Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4509-2021
https://doi.org/10.5194/gmd-14-4509-2021
Development and technical paper
 | 
22 Jul 2021
Development and technical paper |  | 22 Jul 2021

Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3

Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023,https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary

Cited articles

Abrutytė, E., Žukauskaitė, A., Mickevičienė, R., Zabukas, V., and Paulauskienė, T.: Evaluation of NOx emission and dispersion from marine ships in Klaipeda sea port, J. Environ. Eng. Landsc., 22, 264–273, 2014. a, b
Asariotis, R., Assaf, M., Ayala, G., Benamara, H., Chantrel, D., Hoffmann, J., Premti, A., Rodriguez, L., and Youssef, F.: Review of Maritime Transport 2019, United Nations Conference on Trade and Development (UNCTAD), Tech. rep., 2019. a
Bluett, J., Gimson, N., Fisher, G., Heydenrych, C., Freeman, T., and Godfrey, J.: Good practice guide for atmospheric dispersion modelling, Ministry for the Environment, Wellington, New Zealand, 2004. a, b
Briggs, G. A.: Plume rise, U.S. Atomic Energy Commission (AEC critical review series), Oak Ridge Tennessee, 1969. a
Briggs, G. A.: Some recent analyses of plume rise observations, in: Proceedings of the Second International Clean Air Congress, edited by: Englund, H. M. and Berry, W. T., Academic Press, New York, 1029–1032, 1971. a
Download
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.