Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7425-2021
https://doi.org/10.5194/gmd-14-7425-2021
Model experiment description paper
 | 
06 Dec 2021
Model experiment description paper |  | 06 Dec 2021

Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art general circulation model

Alexei Belochitski and Vladimir Krasnopolsky

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Belochitski, A.: AlexBelochitski-NOAA/fv3atm_old_radiation_nn_emulator (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4663160, 2021. 
Belochitski, A., Binev, P., DeVore, R., Fox-Rabinovitz, M., Krasnopolsky, V., and Lamby, P.: Tree approximation of the long wave radiation parameterization in the NCAR CAM global climate model, J. Comput. Appl. Math., 236, 447–460, https://doi.org/10.1016/j.cam.2011.07.013, 2011. 
Belochitski, A. and Krasnopolsky, V.: Datasets for “Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art general circulation model” [data set], https://doi.org/10.7910/DVN/6F74LF, Harvard Dataverse, V1, 2021. 
Brenowitz, N. D., Beucler, T., Pritchard, M., and Bretherton, C. S.: Interpreting and Stabilizing Machine-Learning Parametrizations of Convection, J. Atmos. Sci., 77, 4357–4375, https://doi.org/10.1175/JAS-D-20-0082.1, 2020. 
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and Challenges, B. Am. Meteorol. Soc., 100, ES473–ES491, https://doi.org/10.1175/BAMS-D-18-0324.1, 2019. 
Download
Short summary
There is a lot interest in using machine learning (ML) techniques to improve environmental models by replacing physically based model components with ML-derived ones. The latter ordinarily demonstrate excellent results when tested in a stand-alone setting but can break their host model either outright when coupled to it or eventually when the model changes. We built an ML component that not only does not destabilize its host model but is also robust with respect to substantial changes in it.