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Abstract. The model’s ability to reproduce the state of the
simulated object or particular feature or phenomenon is al-
ways a subject of discussion. Multidimensional model qual-
ity assessment is usually customized for the specific focus
of the study and often for a limited number of locations. In
this paper, we propose a method that provides information on
the accuracy of the model in general, while all dimensional
information for posterior analysis of the specific tasks is re-
tained. The main goal of the method is to perform clustering
of the multivariate model errors. The clustering is done using
the K-means algorithm of unsupervised machine learning.
In addition, the potential application of the K-means cluster-
ing of model errors for learning and predicting is shown. The
method is tested on the 40-year simulation results of the gen-
eral circulation model of the Baltic Sea. The model results
are evaluated with the measurement data of temperature and
salinity from more than 1 million casts by forming a two-
dimensional error space and performing a clustering proce-
dure in it. The optimal number of clusters that consist of four
clusters was determined using the Elbow cluster selection
criteria and based on the analysis of the different number of
error clusters. In this particular model, the error cluster with
good quality of the model with a bias of 0.4 ◦C (SD= 0.8 ◦C)
for temperature and 0.6 gkg−1 (SD= 0.7 gkg−1) for salinity
made up 57 % of all comparison data pairs. The prediction of
centroids from a limited number of randomly selected data
showed that the obtained centroids gained a stability of at
least 100 000 error pairs in the learning dataset.

1 Introduction

Ocean general circulation models are valuable tools for hind-
casting and forecasting ocean state. The values of the sim-
ulated fields depend on the quality of the modelling prod-
ucts. Assessment of model quality is a basic step that is
taken before the model results are used for evaluation of
the ocean state or other specific purposes. For instance,
product quality assessment is routinely done for all prod-
ucts of the Monitoring Forecasting Centre within the Coper-
nicus Marine Environment Monitoring Service (CMEMS;
2016) and the National Oceanic and Atmospheric Admin-
istration (NOAA; https://www.esrl.noaa.gov/fiqas/ last ac-
cess: 21 January 2022, https://vlab.noaa.gov/web/mdl/fv, last
access: 21 January 2022; https://www.ncdc.noaa.gov/sotc/
global/202101, last access: 21 January 2022).

Common statistical metrics for a single prognostic vari-
able (e.g. bias, root mean square difference, correlation co-
efficient, standard deviations) are used to assess the model
skills (Murphy et al., 1989; Murphy, 1995; Wȩglarczyk,
1998; Jolliff et al., 2009; Dybowski et al., 2019). Taylor
diagrams (Taylor, 2001) or target diagrams (Jolliff et al.,
2009) are usually implemented for compact visualization of
the model performance statistics. Stow et al. (2009) studied
149 papers based on numerical modelling. They found that
the majority (68 %) of the model validation works were based
on visual comparison and comparing simple statistics such as
bias and variance; 9 % of the works calculated the correlation
coefficient, and roughly 11 % of the works implemented var-
ious cost–function techniques (e.g. Holt et al., 2005; Eilola
et al., 2009).
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Ocean general circulation model output consists of a set
of variables in space and time, i.e. 4-dimensional fields
(i.e. three spatial dimensions and time). Similarly, measure-
ment data have 4-dimensional distribution but are irregular
in space and time. The amount of observational data has
increased tremendously over the past decades. Temperature
and salinity are widely used state variables for the assess-
ment of the accuracy of general circulation models. These
variables “integrate” temporal and spatial dynamics of the
circulation in the water basin that has been modelled. Tem-
perature and salinity are usually measured simultaneously,
have 4-dimensional distribution, and form a major share of
the data in the databases. The classical approach is that sta-
tistical metrics are calculated independently for each vari-
able used for validation. Usually, time series data or profile
data are extracted at a fixed location where the number of
measurements is sufficiently large. In these cases, the mea-
surements at the locations which are seldom visited are not
used for the validation, but these measurements can form a
significant amount of the data in the databases. Also, the
model performance statistics are calculated for preselected
geographical areas whereby all data that fall into that area
and time window are included. In that case, a single set of the
model performance statistics characterizes the model perfor-
mance in that area. Even if all available data with sufficient
spatio-temporal coverage are used for multivariate compari-
son, the end result is a single metric or limited set of metrics
that characterize the general quality of the model. Then, the
same metrics of model goodness of fit are assigned to every
grid point and time. The shortcoming of this approach is that
the detailed spatial and temporal distribution of model errors
is lost.

Ideally, researchers like to know the model accuracy for
the whole model domain and time period considered. There-
fore, we suggest a new method based on the machine learn-
ing K-means clustering algorithm (Hastie et al., 2009; Jain,
2010) that takes advantage of a large set of available data and
retains detailed spatial and temporal distribution of model
errors that can be used for the posterior analysis of model
accuracy. This method belongs to the category of multivari-
ate comparison. According to Hastie et al. (2009), “The K-
means algorithm is one of the most popular iterative descent
clustering methods. It is intended for situations in which all
variables are of the quantitative type”. Indeed, other cluster-
ing methods could be implemented, for example, hierarchical
clustering.

The intuitive prerequisite for using any clustering ap-
proach is that the dataset should have a natural cluster struc-
ture (Jain, 2010). Prior knowledge about model accuracy and
distribution of model errors in space and time is usually miss-
ing. If there is a large number of data for comparison, then
the distribution of model errors might not show visually iden-
tified clusters. If more than two variables are used for model
quality assessment, then the visualization of the errors for the
identification of the clusters becomes more complicated.

In this study, we will show that implementing the K-means
clustering algorithm for the analysis of model temperature
and salinity errors provides meaningful information about
model accuracy. The method is not limited to the set of two
variables. The only requirement is that all variables should
be simultaneously measured. Preprocessing can be done to
make data simultaneous, i.e. averaging over a space domain
and time. The clustering procedure using the K-means algo-
rithm includes quantitative metrics for general assessment of
the model performance. Posterior analysis of error clusters
is an essential part of the proposed method and enables us to
understand model data misfit and to explain the errors in rela-
tion to the dynamic features of the natural water basin under
consideration.

Additionally, we implement the learning–predicting se-
quence in the form of clustering stability tests. The learning
period consists of the model run for a certain period and error
clustering. The learning period is for determining the num-
ber of clusters and the coordinates of the centroids. Based on
the error clustering of the learning period, we can presume
that a similar error distribution is valid for the forward model
simulation results. During the predicting period, new avail-
able errors are added to the clusters. The coordinates of the
centroids and other metrics are updated. In the operational
applications, the value of this process lies in the fact that the
exploitation of model simulation results can start before new
validation is completed.

We apply proposed K-means clustering methods for the
assessment of the model quality of the General Estuarine
Transport Model (GETM; Burchard and Bolding, 2002) of
the Baltic Sea. In this particular application, the model is
used for the hindcast simulation of the general circulation
of the Baltic Sea in 1966–2006 (Maljutenko and Raudsepp,
2019).

The Baltic Sea (Fig. 1a) is a wide non-tidal estuary-type
marginal sea with a longitudinal salinity between 0 and
20 gkg−1 (Leppäranta and Myrberg, 2009; Omstedt et al.,
2014). General circulation in the Baltic Sea is cyclonic due
to pressure gradient forcing (Meier, 2007). The longitudi-
nal salinity gradient is maintained by saline water inflows
from the North Sea through Danish straits and freshwater
input by rivers. Large volumes of saline water are trans-
ported to the Baltic Sea by the Major Baltic Inflows (MBIs)
that occur seldom (Mohrholz, 2018). The other smaller in-
flows occur almost every winter (Mohrholz, 2018; Raudsepp
et al., 2018). Due to gravitational flow, inflowing saline water
spreads downstream into the Baltic Sea along the cascade of
deep basins – the Bornholm Basin, the Gdansk Basin, and the
eastern Gotland Basin. Saline water mixing with fresh water
inflow from the rivers forms a Baltic haline conveyor belt
(Döös et al., 2004). The saline water of the Gotland Basin
is pushed into the western Gotland Basin and the Gulf of
Finland. During the MBIs, dense inflow water spreads along
the bottom, while other large volume inflows renew the halo-
cline layer of the Baltic Sea. The permanent halocline in the
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Figure 1. Spatial (a), temporal (b), seasonal (c), and vertical (d) distribution of the number of measurements in the dataset. The horizontal
bins have a resolution of 25 km× 25 km (a), temporal and seasonal bins have a monthly resolution (b, c), and vertical bins have a resolution
of 5 m (d).

Baltic Sea is at a depth of 60–80 m (Väli et al., 2013). The
Gulf of Bothnia and the Gulf of Riga do not have a perma-
nent halocline (Raudsepp, 2001). The Gulf of Finland has
a very dynamic halocline due to intensive estuarine circu-
lation (Maljutenko and Raudsepp, 2019), occasional stratifi-
cation collapses due to reverse estuarine circulation (Elken
et al., 2014; 2003), and winter mixing. A seasonal thermo-
cline at a depth range of 10–30 m starts to develop in spring,
reaches its maximum strength in summer, and erodes in au-
tumn. In the gulf-type regions of freshwater influence, like
the Gulf of Finland (Maljutenko and Raudsepp, 2019) and
the Gulf of Riga (Soosaar et al., 2014), the seasonal thermo-
cline coincides with seasonal halocline in spring and sum-
mer. During maximum river runoff in spring, river bulge
affects the salinity distribution in the coastal sea (Soosaar
et al., 2016; Maljutenko and Raudsepp, 2019). In general,
the wind-driven and thermohaline circulation of the Baltic
Sea and the water exchange with the North Sea determine
the stratification in the Baltic Sea (Lehmann and Hinrichsen,
2000).

Salinity fronts are formed in the straits that connect dif-
ferent sub-basins of the Baltic Sea: between Kattegat and
southwestern Baltic Sea, the Gulf of Riga and the Baltic
Proper, and the Gulf of Bothnia and the Baltic Proper. The
Danish straits and Kattegat are situated in a region with a
very dynamic and strong front that separates the brackish
Baltic Sea water and the saline North Sea water (Nielsen,
2005). The Baltic Sea water of low salinity is transported to-
wards the North Sea in summer, but saline water of the North
Sea inflows to the Baltic Sea in winter (Mohrholz, 2018). A

dynamic front is present in the transition area between the
northeastern Baltic Proper and the Gulf of Finland, although
that is a wide and deep area.

The Baltic Sea is seasonally ice-covered. Inter-annually
variable and dynamic ice coverage (Raudsepp et al., 2020)
has a considerable effect on the evolution of the thermoha-
line fields in the Baltic Sea.

2 Materials and methods

2.1 Model simulation

The General Estuarine Transport Model (GETM; Burchard
and Bolding, 2002) is a numerical 3D circulation model
initially developed for coastal and estuarine applications
(Gräwe et al., 2015; Holtermann et al., 2014). The hindcast
simulation of the general circulation of the Baltic Sea was
carried out for the period of 1966–2006 (Maljutenko and
Raudsepp, 2019; 2014). The model open boundary was lo-
cated in Kattegat, where sea-level elevation, temperature, and
salinity are prescribed. Model horizontal resolution was set
to 1 nmi (1852 m), which was consistent with the horizontal
resolution of the digital bathymetry of the Baltic Sea (Seifert
and Kayser, 1995). Vertically, 40 bottom-following adaptive
layers were used, which resulted in a vertical resolution of
less than 5 m.

The initial conditions of salinity and temperature were
compiled using observation data from the Baltic Environ-
mental Database (BED; http://nest.su.se/bed, last access:
21 January 2022) (Gustafsson and Medina, 2011; Wulff
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et al., 2013). Atmospheric forcing was prepared from the
BaltAn65+ reanalysis dataset (Luhamaa et al., 2011). The
heat fluxes are parameterized using bulk formulation (Kondo,
1975). Monthly river runoff data from the 37 largest rivers
from the E-HYPE hydrology model (Donnelly et al., 2016)
were used. We have stored daily mean values of temperature
and salinity and used them for the analysis.

2.2 Dataset

We use salinity and temperature measurements for the Baltic
Sea from the EMODnet Chemistry database (SMHI, 2018).
From the original dataset, we have extracted 1 376 674 mea-
surements, which met the following conditions: (1) time
range of 1966–2005; (2) spatial range of the model do-
main, excluding coastal observations, which fell outside the
model grid; (3) the simultaneous existence of S and T values;
(4) S in the range of 0. . . 35 gkg−1; and (5) T in the range of
−2.5. . . 30 ◦C.

The spatial and temporal distribution of the validation data
is presented in Fig. 1. The spatial density of the data is visu-
alized on the 25 km2 grid (Fig. 1a). Spatially, there are only
a few horizontal cells of 25 km2 that do not have any mea-
surements. Vertically, the number of measurements decreases
monotonically from the surface to the bottom following the
hypsographic curve of the Baltic Sea (Jakobsson et al., 2019)
(Fig. 1d). The measurements at the standard depth stick out
from the overall curve. Since the end of the 1980s, the num-
ber of monthly measurements has increased continuously
more than an order of magnitude compared to the preceding
period (Fig. 1b). Seasonally, the number of winter and early
spring measurements is smaller than the number of summer
measurements (Fig. 1c). Gathering data during winter is very
complicated due to seasonal ice coverage of the Baltic Sea
(Raudsepp et al., 2020).

2.3 K-means clustering

The K-means clustering algorithm is a widely used algo-
rithm in unsupervised machine learning (Hastie et al., 2009;
Jain, 2010). We use a K-means clustering algorithm for the
cluster analysis of temperature and salinity errors. In the cur-
rent study, two-dimensional error space is defined from si-
multaneous salinity and temperature errors {dS,dT }∈R2,
where dS≡ (Smod− Sobs) and dT ≡ (Tmod− Tobs). In gen-
eral, the method can be extended to the n-dimensional er-
ror space. The distribution of the errors in the {dS,dT }∈R2

error space is presented in Fig. 2a. Before calculating K-
means, the error space has been normalized by the standard
deviation of temperature and salinity errors.

The first step of the method is to determine the number
of clusters and an initialization. For practical reasons (Hastie
et al., 2009), a regular pattern of initial centroids was chosen
for this study (Fig. 2b), although we have run the algorithm
with randomly spaced clusters. When we start with only one

Figure 2. Logarithmic distribution of the number of salinity
and temperature error pairs (model minus observation) in the 2-
dimensional error space (a). Error bins have a resolution of 1 ◦C for
temperature and 1 gkg−1 for salinity. The bias is shown with the
centre of the white cross and the standard deviations with the major
semi-axes of the blue ellipse. The green cross shows the centre of
the coordinate axes. Coordinates of initial centroids of K-means in
the normalized 2-dimensional error space (b).

cluster, we can choose its location at {dS=−1, dT =−1}.
Using two clusters means that we start with the locations cor-
responding to 1 and 2 marked on Fig. 2b. With the increase in
the number of clusters, we use corresponding initial locations
of the clusters marked with numbers 1, 2, and 3, etc. Other
more advanced methods for the selection of initial centroids
(Celebi et al., 2013) could be implemented just as well. The
squared Euclidean distance was used as the measure of the
distance between data points and the centroid coordinates of
the cluster. The squared Euclidean distance measured from
the cluster centroid is the most commonly used partition-
ing criterion for continuous data (e.g. Kononenko and Kukar,
2007; Hastie et al., 2009). For practical reasons, the number
of iterations was limited to 100, which ensured the conver-
gence of the clustering algorithm. A disadvantage of the K-
means clustering algorithm is the lack of a unique way of
defining the optimal number of clusters. For the final selec-
tion of the number of clusters, we used the Elbow method
(e.g. Bholowalia and Kumar, 2014; Yuan and Yang, 2019).
The coordinates of the centroids in {dS,dT }error space pro-
vide mean bias of the errors belonging to the cluster k. Stan-
dard deviations of dS and dT are calculated for the charac-
terization of the variability of the errors within a cluster.

In general, the errors retain their 4-dimensional structure,
i.e. {dS,dT } (t,x,y,z), while assigned to specific clusters.
Any kind of analysis can be done using the clustered errors.
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2.4 Normalization

Each error pair belongs to a fixed cluster k but retains their
4-dimensional structure, i.e. {dS,dT }k (t,x,y,z). For the vi-
sualization of model accuracy, some reduction of dimension-
ality of the error pairs is needed.

For the spatial distribution of errors, we take the er-
ror pairs as independent of time and vertical coordinate,
i.e. {dS,dT }k (x,y). For each horizontal grid cell (i,j) of
25 km2, we have a number of points (error pairs) nk

i,j that be-
long to cluster k. The total number of points that belong to
the grid cell is Ni,j =

∑K
k=1n

k
i,j , where K is the number of

clusters. For normalization, we divide each nk
i,j by Ni,j and

plot the horizontal maps for each k.
For the vertical distribution of errors, we take error pairs

as dependent only on the vertical coordinate {dS,dT }k (z).
Then nk

l is the number of points in layer l and cluster k. The
total number of points in the layer l is Nl =

∑K
k=1n

k
l . Nor-

malization is done for each layer with Nl . Subsequently, the
profiles of the normalized error points show the share of each
cluster of errors.

For the temporal distribution of errors, we take error pairs
as dependent only on time {dS,dT }k (t). Then nk

1t is the
number of points in the time interval 1t and cluster k. The
total number of points in the time interval 1t is N1t =∑K

k=1n
k
1t . Normalization is done for each time interval 1t

with N1t . Then the time series of the normalized error points
shows the share of each cluster of errors at a specific time.

There is no need to do normalization when we look at time
series in a fixed spatial location or plot the Hovmöller dia-
gram of error clusters.

3 Results

3.1 Clustering procedure

We start by clustering bulk data covering the entire mod-
elling period and domain. Error representation does not pro-
vide a clear understanding on how many clusters should be
predefined or how the clusters will form. The initial location
of the centroids is selected according to the scheme shown
on Fig. 2b. The coordinates of the centroid of one cluster
(Fig. 3a) provide a model bias of 0.64 ◦C for temperature and
0.26 gkg−1 for salinity (Table 1). The corresponding stan-
dard deviations were 1.5 ◦C and 2.0 gkg−1, respectively. The
root mean square difference was 1.67 ◦C for temperature and
2.04 gkg−1 for salinity. The corresponding linear correlation
coefficients were 0.97 and 0.95, respectively.

Increasing the number of clusters results in the splitting of
the error space into clusters with centroids close to the zero
point (Fig. 3). A representative structure of distribution of the
errors emerges in the case of four clusters (Fig. 3d). We can
confirm the choice of four clusters by implementing clus-
ter selection criteria. The distance between points and des-

ignated centroids reduces exponentially with the increase in
the number of clusters (Fig. 4). The rate of distance reduction
with the increasing number of clusters shows local minima at
K = 4.

The K = 4 clustering distributes 1 376 674 error data pairs
into the following four clusters, each with N(k)= {263 230,
196 615, 134 326, 782 503} data points. Cluster k = 1 char-
acterizes the set of errors with the basic feature of “under-
estimated salinity” (Table 1). This cluster is present already
in the case of three clusters (Fig. 3c). Increasing the number
clusters splits this cluster into two clusters (e.g. for K = 9,
it splits into clusters k = 1,5). Cluster k = 2 envelops the
errors of “overestimated salinity”. This cluster changes into
cluster k = 4 (K = 5), then splits into two clusters (K = 8)
and three clusters (K = 9). Cluster k = 3 of “overestimated
temperature” is established already in the case of three clus-
ters. Increasing the total number of clusters does not result
in a split of the cluster. However, the centroid shifts towards
a high temperature bias (Table 1). The cluster k = 4 repre-
sents a “good match” of the model and measurements. The
bias is about 0.4 ◦C for temperature and 0.6 gkg−1 for salin-
ity (Table 1). The standard deviations are below 1 for both
parameters. Increasing the number of clusters results in the
splitting of this cluster along the axis of temperature error,
while the salinity error remains small.

3.2 Analysis of the clusters

Retrieving spatial coverage of K = 4 cluster errors shows
that the model has a good match in the whole model domain
(Fig. 5b). The share of the other errors remains less than 0.3.
The model overestimates salinity, underestimates salinity and
has a good match at the Danish straits. Underestimated salin-
ity errors have a share of about 0.2 in the deep basins of the
Baltic Proper, i.e. the Bornholm Basin, Gdansk Basin, east-
ern Gotland Basin, northern Baltic Proper, western Gotland
Basin, and western Gulf of Finland. The model overestimates
temperature at the transition area between the northeastern
Baltic Proper and the Gulf of Finland, in some coastal loca-
tions, and within river plumes. The latter indicates that river
water temperature is overestimated in the present model im-
plementation.

Vertical distribution of the error clusters confirms that the
share of good match errors ranges between 0.5 and 0.9 of all
data (Fig. 5e). In the surface layer, we have overestimated
salinity and underestimate salinity in almost 50 % of cases.
In comparison with horizontal distribution of errors, a large
part of these errors probably belongs to the Danish straits
(Fig. 5b). The overestimated temperature has a considerable
share centred at a depth of 25 m. The underestimated salinity
has a high share at the depth range of 60–100 m. The share
of underestimated salinity once again increases in the deep
layer of the Baltic Sea.

A decrease in time of a good match coincides with an in-
crease of the share of underestimated salinity and overesti-
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Table 1. The coordinates of the centroids and the standard deviations of salinity and temperature errors within the clusters for a different set
of predefined number of clusters, K = 1–9. The numbers in column k correspond to the index of the clusters in Fig. 3 for corresponding set
of K clusters. The numbers in column k(K = 4) refer to the indices of the corresponding clusters of the case K = 4.

mated salinity (Fig. 5c). Seasonally overestimated salinity
has a higher share in summer, while underestimated salinity
has a higher share in winter (Fig. 5d). Combining the hori-
zontal (Fig. 5b) and seasonal distribution of errors (Fig. 5d),
we could conclude that the salinity is overestimated in the
Danish straits in summer and underestimated in winter. In
addition, we would like to note that the good match share
decreases and underestimated salinity increases abruptly at
the end of the 1980s when the number of measurements be-
comes larger in the database. The overestimated temperature
has an almost constant share of 0.1 in time (Fig. 5c). The el-
evated share of overestimated temperature errors in summer
confirms that the model overestimates the temperature in the

seasonal thermocline (Fig. 5d). For comparison, we have pro-
vided a similar analysis of the errors for K = 3 and K = 5 in
Appendix B.

We extract error profiles from Gotland Deep station BY15,
which is widely used for the validation of the physical and
biogeochemical models of the Baltic Sea. In the upper layer
of 60 m, the model has a good match (Fig. 6a and b). There
are isolated occasions of 10 % in total when the model over-
estimates temperature in the seasonal thermocline (Fig. 6b).
At the depth range 60–100 m, the share of model underes-
timating salinity increases. From a depth of 100 m, the pro-
portion of the model that underestimates salinity gradually
increases with depth. The Hovmöller diagram shows that
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Figure 3. The distribution of clusters in the error space for a different number of predefined clusters, K = 1–9. The numbers of the clusters
correspond to the numbers of the clusters in Table 1. The biases are marked with the centre of the ellipsoid and the standard deviations with
the major semi-axes. The error space has been zoomed in for better visualization of the clusters. The full range of error space and distribution
of the clusters is shown in Fig. A1 in Appendix A.

there are extended time periods when the model underesti-
mates salinity (Fig. 6a). In the surface layer, the model has
a good match, although model salinity starts to deviate from
the measurements from 1995 onwards (Fig. 6c and e). At
the bottom, the model reproduces temperature very well at
the end of the 1970s and the beginning of the 1980s, but as
salinity is underestimated, the errors belong to the cluster of
underestimated salinity (Fig. 6d and f). In general, the model
has a good match in the water column from 1991 to 2003
(Fig. 6a and f). Dynamically, this corresponds to the end of
the stagnation period and recovery of the bottom salinity and
strengthening of the permanent halocline.

3.3 Learning of the clusters

As the first step, the whole 4-dimensional {dS,dT }dataset
is divided randomly into two separate sets for learning and
predicting. The dataset for the learning of the error clus-
ters is initiated from a set of a different number of clus-
ters according to initial distribution of the centroids shown
on Fig. 2b. Resulting centroids of the learning dataset are
then used to initiate the centroids for the clustering of the
predicting dataset. The mean length of shifts between learn-
ing and predicting centroids is used to evaluate the effect of
dataset size on predicting the representative error clusters.
We have used different learning and predicting datasets with
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Figure 4. Sum of square distances (black bars) between the normal-
ized pairs of error points and their designated centroids for differ-
ent numbers of initial centroids. The first-order (red bars) and the
second-order (blue bars) forward differences calculated from the
sum of square distances.

sizes ranging from a share of 10−4 to 0.9999 of the total
dataset of 1 376 674 error pairs. For a statistical ensemble of
randomly selected datasets, the average distances are calcu-
lated from 30 trials. The learning and predicting procedure is
illustrated in Fig. 7 for K = 4.

If the learning dataset makes up 10 %–95 % of the total
dataset (> 100 000 comparison points), then the difference
between the learned and predicted centroids does not change
significantly (Fig. 8). The clustering of K = 4 is most sensi-
tive to the choice of initial centroids. Therefore, the distance
between learned and predicted centroids is larger compared
to other choices of K . Below 1 % of the learning data size
(< 10 000 comparison points), the difference in distance be-
tween learned and predicted datasets is > 0.03 normalized
standard deviation. Thus, the size of the learning dataset is
significant for predicting the error clusters. The rough esti-
mate of the number of comparison points is about 100 000
for the current model, which shows relatively stable centroids
and the stability of the model accuracy.

3.4 Interpretation of the clusters

The total number and the spatio-temporal coverage of the
comparison points (Fig. 1) indicate that the model performs
well over the Baltic Sea and the simulation period con-
sidered (Fig. 5). The share of model errors with a bias of
{dS,dT }= {0.44 g kg−1, 0.57 ◦C} and with a standard devi-
ation of {dS,dT }= {0.69 gkg−1, 0.81 ◦C} (Table 1) is be-
tween 0.5 and 0.9.

In addition, we can highlight the areas where the model ac-
curacy is lower and the dynamical features are not so well re-
produced by the model. Essentially, the seasonal thermocline
and permanent halocline are not reproduced by the model
as well as the layers with small vertical gradients of salin-
ity and temperature. The accuracy of the model in reproduc-
ing a seasonal thermocline has a peak share of overestimated

temperature of 0.25 (bias of 3.78 ◦C and standard deviation
of 1.73 ◦C) at a 25 m depth. The error share of 0.25 is ob-
served in the layer of 60–90 m, which corresponds to the
depth range of the permanent halocline. The model underes-
timates salinity (bias of −1.96 gkg−1 and standard deviation
of 1.63 gkg−1) there.

Model accuracy is relatively low in the Danish straits. The
model has underestimated salinity in winter and overesti-
mated salinity in summer (bias of 3.44 gkg−1 and standard
deviation of 1.59 gkg−1) there. The underestimated salinity
errors in the deep basins of the Baltic Sea (Fig. 5b) are caused
by the spreading of inflowing North Sea water downstream
in the cascade of the deep basins. These inflows mainly take
place in winter, while outflow of the Baltic Sea water domi-
nates in summer.

Clustering of model errors could provide information
about the accuracy of external fields that are used for the forc-
ing and for the boundary conditions of the model. The over-
estimated temperature at the river plume areas (Fig. 5b) may
indicate a mismatch of river water temperature that takes the
value from a grid cell adjacent to the river mouth. Although
the air–sea fluxes are correctly reproduced by the model, as
indicated by a good match at the surface (Fig. 5c), the follow-
ing downward flux of heat could be too strong, as the share
of overestimated temperature is relatively high between the
depth of 10–40 m in summer (Fig. 5c and d).

4 Summary

Ideally, researchers like to know the model accuracy over the
whole model domain and time period simulated. Commonly
used methods provide a limited set of metrics (e.g. bias, stan-
dard deviation, root mean square error, correlation coeffi-
cient) for the assessment of overall quality of the model. In
this study, we have proposed a new method for the assess-
ment of model skills. The aim of using the method is the
clustering of multivariate model errors. Model errors consist
of differences between model values and the measured mul-
tivariate data. The main advantage of this method is the pos-
sibility to use clustered errors for the analysis of the spatio-
temporal accuracy of the model.

The method was tested in the validation of the circulation
model results of the 40-year period in the Baltic Sea. Temper-
ature and salinity were used for validation because they are
essential parameters of the physical model, and these data
have been the most extensively measured in the Baltic Sea.
This method enables us to use all available observations, with
the only restriction being the need to measure multivariate
data simultaneously. In model validation, the problem usu-
ally lies in the spatio-temporal distribution of measurement
data over the 4-dimensional model domain. In our case, the
measurement data were sufficient and had good spatial and
temporal coverage. In total, we had more than 1 300 000 pairs
of measured temperature and salinity values. In many cases,
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Figure 5. The distribution of the error clusters for K = 4 (a). The coloured map shows the logarithmic distribution of the number of
salinity and temperature error pairs (model minus observation) in the 2-dimensional error space (a). Error bins have a resolution of 1 ◦C
for temperature and 1 gkg−1 for salinity (a). The spatial (b), vertical (c), temporal (d), and seasonal (e) distribution of the share of error
points belonging to the four different clusters (b). The share, p(k), representing the share of the error points belonging to the cluster k, is
calculated as explained in Sect. 2.4. The horizontal bins have a resolution of 25 km× 25 km (b), vertical bins have a resolution of 5 m (c),
and temporal and seasonal bins have a monthly resolution (d, e). The lines in (d) have been smoothed using a running mean with a 12-point
window size. Line colours correspond to the colours of the clusters in (a).

reduction of available data or homogenization of the data is
needed prior to the calculation of model errors, and cluster-
ing is applied to have simultaneous multivariate data. The
number of measurements should be sufficiently large to de-
termine stable clusters. In our case, about 100 000 randomly
selected data pairs showed relatively stable centroids and the
stability of the model accuracy.

We have applied the K-means unsupervised machine
learning algorithm for the assessment of the quality of gen-
eral circulation models by clustering temperature and salinity
errors. The model output fields are 4-dimensional, and the 4-
dimensional distribution of the errors was retained after the
clustering was completed. As a result, cluster numbers were
assigned to each error pair. In addition, the errors belonging

to one cluster had their bias determined by the location of
the centroid in the error space. Further on, common statis-
tical metrics (e.g. standard deviation, root mean square er-
ror, correlation coefficient) can be calculated for each clus-
ter and variable. In general, any other partitional clustering
algorithm can be used instead of K-means for the cluster-
ing of multivariate model errors. Although the tests with the
balanced iterative reducing and clustering using hierarchies
(Zhang et al., 1996), the Gaussian mixture model, and K-
nearest-neighbour algorithm (e.g. Hastie et al., 2009) were
performed (results not shown), we have implemented the K-
means algorithm because of its simplicity and robustness.
The outcome clusters have direct information on the model
bias. The output clusters can be used for the calculation of
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Figure 6. Hovmöller diagram of the distribution of error points of K = 4 at the BY15 monitoring station (a). Vertical distribution of the
share of error points belonging to the four different clusters (b). The share, p(k), representing the share of the error points belonging to the
cluster k, is calculated as explained in Sect. 2.4. Time series of observed (black circles) and simulated (colour dots) temperature (c, d) and
salinity (e, f) on the surface (c, e) and bottom (d, f) at the BY15. Colours of dots and lines correspond to the colours of the clusters in Fig. 5a.

classical statistical metrics. The resulting clusters contain in-
formation about common statistical metrics.

The K-means clustering algorithm has a well-known defi-
ciency. There is no unique way to determine the number of
clusters. We used Elbow methods, which gave good results.
The selection of four clusters was supported by the analysis
of the error clusters in relation to the geographical distribu-
tion of the errors, the physical process, and the features. The
analysis showed that the underestimated salinity cluster was
mainly in the Danish straits, within the halocline layer and
along the pathway of transport of saline water in the Baltic
Sea. Overestimated temperature had a high share in the sea-
sonal thermocline. Overestimated salinity accounted for the
model errors in the Danish straits. For confidence, the analy-
sis was complemented with the use of three and five clusters.
Thus, the analysis of the error clusters enables us to shed light
on the physical processes and features where model perfor-
mance should be improved.

The clustering was done for the entire Baltic Sea and
the whole simulation period. In comparison, conventional
model validation with station measurements of temperature
and salinity is presented in Maljutenko and Raudsepp (2014,
2019). The analysis of clusters of errors at specific locations
enables us to assess the quality of the model at these locations
in the context of the overall quality of the model. Multivariate
model quality assessment shows that if one parameter is well
reproduced by the model but the other parameter is poorly
reproduced at the same time, then the quality might not be
good.

In addition to model quality, error clustering can pro-
vide implicit information about the quality of prescribed in-
put variables and forcing fields. Error clustering has shown
that the temperature of river runoff water could be overes-
timated. This is especially relevant in the case of biogeo-
chemical models, where discharges of different nutrients and
other state variables, which have to be prescribed, are usually
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Figure 7. Learning (a–c) and predicting (d–f) of the K = 4 clusters. The learning and predicting datasets have a share of 1 % (a) and 99 % (d),
20 % (b) and 80 % (e), and 99 % (c) and 1 % (f) of the full dataset, respectively. Blue crosses mark the location of initial centroids and blue
lines connect initial and final locations (marked with numbered diamonds) of the centroids.

Figure 8. The average normalized distance of shifts of predicting
centroids relative to learned centroids as a function of the share of
the learning dataset. Averaging has been done from 30 trials. Differ-
ent lines correspond to different numbers of initial clusters, K = 3–
7. The share of the learning dataset in the ranges of 10−4–0.1 and
0.9–0.9999 is shown on a logarithmic scale.

poorly known. There are problems in the prescribed salinity
of the inflowing North Sea water at the open boundary of
the model in the Kattegat. In addition, these errors are trans-
ported into the model domain of southwestern Baltic Sea.
However, atmospheric fields necessary for the calculation of
the air–sea heat fluxes do not produce significant errors.

The proposed method could be applied for the assessment
of the quality of global ocean general circulation models.
By the end of the year 2020, there were approximately 3800
ARGO floats profiling the world ocean for salinity and tem-
perature, with a spatial resolution of approximately one float
for every 3◦ of latitude and longitude. The annual total num-
ber of profiles added to the database is over 100 000, which
takes the total available number of profiles to over 2 000 000
(Argo, 2020). This huge validation dataset probably needs
some computational solution, i.e. implementation of paral-
lel computing or specific methods on how to deal with big
data within the K-means clustering. In the context of oper-
ational oceanographic models, the model validation can be
done in “real time” by implementing the learning–predicting
sequence. The ARGO data, which are available within 24 h
of collection, could be added to the learned clusters for the
updating of the coordinates of centroids and statistical met-
rics.

The proposed method can be applied to different geoscien-
tific models. The shortlist consists of biogeochemical mod-
els, atmospheric models, wave models, hydrological mod-
els, and geodynamic models. An application of the method
for the assessment of a coupled physical and biogeochem-
ical model of the Baltic Sea is presented in Kõuts et al.
(2021). The method can be implemented in a multivariate
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high-dimensional error space as well as in a univariate er-
ror space. In addition to the validation of numerical models,
the method can be used for the assessment of remote-sensing
data and models.

Appendix A

Figure A1. The distribution of clusters in the error space for a different number of predefined clusters, K = 1–9. The numbers of the clusters
correspond to the numbers of the clusters in Table 1. The locations of the centroids are marked with cluster numbers and the standard
deviations with the whiskers.
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Appendix B

In the case of three clusters, the largest share of
errors belongs to the cluster k = 2 with a bias of
{dS,dT }= {1.3 g kg−1, 0.66 ◦C}and with a standard devi-
ation of {dS,dT }= {1.52 gkg−1, 0.85 ◦C} (Fig. B1). This
cluster provides the main contribution to the good match
and overestimated salinity clusters when a larger number
of clusters is used. The share of the errors of this clus-
ter is between 0.6 and 0.9. Cluster k = 1 with a bias of
{dS,dT }= {−1.35 gkg−1, −0.51 ◦C} and with a standard
deviation of {dS,dT }= {1.57 gkg−1, 0.99 ◦C} is the clus-
ter of underestimated salinity, which retains these features
throughout the increasing of the number of clusters. Spa-
tially, underestimated salinity has a significant share in the
Danish straits and on the pathway of inflowing saline water
through the deep basins of the Baltic Sea. Vertically, these
errors have a large share of 0.5 in the layer of 60–110 m,
which corresponds to the permanent halocline of the Baltic
Sea, and below 200 m, which is the bottom layer of the Got-
land Deep. The share of underestimated salinity is relatively
high in the whole water column below the halocline. Season-
ally, these errors are significant in winter, when saline water
inflows through the Danish straits to the Baltic Sea occur.
Cluster 1 with a bias of {dS,dT }= {−1.03 gkg−1, 3.54 ◦C}
and with a standard deviation of {dS,dT }= {1.97 gkg−1,
0.73 ◦C} has a steady share of errors of 0.1. The errors of
overestimated temperature are significant in the depth range
of 10–50 m and during summer. These errors account for the
model accuracy in reproducing the seasonal thermocline.

In the case of five clusters, the clusters k = 2 with a bias of
{dS,dT }= {0.42 gkg−1, 1.54 ◦C} and with a standard devi-
ation of {dS,dT }= {0.95 gkg−1, 0.66 ◦C} and k = 5 with a
bias of {dS,dT }= {0.3 gkg−1, −0.22 ◦C} and with a stan-
dard deviation of {dS,dT }= {0.72 gkg−1, 0.77 ◦C} domi-
nate over the others (Fig. B2). These clusters are formed
as a split of the good match cluster with partial contribu-
tion from the underestimated salinity cluster and the over-
estimated salinity cluster of K = 4. The clusters k = 1 with
a bias of {dS,dT }= {−2.81 gkg−1, −0.37 ◦C} and with
a standard deviation of {dS,dT }= {1.42 gkg−1, 1.07 ◦C}
and k = 4 with a bias of {dS,dT }= {3.63 gkg−1, 0.52 ◦C}
and with a standard deviation of {dS,dT }= {1.63 gkg−1,
1.08 ◦C} share errors of underestimated salinity and overes-
timated salinity. These errors dominate in the Danish straits,
indicating the difficulties for the model in matching fluctuat-
ing water salinity close to the model boundary. Cluster k = 3
with a bias of {dS,dT }= {−1.52 gkg−1, 4.89 ◦C} and with
a standard deviation of {dS,dT }= {2.33 gkg−1, 1.76 ◦C}
accounts for overestimated temperature errors in the seasonal
thermocline during summer.
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Figure B1. The distribution of the error clusters for K = 3 (a). The coloured map shows logarithmic distribution of the number of salinity and
temperature error pairs (model minus observation) in the 2-dimensional error space (a). Error bins have a resolution of 1 ◦C for temperature
and 1 gkg−1 for salinity (a). The spatial (b), vertical (c), temporal (d), and seasonal (e) distribution of the share of error points belonging to
the four different clusters (b). The share, p(k), representing the share of the error points belonging to the cluster k, is calculated as explained
in Sect. 2.4. The horizontal bins have a resolution of 25 km× 25 km (b), vertical bins have a resolution of 5 m (c), and temporal and seasonal
bins have a monthly resolution (d, e). The lines (d) have been smoothed using a running mean with a 12-point window size. Line colours
correspond to the colours of the clusters in (a).
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Figure B2. The distribution of the error clusters for K = 5 (a). The coloured map shows logarithmic distribution of the number of salinity and
temperature error pairs (model minus observation) in the 2-dimensional error space (a). Error bins have a resolution of 1 ◦C for temperature
and 1 gkg−1 for salinity (a). The spatial (b), vertical (c), temporal (d), and seasonal (e) distribution of the share of error points belonging to
the four different clusters (b). The share, p(k), representing the share of the error points belonging to the cluster k, is calculated as explained
in Sect. 2.4. The horizontal bins have a resolution of 25 km× 25 km (b), vertical bins have a resolution of 5 m (c), and temporal and seasonal
bins have a monthly resolution (d, e). The lines (d) have been smoothed using a running mean with a 12-point window size. Line colours
correspond to the colours of the clusters in (a).

Data availability. The GETM model version 2.5 and GOTM
model version 4.1 used in the current study are stored in the
Zenodo repository “Source code for the GETM and GOTM
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2021). Data used in this article are available online at
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sepp, 2021). The data consist of error space supplemented with time
and space coordinates and cluster indexes for K = 1–9. For cluster-
ing, the K-means function from the Statistics and Machine Learn-
ing Toolbox of MATLAB R2020a was used.
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