and the parameter gradients (Fig. 14). Values are nor-
malized over their initial (iteration 0) value. For Model B1a,
the optimal control is reached after 40 iteration (for a normal-
ized cost of 8.6× 10−10), while for Model B1b it is reached
in 85 iterations (for a normalized cost of 5.5× 10−5). Both
models follow the same trajectory up to around iteration 12,
where the regularization term jreg reaches the same order of
scale as the WS elevation misfit term jobs.

Variational calibration of the channel parameter has al-
lowed us to fit a permanent regime water line. The following
paragraphs study the reproduction of propagation in a cali-
brated model during a varied flow event.
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Table 3. Garonne models parameters and metrics. “PR” stand for permanent regime (discharge of 400 m3 s−1). The “varied” flow event is
non-flooding and has a mean discharge of 398 m3 s−1, with a minimum of 183 m3 s−1 and a maximum of 702 m3 s−1. “High” observation
density corresponds to 720 stations or one station per 100 m. “Low” observation density corresponds to 72 stations or one station per 1 km.

Model Calibrated Calibration Flow Obs. n or α β δb Rel. misfit RMSE NSE
name parameters method regime density (PR) (PR) (varied)

2D – – – – 0.5

0

0

A1 –
Manual

PR

High

0.5 0 0.858 0.881

A2 n 0.062 0 0.562 0.585

A3 n,δb 0.062 0.562 0.003 0.167

B1

n,b (x,y)

VDA

0.059

–

0.084 0.106

B1a
Low

0.059 0.099 0.157

B1b 0.057 0.099 0.152

B2 High 0.059 0.084 0.157

C n,δb Varied High
0.054 0.669

– –
0.99

D β,δb 0.054 −0.017 0.099 0.98

Figure 12. Garonne 2D model extent and simulated water depths
using the 2D model and the 1D-like model for a non-flooding event.
In the zoom, both models are represented, with a slight longitudinal
shift for the 1D-like model, to allow qualitative comparison of both
simulated water depth and water surface extents.

Variational calibration for a flow event

Let us now consider a varied flow event, without flooding in
the 2D model. This event lasts 10 d, with a peak discharge
of 702 m3 s−1 at the start of day 2, a minimum discharge of
160 m3 s−1 and an average discharge of 382 m3 s−1. Given
our previous inference attempts, we know that we can find a
couple (n,b (x)) or (n,δb) that minimizes the average mis-
fit. For the sake of simplicity, we consider the couple (n,δb).
For a varied flow event, this couple would be an optimal pa-
rameterization for the average observed water line. A first
inference trial is carried out for a densely observed (in space
and time) varied flow. This dense observability is not meant
to imitate the actual observability of real rivers but to pro-
vide sufficient constraints for the considered inverse prob-
lem, with the aim to showcase the capability of the varia-
tional toolchain and 1D-like model to fit fine-scale real-like
water surface elevation (WSE) variations (see hydraulic pa-
rameter inference from sparse uneven altimetric observations
of river surface in Brisset et al., 2018, Larnier et al., 2020,
Garambois et al., 2020, and Pujol et al., 2020).

Using Model A1 as a prior for bathymetry and friction and
observations from the 2D model, we find the following opti-
mal parameters:

(
n= 0.054sm−1/3,δb = 0.669m

)
. The re-

sulting optimal model is Model C. To allow a better fit dur-
ing high and low flows, we introduce the friction power law
n= αhβ (Sect. 2.2.1). Using observations from the 2D model
during the varied flow event, we infer the couple (β,δb). The
value of α is set to 0.054 s m−1/3, the inferred value from
Model D. Three different β priors are tested: −0.5, 0, 0.5. δb
is included in the control vector to allow modeling of more
varied water depths, which may be needed to reach the opti-
mum. All three inferences lead to the very close optimal con-
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Figure 13. Comparison of seven 1D-like models of 72 km of the Garonne River to a reference 2D SW fine model for a permanent flow
(reference WS elevation in blue lines, c, d). (a) WS comparison of 1D-like models to 2D reference model at each spatial point. (b) Zoom
on 3 km long reach of interest. (c) WS elevation and bathymetry for the reference and 1D like models. (d) Zoom on 3 km long reach of
interest. For models A1, A2 and A3 (in gray), the bathymetry and homogeneous friction are manually calibrated. For mode B1 (yellow), B1a
(magenta), B1b (red) and B2 (green), the bathymetry and friction are calibrated by VDA. For models B1 and B2, inferences are carried out
from observations at each cell (720 total). For models B1a and B1b, inferences are carried out from observations every 10 cells (i.e., around
every 1 km, 72 stations total). Vertical bars indicate these 72 stations.

Figure 14. Normalized cost functions and gradients for inferences of distributed bathymetry and homogeneous friction, from 72 observation
stations, in models B1a and B1b. (a) Total cost normalized by initial cost j (θ)/j

(
θ (0)

)
vs. iterations. (b) Cost gradients normalized by initial

gradient for the inferred parameters vs. iterations.
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trol. Their averaging, a slight bathymetric shift δb = 0.099m
and β =−0.017, leads to Model D. The direct simulation re-
sults of Model D are compared to the reference model. They
correspond to an average WS elevation misfit of 0.026m at
high flow and of 0.11m at low flow. Compared to Model C
(average misfit of 0.086 and 0.20m at, respectively, high and
low flow), this is an improvement. Note that NSE values for
both model (Table 3) are both extremely close to 1.

The variational calibration of the global bathymetric shift
δb and of a homogeneous friction value n in a 1D-like model
has allowed us to closely fit WS elevation observations of
a 10 d flood wave over the reference Garonne model. The
calibration of depth-dependent friction, in the form of the β
parameter in n= αhβ , has allowed an even closer fit to this
reference WS elevation over the high and low flows, i.e., a
better representation of the observed flood wave propagation.

3.3.2 Adour basin: multi-D hydrological–hydraulic
model

The whole hydrological-multi-D hydraulic tool chain is now
tested in a real context both for forward and inverse problem
resolution. A real and complex basin case is now considered:
the Adour River basin in the southwest of France, with a total
drained area of 16 890km2 at the estuary. It is probably one
of the most difficult basins to model in the country because of
contrasted hydrological regimes including nival effects in the
south, flash floods on small ungauged catchments, complex
river network morphology, anthropized floodplains and tidal
effects from downstream areas.

In this section, a multi-D model, composed of 1D-like
meshes and 2D zooms over the floodplain area is built from
available data (Fig. 15, 2D area in green). Then, forward and
inverse flow simulations on the river network are presented.

Model construction and rainfall to inundation
simulation

The following model of the Adour River combines a multi-
D hydraulic network model and several hydrological models
of sub-catchments (Fig. 15). It encompasses around 180km
of river reaches and includes the Adour River from its tidal
boundary downstream of Bayonne up to a gauging station
around 70km upstream and part of its main tributaries: the
Nive River (around 45km) and the Oloron and Pau rivers
(around 65km in total). The river network contains mostly
single-branch reaches, with some notable flood areas around
the city of Bayonne. The WS is observed in situ at 10 points,
5 of which are used as boundary conditions (Dax, Orthez,
Escos, Cambo and Convergent in Fig. 15). Out of the five
remaining stations kept for data assimilation, three are lo-
cated on river reaches (Peyrehorade, Urt and Villefranque;
blue points in Fig. 15) and two are located in the Bayonne
area (Pont-Blanc and Lesseps; blue points in Fig. 15).

Figure 15. Schematic view of the complete Adour River network
and observability. Dimensions in the diagram are not to scale:
total river lengths equal ≈ 180km; 2D floodplain area equals ≈
5× 3km2. Tidal BC influence (from the downstream BC at Con-
vergent) is observed up to Dax (and further upstream), Peyrehorade
and Villefranque.

At the four upstream points of the modeled river network,
four sub-catchments are modeled with four lumped hydro-
logical models (Sect. 2.3). Their drainage areas are about
7811, 842, 2480 and 2464km2. The hourly discharge has
been extracted from the HYDRO2 database, while the rainfall
data from the radar observation reanalysis ANTILOPE J+1,
which merges radar and in situ gauge observations, is pro-
vided by Météo France. The interannual temperature data
are provided by the SAFRAN reanalysis by Météo France
and then used to calculate the potential evapotranspiration
using the Oudin formula (Oudin et al., 2005). The rainfall
and potential evapotranspiration are at a spatial resolution
of a 1km2 square grid and are processed at an hourly time
step. Spatial averages of the rainfall and potential evapotran-
spiration computed using the SMASH distributed hydrolog-
ical modeling platform (Jay-Allemand et al., 2020; Colleoni
et al., 2021) over the four catchments are used as inputs for
the lumped GR4H model. Lumped parameter sets for the four
GR4H models are simply obtained here using for each the
airGR global calibration algorithm (Coron et al., 2017). In
this section, inferences are carried out only for upstream in-
flow hydrographs and not for hydrological parameters. In-
deed, the study of global calibration and regionalization is-
sues of spatially distributed hydrological models is left for
further research.

Our multi-D hydraulic modeling approach (Sect. 2) is ap-
plied to this complex case as follows. First, a “1D-like-only”
model of the whole network is built. Then, a multi-D model
is built based on the 1D-like-only model, with the addition of
a 2D mesh of a floodplain (Fig. 16a).

2http://www.hydro.eaufrance.fr (last access: 27 June 2022); Of-
fice français pour la biodiversité.

https://doi.org/10.5194/gmd-15-6085-2022 Geosci. Model Dev., 15, 6085–6113, 2022

http://www.hydro.eaufrance.fr


6104 L. Pujol et al.: Multi-dimensional hydrological–hydraulic model

Figure 16. Zoom on the Bayonne area (green area in Fig. 15) using the 1D-like and 1D–2D approaches. Manning values are homogeneous
throughout the network and floodplains at 0.05sm−1/3. (a) Bathymetry in 1D-like and 2D meshes. The 2D area has 66 982 cells, and
the coupled 1D-like reaches account for 1342 cells. The south, east and west interfaces, respectively, feature 6, 18 and 14 2D cells. The
exclusively 1D-like mesh contains 1409 cells. (b) Simulated water height for the 1D–2D model for a sample flooding event (low tide,
QAdour = 650 m3 s−1 and QNive = 58 m3 s−1 at 1D–2D interfaces).

On the 1D-like-only model, the goal is to analyze 1D-
like signal propagation representation at a low computa-
tional cost. The Adour 1D-like model is built similarly to
the Garonne 1D-like model, using DEM data to determine
minor bed bank line placement and build the quadrangular
cells. Bathymetry comes from 25× 25m DEM data, aggre-
gated from fine lidar data from public databases, extracted
at each cell. This rough approximation is sufficient to show
the potential of the DassFlow assimilation tool chain for a
large-scale river network. This 1D-like-only model contains
1409 cells. A 24 h simulation runs in around 13s, using un-
calibrated parameter estimates.

Then, a multi-D model is obtained: the existing 2D mesh
from a Telemac model is coupled to a 1D-like mesh, simi-
larly to the reference Telemac-Mascaret model from the re-
gional flood forecast center SPC-GAD. The 1D-like parts
of the mesh are kept identical to the 1D-like-only model,
while the 2D part is the mesh extracted from the Telemac-
Mascaret model (Fig. 16a) provided by SPC-GAD. For hy-
draulic coherence, bathymetry at coupled 1D-like cells is
taken as the average bathymetry of the linked 2D cells. This
1D–2D model contains 66 982 cells in the 2D area and 1342
cells in 1D-like reaches. Results for a flooding event (around
6 h of computation per day, on a single thread ) in the Bay-
onne 2D area are presented in Fig. 16b. Modeled variables

appear coherent over the 1D–2D area and a high-resolution
flood map in coherence with flow conditions in the whole
river network is obtained.

A 1 d (physical time) flooding event is computed in around
20min (computation time) in the 1D–2D model (with 68324
total cells, six threads in parallel). The same event leads
to a 7s computation time for the 1D-like-only model (with
1409 cells, same computational setup). Remember that com-
putation time may vary depending on the number of wetted
cells and on the adaptive time step calculation. This rela-
tively low computation time and the potential to decrease it
further by using more threads in parallel indicate that this
multi-D method is suited to operational use. The code ver-
sion this work is based on was proven to be scalable (Couderc
et al., 2013). Additions made to the current version should
not change this, but no numerical testing has been done.

Assimilation of WS observables to infer four upstream
hydrographs

To investigate the 1D-like effective modeling on a river net-
work, a twin experiment setup is designed to infer a large
control vector from a realistic observability in the 1D-like-
only model.

The considered control vector is com-
posed of the four upstream hydrographs c =
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(QDax (t) ,QEsc (t) ,QOrt (t) ,QCam (t)). Observations
of WS elevation are generated at Peyrehorade, Urt and
Villefranque stations and additionally at a virtual station
directly downstream from Orthez. These four points give
theoretically sufficient observability to identify the four
upstream hydrographs. Indeed, they sample the mixed and
unmixed signal similarly to the academic setup in Sect. 3.2.
The observation pattern also corresponds to a reasonable
expectation of spatial observability in French river networks.
Prior hydrograph values are classically set to a constant
average discharge value.

Simultaneous inference of the four hydrographs is satis-
fying. As shown in Fig. 17, left, upstream hydrographs in-
jected at Cambo and Orthez are inferred very accurately
(NSE> 0.95). This is due to their WS elevation signature
being observed to be unmixed in the respective downstream
reaches. The Escos hydrograph WS signature is observed at
Peyrehorade, mixed with the Orthez hydrograph WS eleva-
tion signature. This leads to a partial error of signature attri-
bution and a less accurate inference (NSE= 0.57). The Dax
hydrograph WS elevation signature is observed only at the
Urt station, where its signal is mixed with that of Escos and
Orthez. The resulting inference is the less accurate, with a
NSE of 0.50, and closer in shape to the inferred Escos and
Orthez hydrographs. This suggests correlated influences of
these hydrographs at observation stations and insufficient ob-
servability of the Dax hydrograph signal given the model hy-
drodynamics. Observed signals at the four stations are, how-
ever, all very accurate (Fig. 17, right). For upstream stations
(Orthez and Villefranque), this is due to the accurate infer-
ence of upstream hydrographs. For stations under the influ-
ence of the tidal boundary condition (BC) (Peyrehorade and
Urt), this is due to the backwater influence of the BC, which
compensates for the error in inferred hydrographs (namely at
Dax and less so at Escos).

In conclusion, this experiment shows the capability of the
VDA tool chain to infer various upstream hydrographs in
1D-like network models. Note that multi-D models are iden-
tical to the investigated 1D-like model in terms of VDA
capabilities. This paves the way towards investigations of
multi-variate inferability of spatially distributed hydraulic–
hydrological parameters.

In the future, investigation of the influence of data sparsity,
observation weights and ill-posed problem constraints should
be carried out.

4 Conclusions and perspectives

This article presents a new approach and numerical chain
for the multi-D hydrological–hydraulic modeling of com-
plex river networks with variational data assimilation capa-
bilities. It is based on the VDA algorithm and the finite-
volume solvers (including a second-order one and accurate
treatment of wet–dry front propagation) from Monnier et al.

(2016). The resolution of the full 2D shallow-water equa-
tions (Eq. 1) is performed with a single finite-volume solver
applied to a multi-D discretization of a river network do-
main. This lattice consists in 1D-like reaches meshed with
irregular quadrangular cells connected via 1D-like–2D inter-
faces to 2D zooms consisting in higher-resolution unstruc-
tured meshes – either triangular or quadrangular. This hy-
draulic model with inflow from a hydrological model en-
abling us to describe upstream/lateral catchment inflow hy-
drographs. In this work, the parsimonious GR4 model is in-
tegrated (Perrin et al., 2003) in its state–space version (San-
tos et al., 2018) for the sake of differentiability (for the VDA
computations). This approach is implemented in the platform
DassFlow (Monnier et al., 2019). The adjoint of the whole
tool chain is generated with Tapenade (Hascoet and Pascual,
2013) and validated. Forward-inverse capabilities with the
new components are assessed in several cases of increasing
complexity.

The 1D-like effective hydraulic modeling approach as well
as its coupling with higher-resolution 2D zooms was vali-
dated, against (1) reference 1D and 2D hydraulic models, on
an array of academic cases; (2) complex real cases featuring
1D and 2D flow variabilities in river networks with conflu-
ences and floodplains. These cases are also employed to test
the coupling with the hydrological model implemented in a
semi-distributed setup.

Considering single (multiple) type(s) of flow signature ob-
servations in those river networks through a single-objective
(multi-objective) observation cost function, the capabilities
of the VDA method for inferring mono- and/or multi-variate
control vectors of large dimensions was successfully tested.

From the obtained results, the following conclusions can
be drawn:

1. A complete integrated multi-D model coupled with an
hydrological model has been implemented and vali-
dated in a parallel environment. Moreover, this com-
plete tool chain includes VDA capabilities based on the
adjoint code.

2. The 1D-like modeling approach enables us to simulate
fine physical flow states compared to reference 1D or
2D SW models; hydrograph propagation remains very
close also.

3. The inference, from heterogeneous observations in the
river network, of multi-variate and high-dimension con-
trols among multiple inflow discharge hydrographs,
bathymetry, and friction of the full shallow-water multi-
D hydraulic model but also hydrological model param-
eters is demonstrated. Very accurate inferences are ob-
tained when the available information contained in sys-
tem observability and priors is sufficient regarding the
nature and quantity of unknown parameters (see discus-
sion in Brisset et al., 2018, Larnier et al., 2020, Garam-
bois et al., 2020, and references therein).
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Figure 17. Upstream hydrograph inferences from four observation stations in a twin experiment setup. Left: upstream inflow hydrographs
used to generate observations (blue); inferred hydrographs at 20 iterations (green); background hydrograph value given for iteration 0 (mean
target inflow over assimilation window; dotted lines). NSE values are given for their informative value but are not used in the assimila-
tion process. Right: target WS elevation (blue); WS elevation generated by the inferred hydrographs (green); WS elevation generated by
the background hydrographs (dotted lines). Downstream tidal boundary influence is felt at the two stations furthest downstream (Urt and
Peyrehorade). RMSE values given are used to calculate cost in the assimilation process (Sect. 2.4).

4. Information feedback from the river network to up-
stream hydrological models of sub-catchments is
shown.

5. Real flows on complex channel geometries can be ac-
curately simulated with the 1D-like model, despite its
intrinsic rectangular XS, thanks to the calibration of ef-
fective geometry-friction patterns. The depth-dependent
friction law helps to reduce misfits across flow regimes.

6. High-resolution simulations of real flows can be ob-
tained on complex river networks including floodplains
and confluences with reduced simulation costs.

To our knowledge, the present numerical tool is the first
one proposing large-scale multi-D river network modeling
with VDA capabilities. This new toolchain opens the way for
the resolution of large-scale high-dimensional hydrological–
hydraulic inverse problems that can be considered given con-
straints from multi-source datasets. The methods for direct
and inverse modeling can be applied at multiple spatial scales
including with a fine resolution (imposing finer calculation
time steps to respect the Courant–Friedrichs–Lewy (CFL)
condition in the forward hydraulic model). Building and con-
straining the models is, however, dependent on data availabil-

ity and the informative content of observations, which may
be linked to the spatial scale.

Short-term perspectives will aim to tailor the data assimi-
lation algorithm to perform complex data assimilation exper-
iments at basin scale using various multi-source datasets. To
be actually operational, improvements pertaining to the con-
struction of 1D-like models from global public databases are
needed to deploy the multi-D approach to a large number of
river networks. Coupling is ongoing with the SMASH spa-
tially distributed hydrological platform (Jay-Allemand et al.,
2020; Colleoni et al., 2021), on which the French flash flood
warning system VigiCrues Flash (Garandeau et al., 2018) is
based. Note that the addition of lateral flows (surface and
subsurface runoff) would simply consist in imposing addi-
tional inflows on the boundary of the river/floodplain do-
main, which is numerically identical to the upstream flows
imposed and inferred here (see such lateral coupling in 1D
with inferences from sparse satellite altimetry data in Pu-
jol et al., 2020). Further work will also test the integrated
chain on Mediterranean basins at risk of flash flooding and
on larger basins in a satellite observability context. The im-
plementation of porosity models (Guinot et al., 2018, and
references therein) represents a very interesting research di-
rection regarding effective floodplains and 1D-like reach pa-

Geosci. Model Dev., 15, 6085–6113, 2022 https://doi.org/10.5194/gmd-15-6085-2022



L. Pujol et al.: Multi-dimensional hydrological–hydraulic model 6107

rameterizations. This is especially true with depth-dependent
porosity (Özgen et al., 2017, and Guinot et al., 2018, and ref-
erences therein) applied to complex channel geometries and
with spatially distributed calibration.

Appendix A: 2D (h,u,v) shallow-water scheme

A1 Two-dimensional solver

Recall the rotational invariance property of the SWE (Eq. 1),
which simplifies the sum of 2D problems in Eq. (3) to 1D
Riemann problems. The fluxes Fe are computed using a Rie-
mann solver. Each local Riemann problem depends on left
and right states at the interface e.

The Harten–Lax–van Leer condition (HLLC) approximate
Riemann solver is used. This gives the following expressions:


[̂
FHLLC

e
]

1,2 =
sKe

[
F
(
ÛK

)]
1,2−sK

[
F
(
ÛKe

)]
1,2+sK sKe

([
ÛKe

]
1,2−

[
ÛK

]
1,2

)
sKe−sK[̂

FHLLC
e

]
3 =

[̂
FHLLC

e
]

1v̂∗ with v̂∗ =

{
v̂K if s∗ ≥ 0
v̂Ke if s∗ < 0,

(A1)

where the wave speed expressions are those proposed in Vila
(1986):

sK =min
(

0, ûK −
√

ghK , ûKe − 2
√

ghKe
+
√

ghK
)
,

sKe =max
(

0, ûKe +

√
ghKe

, ûK + 2
√

ghK −
√

ghKe

)
. (A2)

It has been demonstrated that this insures L∞ stability,
positivity and consistency with the entropy condition under a
CFL condition.

For the intermediate wave speed estimate, following Toro
(2001), we set

s∗ =
sKhKe ûKe − sKehK ûK − sKsKe

(
hKe −hK

)
hKe

(
ûKe − sKe

)
−hK

(
ûK − sK

) . (A3)

A Courant–Friedrichs–Levy (CFL) condition for the time
step 1tn applies; see, e.g., Vila and Villedieu (2003).

A2 Well balancing

The numerical scheme must preserve the fluid at rest prop-
erty; that is, the gradient of bathymetry ∇zb must not pro-
vide un+1

6= 0 if un = 0. In the presence of topography gra-
dients (in particular those perpendicular to the streamlines)
the basic topography gradient ∇zb discretization in the grav-
ity source term Sg (U) generates spurious velocities. There is
no discrete balance between the hydrostatic pressure and the
gravity source term anymore: ∇

(
gh

2
/2
)
6= −gh∇zb.

The technique which is employed here is that presented in
Audusse et al. (2004) and Audusse and Bristeau (2005). It is
based on the following change in variable.

Figure A1. Typical situation of desired well-balanced property in
the presence of a wet–dry front. The WS elevation is here denoted
by η.

From now, at the left and right sides of edge e, the consid-
ered water depth values h∗u are those defined from the “re-
constructed” topography ze as

h∗� =max
(
0,h�+ z�− ze

)
,

with
{
z� = η�−h�
ze =max

(
zK ,zKe

) (A4)

(see Fig. A1).
The conservative variable vector Une,K is now considered

with the new variable:

U∗� =
[
h∗�
h∗�u

]
. (A5)

Note that this new variable h∗e,K depends on the bathymetry
values ze,K and ze.

The resulting scheme reads

Un+1
K = UnK −

1tn

mK

∑
e∈∂K

me
(
Fe
(
U∗nK ,U

∗n
Ke
,nK

)
+
(
Sp
(
UnK ,U

∗n
K ;zK ,zKe ,nK

))
, (A6)

with

Sp
(
UnK ,U

∗n
K ;zK ,zKe ,nK

)
=[

0
g
2

((
hnK

)2
−
(
hn∗K

)2)nK

]
. (A7)

This provides a well-balanced (first-order) scheme.
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A3 Prediction-correction time scheme

The friction source term is taken into account in the complete
SW system by deriving a prediction-correction time scheme;
see, e.g., Toro (2001).

We denote here by Ūn+1
K the finite volume (FV) solution

at time tn+1 of the (well-balanced) scheme, either first or
second order, of the SW system with the gravitational term
Sg but without the friction term Sf. Recall that we denote
U= (h,hu)T.

At each time step, from n to n+ 1, the following steps
apply:

– step 1: computation of Ūn+1, solution of the conserva-
tive SW system, i.e., the SW system without Sf, i.e., the
FV solution of the following system:

∂tU+ ∂xF(U)+ ∂yG(U)= Sg (U) . (A8)

– step 2: given the ”predicted value” Ūn+1, compute Un+1

solution of

∂tU= Sf (U) . (A9)

General schemes (explicit, implicit or semi-implicit ones) in-
cluding the friction source term Sf in the discretization of the
model (Eq. 1) for all K can be written as

Un+1
K = Ūn+1

K +1nt Sf

(
Ūn+1
K , Ūn+1

Ke

)
. (A10)

Note that this splitting scheme is consistent at first order
in 1t with the complete SWE. A splitting scheme of second
order in time is possible; it is not detailed later.

In the case of the Manning–Strickler law, the friction term

reads Sf =−gn
2

[
0
|ū|

h
1
3
ū

]
.

Therefore the equation to be solved (Eq. A9) reads

∂t

(
h

hū

)
=−gn2

(
0
|ū|

h
1
3
ū

)
. (A11)

Since the friction source term Sf is zero in the mass con-
servation equation, we remark that hn+1

= h̄n+1. As a con-
sequence, we consider the non-zero momentum component
only: ∂t (hū)=−gn2 |ū|

h
1
3
ū.

A4 First-order expression of Un+1

Let us consider the following implicit scheme:

hn+1un+1
−hn+1ūn+1

1tn
=−gn2

∣∣un+1
∣∣un+1(

hn+1
) 1

3
. (A12)

This implies that

∣∣∣un+1
∣∣∣un+1

+

(
hn+1) 4

3

1tngn2

(
un+1

− ūn+1
)
= 0. (A13)

Let us set c =
(
hn+1) 4

3

1tngn2 ; c ≥ 0. Note that
∣∣un+1

∣∣un+1
+

cun+1
= cūn+1. Therefore for non-vanishing velocities,

there exists α ∈ ]0,1] such that un+1
= αūn+1. Adopt-

ing these notations, we obtain
∣∣ūn+1

∣∣ ūn+1α2
+ cūn+1α−

cūn+1
= 0. This simplifies to∣∣∣ūn+1
∣∣∣α2
+ cα− c = 0. (A14)

Since α ≥ 0, the root of this quadratic equation reads

α =
−c+

√
c2+ 4c

∣∣ūn+1
∣∣

2
∣∣ūn+1

∣∣ . (A15)

Let us define the function ε = 1
c

∣∣ūn+1
∣∣=

1tngn2
∣∣ūn+1

∣∣
(hn+1)

4/3 . Observe that ε =O (1tn); also

ε =O

( ∣∣ūn+1
∣∣

(hn+1)
4/3

)
. By adopting this notation, Eq. (A15)

reads α =
√

1+4ε−1
2ε . After some rearrangements, we

obtain α = 2
1+
√

1+4ε
. At first order in ε, we get

α ∼
(

1
1+ε/4

)
∼ 1− ε/4. Finally, we obtain

Un+1
K =

(
hn+1

hn+1un+1

)
=hn+1ūn+1

 h̄n+1

2
(
h̄n+1)2/3

(h̄n+1)
2/3
+

√
(h̄n+1)

4
3+41tngn2|ūn+1|


,

(A16)

with
∣∣ūn+1

∣∣ the solution of Eq. (A8).

A5 Second-order MUSCL scheme

In order to obtain a globally second-order scheme, a higher-
order time stepping scheme is needed. Let us briefly de-
scribe the ingredients of this second-order well-balanced
positive scheme that is strictly the same as the one proposed
in Couderc et al. (2013) and Monnier et al. (2016). Actual
second-order accuracy, considering source terms Sg and Sf,
is achieved through the combination of a Monotonic Upwind
Scheme for Conservation Laws (MUSCL) spatial reconstruc-
tion and an IMEX RK time scheme (see Monnier et al., 2016,
and references therein) as well as a spatial discretization of
Sg and the semi-implicit nature of the friction source term Sf
given in the subsection above.

A mono-slope second-order MUSCL scheme is adopted;
see, e.g., Chévrier and Galley (1993) and Buffard and Clain
(2010). It leads to new expressions of UnK and UnKe

. With
this linear reconstruction, one can expect a scheme with a
second-order accuracy in space (for regular solutions only).
In order to prevent large numerical dispersive instabilities,
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the computed vectorial slopes are limited by applying a max-
imum principle. Furthermore, to handle the presence of wet–
dry fronts that can break the finite-volume mass conservation
property, a Barth limiter (Barth, 2003) is employed.

Appendix B: 1D (A,Q) Saint-Venant

A river network �1D is described by connected closed line
segments. For a flow XS orthogonal to the main (longitu-
dinal) flow direction of curvilinear abscissa x ∈�1D (dis-
tance from downstream areas) at time t ∈ [0,T ], let A(x, t)
be the flow cross-sectional area

[
m2] and Q(x, t) the dis-

charge
[
m3 s−1] such that Q= UA with U (x, t) defined as

the longitudinal XS averaged velocity
[
ms−1]. The 1D Saint-

Venant equations in the (A,Q) variables at a flow XS are
written as follows:

∂A
∂t
+
∂Q
∂x

= 0
∂Q
∂t
+

∂
∂x

(
Q2

A

)
+ gA ∂Z

∂x
=−gA

|Q|Q

K2A2R
4/3
h

, (B1)

where Z(x, t) is the WS elevation [m] and Z = (b+h) (with
b (x) [m] the riverbed level and h(x, t) [m] the water depth),
Rh (x, t)= A/Ph [m] the hydraulic radius, Ph (x, t) [m] the
wetted perimeter, and g [m s−2] is the gravity magnitude. Let
us recall the Froude number definition Fr= U/c comparing
the average flow velocity U to pressure wave celerity c =√
gA
W

, where W [m] is the flow top width.
The friction term Sf is classically parameterized with the

empirical Manning–Strickler law established for uniform
flows |Q|Q

K2A2R
4/3
h

, where K
[
m1/3 s−1] is the Strickler coeffi-

cient.
The Saint-Venant equations are solved on each segment

of the river network and the continuity of the flow between
segments is ensured by applying an equality constraint on
water levels at the confluence between two segments.

Boundary conditions are classically imposed (subcritical
flows here) at boundary nodes with inflow discharges Q(t)
at upstream nodes and WS elevation Z(t) at the downstream
node; there are lateral hydrographs ql (t) at in/outflow nodes.
The initial condition is set as the steady-state backwater
curve profile Z0 (x)= Z

(
Qin (t0) ,ql,1...L (t0)

)
for a hot start.

This 1D Saint-Venant model is discretized using the classical
implicit Preissmann scheme (see, e.g., Cunge et al., 1980) on
a regular grid of spacing 1x using a double sweep method
enabling us to deal with flow regimes changes with a 1 h time
step 1t . This is implemented in the computational software
DassFlow (Brisset et al., 2018; Larnier, 2010).

The numerical scheme is a semi-implicit finite-difference
scheme (generalized Preissmann scheme) with a double
sweep Local Partial Inertial method to minimize the inertial
terms (see documentation in Brisset et al., 2018, and Larnier,
2010).

Appendix C: GR4 hydrological model operators

The state–space version of the lumped conceptual hydrolog-
ical model GR4 presented in Santos et al. (2018) consists in
the set of ODEs below:

dh
dt
=



ḣp = Ps −Es −Perc
ḣ1 = Pr −QSh,1
ḣ2 =QSh,1−QSh,2
. . . . . .

ḣnres =QSh,nres−1−QSh,nres

ḣr =Q9+F −Qr .

(C1)

They involve the following fluxes:

Es = E
(

2hS
c1
−

(
hp
c1

)α)
Ps = P

(
1−

(
hp
c1

)α)
Perc =

(
ν
c1

)β−1 1
β−1

(
h+p

)β
Pr = P

(
hp
c1

)α
+

(
ν
c1

)β−1 1
β−1

(
h+p

)β
QSh,1 =

nres−1
c4

h+1
. . . . . .

QSh,11 =
nres−1
c4

h+nres

Q9 =8nres−1
c4

h+nres

Q1 = (1−8) nres−1
c4

h+nres

F =
c2
cω3

(
h+r
)ω

Qd = (1−8) nres−1
c4

hnres+1−
c2
cω3

(
h+r
)ω

Qr =
1(

h+R

)γ−1
(γ−1)

(
h+r
)γ
.

(C2)

The following parameters are set following Perrin et al.
(2003) and Santos et al. (2018): α = 2, β = 5, γ = 5, ω =
3.5, ν = 4/9, 8= 0.9, nres = 11.

Calibrated parameters for the Adour case were obtained
using the airGR global calibration algorithm (Coron et al.,
2017) from the freely available package (https://webgr.inrae.
fr/logiciels/airgr/, last access: 27 July 2022).

Table C1. Calibrated hydrological parameters of the four upstream
hydrological catchments from the Adour multi-D hydrographic net-
work model.

Parameter Adour Oloron Pau Nive

x1 413.744 1844.567 1118.78 982.401
x2 0.148 1.363 1.134 0.696
x3 86.418 117.919 112.168 90.017
x4
∗ 55.466 12.739 11.059 6.980

∗ Note that the x4 calibrated parameter corresponds to the non-“state–space”
GR4H version (not presented, see Perrin et al., 2003), for which the
calibration tool is provided. x4 values in the present run with the state–space
were set at 0.15.
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Code and data availability. The current DassFlow code is avail-
able on demand at https://www.math.univ-toulouse.fr/DassFlow/
download.html (last access: 27 July 2022). The exact ver-
sion of the model used in this article is archived on Zenodo
(https://doi.org/10.5281/zenodo.6342723, Pujol et al., 2022), as are
input data needed to run the main direct/inverse simulations.
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