Articles | Volume 14, issue 7
Geosci. Model Dev., 14, 4509–4534, 2021
https://doi.org/10.5194/gmd-14-4509-2021
Geosci. Model Dev., 14, 4509–4534, 2021
https://doi.org/10.5194/gmd-14-4509-2021

Development and technical paper 22 Jul 2021

Development and technical paper | 22 Jul 2021

Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3

Kang Pan et al.

Related subject area

Numerical methods
Efficient Bayesian inference for large chaotic dynamical systems
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021,https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021,https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021,https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0
Colton J. Conroy and Einat Lev
Geosci. Model Dev., 14, 3553–3575, https://doi.org/10.5194/gmd-14-3553-2021,https://doi.org/10.5194/gmd-14-3553-2021, 2021
Short summary
A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021,https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary

Cited articles

Abrutytė, E., Žukauskaitė, A., Mickevičienė, R., Zabukas, V., and Paulauskienė, T.: Evaluation of NOx emission and dispersion from marine ships in Klaipeda sea port, J. Environ. Eng. Landsc., 22, 264–273, 2014. a, b
Asariotis, R., Assaf, M., Ayala, G., Benamara, H., Chantrel, D., Hoffmann, J., Premti, A., Rodriguez, L., and Youssef, F.: Review of Maritime Transport 2019, United Nations Conference on Trade and Development (UNCTAD), Tech. rep., 2019. a
Bluett, J., Gimson, N., Fisher, G., Heydenrych, C., Freeman, T., and Godfrey, J.: Good practice guide for atmospheric dispersion modelling, Ministry for the Environment, Wellington, New Zealand, 2004. a, b
Briggs, G. A.: Plume rise, U.S. Atomic Energy Commission (AEC critical review series), Oak Ridge Tennessee, 1969. a
Briggs, G. A.: Some recent analyses of plume rise observations, in: Proceedings of the Second International Clean Air Congress, edited by: Englund, H. M. and Berry, W. T., Academic Press, New York, 1029–1032, 1971. a
Download
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.