Bird, B.: Coastal Geomorphology: An Introduction, John Wiley & Sons,
2011.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening
design for sensitivity analysis of large models, Environ. Model.
Softw., 22, 1509–1518, https://doi.org/10.1016/J.ENVSOFT.2006.10.004, 2007.
Coulthard, T.: Landscape evolution models: a software review, Hydrol.
Process., 15, 165–173, https://doi.org/10.1002/hyp.426, 2001.
Dickson, M. E., Walkden, M. J. A., and Hall, J. W.: Systemic impacts of
climate change on an eroding coastal region over the twenty-first century,
Clim. Change, 84, 141–166, https://doi.org/10.1007/s10584-006-9200-9,
2007.
French, J., Payo, A., Murray, B., Orford, J., Eliot, M., and Cowell, P.:
Appropriate complexity for the prediction of coastal and estuarine
geomorphic behaviour at decadal to centennial scales, Geomorphology, 256,
3–16, https://doi.org/10.1016/j.geomorph.2015.10.005, 2015.
Gelfenbaum, G. and Kaminsky, G.: Large-scale coastal change in the Columbia
River littoral cell: An overview, Mar. Geol., 273, 1–10, https://doi.org/10.1016/j.margeo.2010.02.007, 2010.
Hallermeier, R.: Uses for a Calculated Limit Depth to Beach Erosion, Coast.
Eng., 1493–1512, https://doi.org/10.1061/9780872621909.090,
1978.
Hanson, H.: GENESIS: a generalized shoreline change numerical model, J. Coast. Res., 5, 1–27, 1989.
Hanson, H. and Kraus, N.: GENESIS: Generalized Model for Simulating
Shoreline Change. Report 1. Technical Reference, No. CERC-TR-89-19-1,
Coastal Engineering Research Center, Vicksburg, MS, 1989.
Hurst, M., Barkwith, A., Thomas, C., and Ellis, M.: Vector-based one-line
model for shoreline evolution: application to explore wave-climate control
on bay morphology, in: AGU Fall Meeting Abstracts, San Franciso, 15–19 December 2014.
Komar, P. D., Lanfredi, N., Baba, M., Dean, R. G., Dyer, K., Healy, T., Ibe,
A. C., Terwindt, J. H. J., and Thom, B. G.: The response of beaches to sea-level
changes – a review of predictive models, J. Coast. Res., 7,
895–921, 1991.
Leach, C.: CEM2D Source Code, Zenodo [code],
https://doi.org/10.5281/zenodo.3341888, 2019.
Leach, C., Coulthard, T., Barkwith, A., Parsons, D., and Manson, S.: CEM2D_Dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.5242895, 2021.
Lesser, G., Roelvink, J., van Kester, J., and Stelling, G.: Development and
validation of a three-dimensional morphological model, Coast. Eng.,
51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004.
Lowe, J. A., Howard, T. P., Pardaens, A., Tinker, J., Holt, J., Wakelin, S.,
Milne, G., Leake, J., Wolf, J., Horsburgh, K., and Reeder, T.: UK Climate
Projections science report: Marine and coastal projections, Exeter, UK 2009.
McLean, R. and Kirk, R.: Relationships between grain size, size-sorting,
and foreshore slope on mixed sand – shingle beaches, New Zeal. J.
Geol. Geop., 12, 138–155, https://doi.org/10.1080/00288306.1969.10420231, 1969.
Morris, M.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33,, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991.
Murray, B.: Reducing model complexity for explanation and prediction,
Geomorphology, 90, 178–191, https://doi.org/10.1016/j.geomorph.2006.10.020,
2007.
Nam, P., Larson, M., Hanson, H., and Hoan, Le X.: A numerical model of
nearshore waves, currents, and sediment transport, Coast. Eng.,
56, 1084–1096, https://doi.org/10.1016/j.coastaleng.2009.06.007, 2009.
Nicholls, R., Bradbury, A., Burningham, H., Dix, J., Ellis, M., French, J.,
Hall, J., Karunarathna, H., Lawn, J., Pan, S., Reeve, D., Rogers, B., Souza,
A., Stansby, P., Sutherland, J., Tarrant, O., Walkden, M., and Whitehouse,
R.: iCOASST – Integrating Coastal Sediment Systems, Coast. Eng.
Proc., 1, 100, https://doi.org/10.9753/icce.v33.sediment.100, 2012.
Nicholls, R., Birkemeier, W., and Hallermeier, R.: Application of the depth
of closure concept, Proceedings of the Coastal Engineering Conference, 4,
3874–3887, https://doi.org/10.9753/icce.v25, 1997.
Park, J.-Y. and Wells, J.: Longshore Transport at Cape Lookout, North
Carolina: Shoal Evolution and the Regional Sediment Budget, J.
Coast. Res., 211, 1–17, https://doi.org/10.2112/02051.1, 2005.
Pinet, P.: Invitation to Oceanography, Jones & Bartlett Publishers, 2011.
Robinet, A., Idier, D., Castelle, B., and Marieu, V.: A reduced-complexity
shoreline change model combining longshore and cross-shore processes: The
LX-Shore model, Environ. Model. Softw., 109, 1–16,
https://doi.org/10.1016/j.envsoft.2018.08.010, 2018.
Shaw, J., Fader, G. B., and Taylor, R. B.: Submerged early Holocene coastal and
terrestrial landforms on the inner shelves of Atlantic Canada, Quatern.
Int., 206, 24–34, https://doi.org/10.1016/j.quaint.2008.07.017,
2009.
Skinner, C. J., Coulthard, T. J., Schwanghart, W., Van De Wiel, M. J., and Hancock, G.: Global sensitivity analysis of parameter uncertainty in landscape evolution models, Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018, 2018.
Stive, M. and de Vriend, H.: Modelling shoreface profile evolution, Mar.
Geol., 126, 235–248, https://doi.org/10.1016/0025-3227(95)00080-I, 1995.
Thomas, C. W., Murray, A. B., Ashton, A. D., Hurst, M. D., Barkwith, A. K. A. P., and Ellis, M. A.: Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or “remember” the distant past?, Earth Surf. Dynam., 4, 871–884, https://doi.org/10.5194/esurf-4-871-2016, 2016.
Tucker, G. and Slingerland, R.: Erosional dynamics, flexural isostasy, and
long-lived escarpments: A numerical modeling study, J. Geophys. Res.-Sol. Ea., 99, 12229–12243, https://doi.org/10.1029/94JB00320, 1994.
Warren, I. and Bach, H.: MIKE 21: A Modelling System for Estuaries, Coastal
Waters and Seas, Environ. Softw., 7, 229–240, https://doi.org/10.1016/0266-9838(92)90006-P, 1992.
Willgoose, G., Bras, R., and Rodriguez-Iturbe, I.: Results from a new model
of river basin evolution', Earth Surf. Process. Land., 16,
237–254, https://doi.org/10.1002/esp.3290160305, 1991.
Wong, P., Losada, I., Gattuso, J., Hinkel, J., Khattabi, A., McInnes, K.,
Saito, Y., Sallenger, A., Nicholls, R., Santos, F., and Amez, S.: Coastal
systems and low-lying areas, in: Climate Change 2014 Impacts, Adaptation and
Vulnerability: Part A: Global and Sectoral Aspects, Contribution of Working
Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N.,
MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University
Press, Cambridge, UK, New York, NY, USA, 361–409, 2014.
van Maanen, B., Barkwith, A., Bonaldo, D., Burningham, H., Murray, B., Payo,
A., Sutherland, J., Thornhill, G., Townend, I., van der Wegen, M., and
Walkden, M.: Simulating mesoscale coastal evolution for decadal coastal
management: A new framework integrating multiple, complementary modelling
approaches, Geomorphology, 256, 68–80, https://doi.org/10.1016/j.geomorph.2015.10.026,
2016.
Vitousek, S., Barnard, P. L., Limber, P., Erikson, L., and Cole, B.: A model
integrating longshore and cross-shore processes for predicting long-term
shoreline response to climate change, J. Geophys. Res.-Earth
Surf., 122, 782–806, https://doi.org/10.1002/2016JF004065, 2017.
Wright, L. and Short, A.: Morphodynamic variability of surf zones and
beaches: A synthesis, Mar. Geol., 56, 93–118, https://doi.org/10.1016/0025-3227(84)90008-2, 1984.
Ziliani, L., Surian, N., Coulthard, T., and Tarantola, S.:
Reduced-complexity modeling of braided rivers: Assessing model performance
by sensitivity analysis, calibration, and validation, J. Geophys. Res.-Earth Surf., 118, 2243–2262, https://doi.org/10.1002/jgrf.20154, 2013.