Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-535-2022
https://doi.org/10.5194/gmd-15-535-2022
Methods for assessment of models
 | 
25 Jan 2022
Methods for assessment of models |  | 25 Jan 2022

A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5

Urmas Raudsepp and Ilja Maljutenko

Related authors

A new conceptual framework for assessing the physical state of the Baltic Sea
Urmas Raudsepp, Ilja Maljutenko, Priidik Lagemaa, and Karina von Schuckmann
State Planet, 6-osr9, 6, https://doi.org/10.5194/sp-6-osr9-6-2025,https://doi.org/10.5194/sp-6-osr9-6-2025, 2025
Short summary
Long term trends and variability of the mixed layer depth in the Baltic Sea
Urmas Raudsepp, Ulvi Ahmadov, Ilja Maljutenko, Amirhossein Barzandeh, Mariliis Kõuts, and Priidik Lagemaa
State Planet Discuss., https://doi.org/10.5194/sp-2025-7,https://doi.org/10.5194/sp-2025-7, 2025
Preprint under review for SP
Short summary
Metocean study for the planning of the FSRU terminal: a case study at the Estonian coast of the Gulf of Finland
Urmas Raudsepp, Ilja Maljutenko, Jan-Victor Björkqvist, Amirhossein Barzandeh, Sander Rikka, Aarne Männik, Siim Pärt, Priidik Lagemaa, Victor Alari, Kaimo Vahter, and Rivo Uiboupin
State Planet Discuss., https://doi.org/10.5194/sp-2025-8,https://doi.org/10.5194/sp-2025-8, 2025
Preprint under review for SP
Short summary
Record low sea levels in the Bothnian Bay in November 2024
Laura Tuomi, Milla Johansson, Andrew Twelves, Mika Rantanen, Priidik Lagemaa, Hedi Kanarik, Jani Särkkä, Urmas Raudsepp, and Antti Westerlund
State Planet Discuss., https://doi.org/10.5194/sp-2025-12,https://doi.org/10.5194/sp-2025-12, 2025
Preprint under review for SP
Short summary
Oceanographic preconditions for planning seawater heat pumps in the Baltic Sea – an example from the Tallinn Bay, Gulf of Finland
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet, 4-osr8, 9, https://doi.org/10.5194/sp-4-osr8-9-2024,https://doi.org/10.5194/sp-4-osr8-9-2024, 2024
Short summary

Cited articles

Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) – Snapshot of Argo GDAC of August 10st 2020, SEANOE [data set], https://doi.org/10.17882/42182#76230, 2020. 
Bholowalia, P. and Kumar, A.: EBK-means: A clustering technique based on elbow method and K-means in WSN, International Journal of Computer Applications, 105, 17–24, 2014. 
Burchard, H. and Bolding, K.: GETM – a general estuarine transport model, scientific documentation, Tech. Rep. EUR 20253 EN, European Commission (220), 2002. 
Celebi, M. E., Kingravi, H. A., and Vela, P. A.: A comparative study of efficient initialization methods for the K-means clustering algorithm, Expert Syst. Appl., 40, 200–210, https://doi.org/10.1016/j.eswa.2012.07.021, 2013. 
CMEMS: CMEMS-PQ-StrategicPlan, available at: https://marine.copernicus.eu/sites/default/files/wp-content/uploads/2017/03/CMEMS-PQ-StrategicPlan-v1.6-1.pdf (last acess: 18 February 2021), 2016. 
Download
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Share