Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-535-2022
https://doi.org/10.5194/gmd-15-535-2022
Methods for assessment of models
 | 
25 Jan 2022
Methods for assessment of models |  | 25 Jan 2022

A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5

Urmas Raudsepp and Ilja Maljutenko

Related authors

Baltic Sea freshwater content
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023,https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Oceanographic preconditions for planning seawater heat pumps in the Baltic Sea – an example from the Tallinn Bay, Gulf of Finland
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet Discuss., https://doi.org/10.5194/sp-2023-21,https://doi.org/10.5194/sp-2023-21, 2023
Revised manuscript accepted for SP
Short summary
Baltic Sea Surface Temperature Analysis 2022: A Study of Marine Heatwaves and Overall High Seasonal Temperatures
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet Discuss., https://doi.org/10.5194/sp-2023-23,https://doi.org/10.5194/sp-2023-23, 2023
Revised manuscript accepted for SP
Short summary
Modelling of discharges from Baltic Sea shipping
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021,https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Model for leisure boat activities and emissions – implementation for the Baltic Sea
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020,https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) – Snapshot of Argo GDAC of August 10st 2020, SEANOE [data set], https://doi.org/10.17882/42182#76230, 2020. 
Bholowalia, P. and Kumar, A.: EBK-means: A clustering technique based on elbow method and K-means in WSN, International Journal of Computer Applications, 105, 17–24, 2014. 
Burchard, H. and Bolding, K.: GETM – a general estuarine transport model, scientific documentation, Tech. Rep. EUR 20253 EN, European Commission (220), 2002. 
Celebi, M. E., Kingravi, H. A., and Vela, P. A.: A comparative study of efficient initialization methods for the K-means clustering algorithm, Expert Syst. Appl., 40, 200–210, https://doi.org/10.1016/j.eswa.2012.07.021, 2013. 
CMEMS: CMEMS-PQ-StrategicPlan, available at: https://marine.copernicus.eu/sites/default/files/wp-content/uploads/2017/03/CMEMS-PQ-StrategicPlan-v1.6-1.pdf (last acess: 18 February 2021), 2016. 
Download
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.