Articles | Volume 14, issue 9
Geosci. Model Dev., 14, 5507–5523, 2021
https://doi.org/10.5194/gmd-14-5507-2021
Geosci. Model Dev., 14, 5507–5523, 2021
https://doi.org/10.5194/gmd-14-5507-2021

Development and technical paper 07 Sep 2021

Development and technical paper | 07 Sep 2021

The Coastline Evolution Model 2D (CEM2D) V1.1

Chloe Leach et al.

Related authors

Sand mining far outpaces natural supply in a large alluvial river
Christopher R. Hackney, Grigorios Vasilopoulos, Sokchhay Heng, Vasudha Darbari, Samuel Walker, and Daniel R. Parsons
Earth Surf. Dynam., 9, 1323–1334, https://doi.org/10.5194/esurf-9-1323-2021,https://doi.org/10.5194/esurf-9-1323-2021, 2021
Short summary
Dynamics of salt intrusion in the Mekong Delta: results of field observations and integrated coastal–inland modelling
Sepehr Eslami, Piet Hoekstra, Herman W. J. Kernkamp, Nam Nguyen Trung, Dung Do Duc, Hung Nguyen Nghia, Tho Tran Quang, Arthur van Dam, Stephen E. Darby, Daniel R. Parsons, Grigorios Vasilopoulos, Lisanne Braat, and Maarten van der Vegt
Earth Surf. Dynam., 9, 953–976, https://doi.org/10.5194/esurf-9-953-2021,https://doi.org/10.5194/esurf-9-953-2021, 2021
Short summary
Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux
Andrew Barkwith, Stan E. Beaubien, Thomas Barlow, Karen Kirk, Thomas R. Lister, Maria C. Tartarello, and Helen Taylor-Curran
Geosci. Instrum. Method. Data Syst., 9, 483–490, https://doi.org/10.5194/gi-9-483-2020,https://doi.org/10.5194/gi-9-483-2020, 2020
Short summary
“Are we talking just a bit of water out of bank? Or is it Armageddon?” Front line perspectives on transitioning to probabilistic fluvial flood forecasts in England
Louise Arnal, Liz Anspoks, Susan Manson, Jessica Neumann, Tim Norton, Elisabeth Stephens, Louise Wolfenden, and Hannah Louise Cloke
Geosci. Commun., 3, 203–232, https://doi.org/10.5194/gc-3-203-2020,https://doi.org/10.5194/gc-3-203-2020, 2020
Short summary
Global sensitivity analysis of parameter uncertainty in landscape evolution models
Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock
Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018,https://doi.org/10.5194/gmd-11-4873-2018, 2018
Short summary

Related subject area

Numerical methods
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021,https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021,https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021,https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021,https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3
Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos
Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021,https://doi.org/10.5194/gmd-14-4509-2021, 2021
Short summary

Cited articles

Antolínez, J. A. A., Méndez, F. J., Anderson, D., Ruggiero, P., and Kaminsky, G. M.: Predicting Climate-Driven Coastlines With a Simple and Efficient Multiscale Model, J. Geophys. Res.-Earth Surf., 124, 1596–1624, https://doi.org/10.1029/2018JF004790, 2019. 
Ashton, A. and Murray, B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, J. Geophys. Res., 111, F04011, https://doi.org/10.1029/2005JF000422, 2006a. 
Ashton, A. and Murray, B.: High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature, J. Geophys. Res.-Earth Surf., 111, F04012, https://doi.org/10.1029/2005JF000423, 2006b. 
Ashton, A., Murray, B., and Littlewood, R.: The response of spit shapes to wave-angle climates, in: Coastal Sediments'07, edited by: Kraus, N. and Rosati, N., American Society of Civil Engineers, New Orleans, LA, 2007. 
Ashton, A., Murray, B., and Arnault, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves, Nature, 414, 296–300, https://doi.org/10.1038/35104541, 2001. 
Download
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.