Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-535-2022
https://doi.org/10.5194/gmd-15-535-2022
Methods for assessment of models
 | 
25 Jan 2022
Methods for assessment of models |  | 25 Jan 2022

A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5

Urmas Raudsepp and Ilja Maljutenko

Related authors

Baltic Sea freshwater content
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023,https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Oceanographic preconditions for planning seawater heat pumps in the Baltic Sea – an example from the Tallinn Bay, Gulf of Finland
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet Discuss., https://doi.org/10.5194/sp-2023-21,https://doi.org/10.5194/sp-2023-21, 2023
Revised manuscript under review for SP
Short summary
Baltic Sea Surface Temperature Analysis 2022: A Study of Marine Heatwaves and Overall High Seasonal Temperatures
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet Discuss., https://doi.org/10.5194/sp-2023-23,https://doi.org/10.5194/sp-2023-23, 2023
Revised manuscript accepted for SP
Short summary
Modelling of discharges from Baltic Sea shipping
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021,https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Model for leisure boat activities and emissions – implementation for the Baltic Sea
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020,https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary

Related subject area

Numerical methods
ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445, https://doi.org/10.5194/gmd-17-2427-2024,https://doi.org/10.5194/gmd-17-2427-2024, 2024
Short summary
HETerogeneous vectorized or Parallel (HETPv1.0): an updated inorganic heterogeneous chemistry solver for the metastable-state NH4+–Na+–Ca2+–K+–Mg2+–SO42−–NO3–Cl–H2O system based on ISORROPIA II
Stefan J. Miller, Paul A. Makar, and Colin J. Lee
Geosci. Model Dev., 17, 2197–2219, https://doi.org/10.5194/gmd-17-2197-2024,https://doi.org/10.5194/gmd-17-2197-2024, 2024
Short summary
Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev., 17, 1975–1993, https://doi.org/10.5194/gmd-17-1975-2024,https://doi.org/10.5194/gmd-17-1975-2024, 2024
Short summary
Estimating volcanic ash emissions using retrieved satellite ash columns and inverse ash transport modeling using VolcanicAshInversion v1.2.1, within the operational eEMEP (emergency European Monitoring and Evaluation Programme) volcanic plume forecasting system (version rv4_17)
André R. Brodtkorb, Anna Benedictow, Heiko Klein, Arve Kylling, Agnes Nyiri, Alvaro Valdebenito, Espen Sollum, and Nina Kristiansen
Geosci. Model Dev., 17, 1957–1974, https://doi.org/10.5194/gmd-17-1957-2024,https://doi.org/10.5194/gmd-17-1957-2024, 2024
Short summary
Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024,https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary

Cited articles

Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) – Snapshot of Argo GDAC of August 10st 2020, SEANOE [data set], https://doi.org/10.17882/42182#76230, 2020. 
Bholowalia, P. and Kumar, A.: EBK-means: A clustering technique based on elbow method and K-means in WSN, International Journal of Computer Applications, 105, 17–24, 2014. 
Burchard, H. and Bolding, K.: GETM – a general estuarine transport model, scientific documentation, Tech. Rep. EUR 20253 EN, European Commission (220), 2002. 
Celebi, M. E., Kingravi, H. A., and Vela, P. A.: A comparative study of efficient initialization methods for the K-means clustering algorithm, Expert Syst. Appl., 40, 200–210, https://doi.org/10.1016/j.eswa.2012.07.021, 2013. 
CMEMS: CMEMS-PQ-StrategicPlan, available at: https://marine.copernicus.eu/sites/default/files/wp-content/uploads/2017/03/CMEMS-PQ-StrategicPlan-v1.6-1.pdf (last acess: 18 February 2021), 2016. 
Download
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.