Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2977-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2977-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
BCC-CSM2-HR: a high-resolution version of the Beijing Climate Center Climate System Model
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Rucong Yu
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Yixiong Lu
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Weihua Jie
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Yongjie Fang
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Jie Zhang
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Li Zhang
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Xiaoge Xin
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Laurent Li
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Laboratoire de Météorologie Dynamique, IPSL, CNRS, Sorbonne Université, Ecole Normale Supérieure, Ecole Polytechnique, Paris 75005, France
Zaizhi Wang
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Yiming Liu
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Fang Zhang
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Fanghua Wu
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Min Chu
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Jianglong Li
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Weiping Li
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Yanwu Zhang
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Xueli Shi
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Wenyan Zhou
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Junchen Yao
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Xiangwen Liu
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
He Zhao
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Jinghui Yan
Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Min Wei
National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China
Wei Xue
Tsinghua University, Beijing 100084, China
Anning Huang
Nanjing University, Nanjing 210023, China
Yaocun Zhang
Nanjing University, Nanjing 210023, China
Yu Zhang
Chengdu University of Information Technology, Chengdu 610225, China
The First Institute of Oceanography of the Ministry of Natural Resources, Qingdao 266061, China
National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307-3000, USA
Related authors
Ruize Sun, Xiao Lu, Haipeng Lin, Tongwen Wu, Xingpei Ye, Lu Shen, Xuan Wang, Haolin Wang, Jingyu Li, Ni Lu, Jiayin Su, Jie Zhang, Fang Zhang, Xiaoge Xin, Xiong Liu, and Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3829, https://doi.org/10.5194/egusphere-2025-3829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present the development of a global chemistry-climate coupled model BCC-GEOS-Chem v2.0, with improved representation of comprehensive troposphere-stratosphere chemistry and new capability to account for radiative-cloud feedbacks from short-lived climate forcers. The development of the BCC-GEOS-Chem v2.0 provides a powerful tool to study climate-chemistry interactions and for future projection of global atmospheric chemistry and regional air quality.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Yixiong Lu, Tongwen Wu, Fang Zhang, and Xiaoge Xin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1059, https://doi.org/10.5194/egusphere-2025-1059, 2025
Short summary
Short summary
Aerosol cooling has been linked to the cold biases in CMIP6 models during the 1960–1990 period. We confirm the key role of sulfate burden and point out the essential contribution of sulfur removal processes. We define an Effective Sulfur Retention Timescale (ESRT) index to quantify sulfur deposition, which tends to be overestimated by CMIP6 models. The index can help to improve sulfur cycles and temperature responses in models more efficiently. The recommended value of ESRT is around 1 day.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Haolin Wang, Xiao Lu, Daniel J. Jacob, Owen R. Cooper, Kai-Lan Chang, Ke Li, Meng Gao, Yiming Liu, Bosi Sheng, Kai Wu, Tongwen Wu, Jie Zhang, Bastien Sauvage, Philippe Nédélec, Romain Blot, and Shaojia Fan
Atmos. Chem. Phys., 22, 13753–13782, https://doi.org/10.5194/acp-22-13753-2022, https://doi.org/10.5194/acp-22-13753-2022, 2022
Short summary
Short summary
We report significant global tropospheric ozone increases in 1995–2017 based on extensive aircraft and ozonesonde observations. Using GEOS-Chem (Goddard Earth Observing System chemistry model) multi-decadal global simulations, we find that changes in global anthropogenic emissions, in particular the rapid increases in aircraft emissions, contribute significantly to the increases in tropospheric ozone and resulting radiative impact.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Yixiong Lu, Tongwen Wu, Yubin Li, and Ben Yang
Geosci. Model Dev., 14, 5183–5204, https://doi.org/10.5194/gmd-14-5183-2021, https://doi.org/10.5194/gmd-14-5183-2021, 2021
Short summary
Short summary
The spurious precipitation in the tropical southeastern Pacific and southern Atlantic is one of the most prominent systematic biases in coupled atmosphere–ocean general circulation models. This study significantly promotes the marine stratus simulation and largely alleviates the excessive precipitation biases through improving parameterizations of boundary-layer turbulence and shallow convection, providing an effective solution to the long-standing bias in the tropical precipitation simulation.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020, https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
Short summary
This study presents the development and evaluation of a new climate chemistry model, BCC-GEOS-Chem v1.0, which couples the GEOS-Chem chemical transport model as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model. A 3-year (2012–2014) simulation of BCC-GEOS-Chem v1.0 shows that the model captures well the spatiotemporal distributions of tropospheric ozone, other gaseous pollutants, and aerosols.
Ruize Sun, Xiao Lu, Haipeng Lin, Tongwen Wu, Xingpei Ye, Lu Shen, Xuan Wang, Haolin Wang, Jingyu Li, Ni Lu, Jiayin Su, Jie Zhang, Fang Zhang, Xiaoge Xin, Xiong Liu, and Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3829, https://doi.org/10.5194/egusphere-2025-3829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present the development of a global chemistry-climate coupled model BCC-GEOS-Chem v2.0, with improved representation of comprehensive troposphere-stratosphere chemistry and new capability to account for radiative-cloud feedbacks from short-lived climate forcers. The development of the BCC-GEOS-Chem v2.0 provides a powerful tool to study climate-chemistry interactions and for future projection of global atmospheric chemistry and regional air quality.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
Geosci. Model Dev., 18, 4915–4933, https://doi.org/10.5194/gmd-18-4915-2025, https://doi.org/10.5194/gmd-18-4915-2025, 2025
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of the Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to use in refining global carbon cycle models.
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025, https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the Land Use Model Intercomparison Project (LUMIP) and the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that LUC-induced carbon emissions contribute to a BGC warming of 0.21 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasize the need for improved representations of LUC processes.
Lilong Zhou and Wei Xue
EGUsphere, https://doi.org/10.5194/egusphere-2025-1889, https://doi.org/10.5194/egusphere-2025-1889, 2025
Short summary
Short summary
This study develops a novel physics-based weather prediction model using artificial intelligence development platforms, achieving high accuracy while maintaining strict physical conservation laws. Our algorithms are optimized for modern super computers, enabling efficient large-scale weather simulations. A key innovation is the model's inherent differentiable nature, allowing seamless integration with AI systems to enhance predictive capabilities through machine learning techniques.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Yixiong Lu, Tongwen Wu, Fang Zhang, and Xiaoge Xin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1059, https://doi.org/10.5194/egusphere-2025-1059, 2025
Short summary
Short summary
Aerosol cooling has been linked to the cold biases in CMIP6 models during the 1960–1990 period. We confirm the key role of sulfate burden and point out the essential contribution of sulfur removal processes. We define an Effective Sulfur Retention Timescale (ESRT) index to quantify sulfur deposition, which tends to be overestimated by CMIP6 models. The index can help to improve sulfur cycles and temperature responses in models more efficiently. The recommended value of ESRT is around 1 day.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Chenrui Diao, Yangyang Xu, Aixue Hu, and Zhili Wang
Atmos. Chem. Phys., 25, 2167–2180, https://doi.org/10.5194/acp-25-2167-2025, https://doi.org/10.5194/acp-25-2167-2025, 2025
Short summary
Short summary
Industrial aerosol increases in Asia and reductions in North America and Europe in 1980–2020 influenced climate changes over the Pacific Ocean differently. Asian aerosols caused El Niño-like temperature patterns and slightly weakened the natural variation in the North Pacific, while reduced emissions of western countries led to extensive warming in middle–high latitudes of the North Pacific. Human impacts on the Pacific climate may change when emission reduction occurs over Asia in the future.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Junli Yang, Weijun Quan, Li Zhang, Jianglin Hu, Qiying Chen, and Martin Wild
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-74, https://doi.org/10.5194/gmd-2024-74, 2024
Revised manuscript not accepted
Short summary
Short summary
Due to the difficulties involved in the measurements of the Downward long-wave irradiance (DnLWI), the numerical weather prediction (NWP) models have been developed to obtain the DnLWI indirectly. In this study, a long-term high time-resolution (1 min) observational dataset of the DnLWI in China was used to evaluate the radiation scheme in the CMA-MESO model over various underlying surfaces and climate zones.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024, https://doi.org/10.5194/gmd-17-4579-2024, 2024
Short summary
Short summary
By directly analyzing the proximity of precipitation forecasts and observations, a precipitation accuracy score (PAS) method was constructed. This method does not utilize a traditional contingency-table-based classification verification; however, it can replace the threat score (TS), equitable threat score (ETS), and other skill score methods, and it can be used to calculate the accuracy of numerical models or quantitative precipitation forecasts.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev., 16, 1755–1777, https://doi.org/10.5194/gmd-16-1755-2023, https://doi.org/10.5194/gmd-16-1755-2023, 2023
Short summary
Short summary
A new global surface-wave–tide–circulation coupled ocean model (FIO-COM32) with a resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are shown to be important contributors to the significant improvements in FIO-COM32 simulations. It is time to merge these separated model components (surface waves, tidal currents and ocean circulation) and start a new generation of ocean model development.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Haolin Wang, Xiao Lu, Daniel J. Jacob, Owen R. Cooper, Kai-Lan Chang, Ke Li, Meng Gao, Yiming Liu, Bosi Sheng, Kai Wu, Tongwen Wu, Jie Zhang, Bastien Sauvage, Philippe Nédélec, Romain Blot, and Shaojia Fan
Atmos. Chem. Phys., 22, 13753–13782, https://doi.org/10.5194/acp-22-13753-2022, https://doi.org/10.5194/acp-22-13753-2022, 2022
Short summary
Short summary
We report significant global tropospheric ozone increases in 1995–2017 based on extensive aircraft and ozonesonde observations. Using GEOS-Chem (Goddard Earth Observing System chemistry model) multi-decadal global simulations, we find that changes in global anthropogenic emissions, in particular the rapid increases in aircraft emissions, contribute significantly to the increases in tropospheric ozone and resulting radiative impact.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022, https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
Short summary
This study uses a set of deep neural networks to learn a parameterization scheme from a superparameterized general circulation model (GCM). After being embedded in a realistically configurated GCM, the parameterization scheme performs stably in long-term climate simulations and reproduces reasonable climatology and climate variability. This success is the first for long-term stable climate simulations using machine learning parameterization under real geographical boundary conditions.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-52, https://doi.org/10.5194/gmd-2022-52, 2022
Revised manuscript not accepted
Short summary
Short summary
A new global surface wave-tide-circulation coupled ocean model FIO-COM32 with resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are proved to be important contributors to the significant improvements of FIO-COM32 simulations. It should be the time to merge these separated model components (surface wave, tidal current and ocean circulation) for new generation ocean model development.
Tingfeng Wu, Boqiang Qin, Anning Huang, Yongwei Sheng, Shunxin Feng, and Céline Casenave
Geosci. Model Dev., 15, 745–769, https://doi.org/10.5194/gmd-15-745-2022, https://doi.org/10.5194/gmd-15-745-2022, 2022
Short summary
Short summary
Most hydrodynamic models were initially developed based in marine environments. They cannot be directly applied to large lakes. Based on field observations and numerical experiments of a large shallow lake, we developed a hydrodynamic model by adopting new schemes of wind stress, wind waves, and turbulence for large lakes. Our model can greatly improve the simulation of lake currents. This study will be a reminder to limnologists to prudently use ocean models to study lake hydrodynamics.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Yixiong Lu, Tongwen Wu, Yubin Li, and Ben Yang
Geosci. Model Dev., 14, 5183–5204, https://doi.org/10.5194/gmd-14-5183-2021, https://doi.org/10.5194/gmd-14-5183-2021, 2021
Short summary
Short summary
The spurious precipitation in the tropical southeastern Pacific and southern Atlantic is one of the most prominent systematic biases in coupled atmosphere–ocean general circulation models. This study significantly promotes the marine stratus simulation and largely alleviates the excessive precipitation biases through improving parameterizations of boundary-layer turbulence and shallow convection, providing an effective solution to the long-standing bias in the tropical precipitation simulation.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021, https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary
Short summary
We investigated different methods to reconstruct spatiotemporal distribution of the fraction of diffuse radiation (Fdf) to qualify the aerosol impacts on GPP using the ORCHIDEE_DF land surface model. We find that climatological-averaging methods which dampen the variability of Fdf can cause significant bias in the modeled diffuse radiation impacts on GPP. Better methods to reconstruct Fdf are recommended.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Yihui Zhou, Yi Zhang, Jian Li, Rucong Yu, and Zhuang Liu
Geosci. Model Dev., 13, 6325–6348, https://doi.org/10.5194/gmd-13-6325-2020, https://doi.org/10.5194/gmd-13-6325-2020, 2020
Short summary
Short summary
This paper explores the configuration of a global atmospheric model (global-to-regional integrated forecast system-atmosphere; GRIST-A) with various multiresolution grids. The model performance is evaluated from dry dynamics to simple physics and full physics. The model is able to resolve the fine-scale structures in the grid-refinement region, and the adverse impact due to the mesh transition and the coarse-resolution area can be controlled well.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020, https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
Short summary
This study presents the development and evaluation of a new climate chemistry model, BCC-GEOS-Chem v1.0, which couples the GEOS-Chem chemical transport model as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model. A 3-year (2012–2014) simulation of BCC-GEOS-Chem v1.0 shows that the model captures well the spatiotemporal distributions of tropospheric ozone, other gaseous pollutants, and aerosols.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U.,Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeor, 4, 1147–1167, 2003.
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C.
E., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory
high-resolution climate simulations using the Community Atmosphere Model
(CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014.
Bates, J. R., Moorthi, S., and Higgins, R. W.: A global multilevel
atmospheric model using a vector semi-Lagrangian finite difference scheme,
Part I: Adiabatic formulation, Mon. Weather Rev., 121, 244–263, 1993.
Bell, R. J., Strachan, J., Vidale, P. L., Hodges, K. I., and Roberts, M.:
Response of tropical cyclones to idealized climate change experiments in a
global high resolution coupled general circulation model, J. Climate, 26,
7966–7980, 2013.
Beres, J. H., Alexander, M. J., and Holton, J. R.: A method of specifying
the gravity wave spectrum above convection based on latent heating
properties and background wind, J. Atmos. Sci., 61, 324–337, 2004.
Birch, C. E., Marsham, J. H., Parker, D. J., and Taylor, C. M.: The scale
dependence and structure of convergence fields preceding the initiation of
deep convection, Geophys. Res. Lett., 41, 4769–4776,
https://doi.org/10.1002/2014GL060493, 2014.
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in
the Community Atmosphere Model, J. Climate, 22, 3422–3448, 2009.
Bretherton, C. S. and Wyant, M. C.: Moisture transport, lower tropospheric
stability, and decoupling of cloud-topped boundary layers, J. Atmos. Sci.,
54, 148–167, 1997.
Burgers, G. and Stephenson D. B.: The “normality” of El Niño,
Geophys. Res. Lett., 26, 1027–1039, https://doi.org/10.1029/1999GL900161, 1999.
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Krüger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, S., Yukimoto, S., and Watanabe, S.: On the lack of
stratospheric dynamical variability in low-top versions of the CMIP5 models,
J. Geophys. Res.-Atmos., 118, 2494–2505, https://doi.org/10.1002/jgrd.50125, 2013.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S. J., Zhang,
M. H., and Dai, Y. J.: Description of the NCAR community atmosphere model
(CAM3), Technical Report NCAR/TN-464+STR, National Center for
Atmospheric Research, Boulder, Colorado, USA, 226 pp., 2004.
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, E., Bi, D., Biastoch, A., Böning, C., Bozec, A.,Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Simon, G. M., Marsland, J., Masina, S., Navarra, A., Nurser, A. J. G., Pirani, A., Mélia, D. S., Samuels, B. L., Scheinert, M., Sidorenko, D. Treguier, A.-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in Coordinated
Ocean-ice Reference Experiments phase II (CORE-II), Part I: Mean States,
Ocean Model., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005, 2014.
Davis, C. A.: Resolving tropical cyclone intensity in models, Geophys. Res. Lett., 45, 2082–2087, https://doi.org/10.1002/2017GL076966, 2018.
Delwortha, T. L., Broccolib, A. J., Rosatia, A., Stouffera, R. J., Balajic, V., Beesleyd, J. A., Cookee, W. F., Dixona, K. W., Dunnea, J., Dunnef, K. A., Durachtae, J. W., Findella, K. L., Ginouxa, P., Gnanadesikana, A., Gordona, C. T., Griffiesa, S. M., Gudgela, R., Harrisona, M. J., Helda, I. M., Hemlera, R. S., Horowitza, L. W., Kleina, S. A., Knutsona, T. R., Kushnerg, P. J., Langenhorste, A. R., Leee, H.-C., Lina, S.-J., Lud, J., Malyshevh, S. L., Millyf, P. C. D., Ramaswamya, V., Russellc, J., Schwarzkopfa, M. D., Shevliakovah, E., Sirutisa, J. J., Spelmana, M. J., Sterna, W. F., Wintona, M., Wittenberga, A. T., Wymana, B., Zenge, F., and Zhang, R.: GFDL's CM2 global coupled climate models, Part I:
Formulation and simulation characteristics, J. Climate, 19, 643–674,
https://doi.org/10.1175/JCLI3629.1, 2006.
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V.,
Benson, R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C.,
Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated climate
and climate change in the GFDL CM2.5 high resolution coupled climate model,
J. Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1, 2012.
Demory, M.-E., Vidale, P.-L., Roberts, M., Berrisford, P., Strachan, J.,
Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in
simulating drivers of the global hydrological cycle, Clim. Dynam., 42,
2201–2225, https://doi.org/10.1007/s00382-013-1924-4, 2014.
Dey, C.: Noise suppression in a primitive equation prediction model, Mon. Weather Rev., 106, 159–173, 1978.
Doi, T., Vecchi, G. A., Rosati, A. J., and Delworth, T. L.: Biases in the
Atlantic ITCZ in seasonal-interannual variations for a coarse- and a
high-resolution coupled climate model, J. Climate, 25, 5494–5511,
https://doi.org/10.1175/JCLI-D-11-00360.1, 2012.
Endo, H., Kitoh, A., Ose, T., Mizuta, R., and Kusunoki, S.: Future changes
and uncertainties in Asian precipitation simulated by multiphysics and
multi-sea surface temperature ensemble experiments with high-resolution
Meteorological Research Institute atmospheric general circulation models
(MRI-AGCMs), J. Geophys. Res.-Atmos., 117, D16118, https://doi.org/10.1029/2012JD017874,
2012.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of climate models, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 741–866, 2013.
Fleming, E. L., Chandra, S., Barnett, J. J., and Corney, M.: Zonal mean
temperature, pressure, zonal wind, and geopotential height as functions of
latitude, COSPAR International Reference Atmosphere: 1986, Part II: Middle
Atmosphere Models, Adv. Space Res., 10, 11–59,
https://doi.org/10.1016/0273-1177(90)90386-E, 1990.
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of mixed
layer eddies, I: Theory and diagnosis, J. Phys. Oceanogr., 38, 1145–1165, 2008.
Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Griffies, S. M., Hallberg, R.
W., Holland, M., Peacock, S., and Samuels, B.: Parameterization of mixed
layer eddies, III: Global implementation and impact on ocean climate
simulations, Ocean Model., 39, 61–78, 2011.
Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E. Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., and Swart, N. C.:
Making sense of the early-2000's warming slowdown, Nat. Clim. Change, 6,
224–228, 2016.
Garcia, R. R. and Richter, J. H.: On the momentum budget of the
quasi-biennial oscillation in the whole atmosphere community climate model,
J. Atmos. Sci., 76, 69–87, 2019.
Geller, M. A., Zhou, T., Shindell, D., Ruedy, R., Aleinov, I., Nazarenko, L., Tausnev, N. L., Kelley, M., Sun, S., Cheng, Y., Field, R. D., and Faluvegi, G.: Modeling the QBO – Improvements resulting from higher-model vertical resolution,
J. Adv. Model. Earth Sy., 8, 1092–1105, 2016.
Griffies, S. M.: Elements of the Modular Ocean Model (MOM), GFDL Ocean Group,
Technical Report No. 7, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA, 620 pp.,
2012.
Griffies, S. M., Gnanadesikan, A., Pacanowski, R. C., Larichev, V.,
Dukowicz, J. K., and Smith, R. D.: Isoneutral diffusion in a z-coordinate
ocean model, J. Phys. Oceanogr., 28, 805–830, 1998.
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020.
Hack, J. J.: Parameterization of moist convection in the National Center for
Atmospheric Research Community Climate Model (CCM2), J. Geophys. Res., 99,
5551–5568, 1994.
Harris, I. C. and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU)
Time-Series (TS) version 4.01 of high-resolution gridded data of
month-by-month variation in climate (January 1901–December 2016) [dataset],
Centre for Environmental Data Analysis, available at: https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0, 2017.
Hayashi, M., Jin, F. F., and Stuecker, M. F.: Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern, Nat. Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y, 2020.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF
Newsletter, No. 147, Reading, United Kingdom, 7 pp., available at: http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf (last access: 1 May 2020), 2016.
Hertwig, E., von Storch, J.-S., Handorf, D., Dethloff, K., Fast, I., and
Krismer, T.: Effect of horizontal resolution on ECHAM6-AMIP performance,
Clim. Dynam., 45, 185–211, https://doi.org/10.1007/s00382-014-2396-x, 2015.
Hewitt, H. T., Roberts, M. J., Hyder, P., Graham, T., Rae, J., Belcher, S. E., Bourdallé-Badie, R., Copsey, D., Coward, A., Guiavarch, C., Harris, C., Hill, R., Hirschi, J. J.-M., Madec, G., Mizielinski, M. S., Neininger, E., New, A. L., Rioual, J.-C., Sinha, B., Storkey, D., Shelly, A., Thorpe, L., and Wood, R. A.: The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution version of the Met Office GC2 coupled model, Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, 2016.
Holtslag, A. A. M. and Boville, B. A.: Local versus nonlocal boundary-layer
diffusion in a glocal climate model, J. Climate, 6, 1825–1842, 1993.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd,
C., Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.: NASA Global
Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for
GPM (IMERG), Algorithm Theoretical Basis Document (ATBD), Version 06, 2019.
Hwang, Y.-T. and Frierson, D. M. W.: Link between the double-Intertropical
Convergence Zone problem and cloud biases over the Southern Ocean, P. Natl.
Acad. Sci. USA, 110, 4935–4940, https://doi.org/10.1073/pnas.1213302110, 2013.
Ji, J.: A climate-vegetation interaction model: Simulating physical and
biological processes at the surface, J. Biogeogr., 22, 2063–2069,
1995.
Ji, J., Huang, M., and Li, K.: Prediction of carbon exchange between China
terrestrial ecosystem and atmosphere in 21st century, Sci. China Ser. D, 51, 885–898, 2008.
Jie, W., Zhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q.,
Yan, J., Ma, Q., and Wei, M.: BCC BCC-CSM2HR model output prepared for CMIP6
HighResMIP hist-1950 [dataset], Version 20200921, Earth System Grid Federation, available at: https://doi.org/10.22033/ESGF/CMIP6.2921, 2020.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and Morice, C. P.: Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010,
J. Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying Tropical Cyclone Data, B. Am. Meteorol. Soc., 91, 363–376,
https://doi.org/10.1175/2009BAMS2755.1, 2010.
Kim, H., Caron, J. M., Richter, J. H., and Simpson, I. R.: The lack of
QBO-MJO connection in CMIP6 models, Geophys. Res. Lett., 47,
e2020GL087295, https://doi.org/10.1029/2020GL087295, 2020.
Kinter, J. L., Cash, B., Achuthavarier, D., Adams, J., Altshuler, E.,
Dirmeyer, P., Doty, B., Huang, B., Jin, E. K., Marx, L., Manganello, J.,
Stan, C., Wakefield, T., Palmer, T., Hamrud, M., Jung, T., Miller, M.,
Towers, P., Wedi, N., Satoh, M., Tomita, H., Kodama, C., Nasuno, T., Oouchi,
K., Yamada, Y., Taniguchi, H., Andrews, P., Baer, T., Ezell, M., Halloy, C.,
John, D., Loftis, B., Mohr, R., and Wong, K.: Revolutionizing Climate
Modeling with Project Athena: A Multi-Institutional, International
Collaboration, B. Am. Meteorol. Soc., 94, 231–245,
https://doi.org/10.1175/BAMS-D-11-00043.1, 2013.
Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform
cloud, J. Climate, 6, 1587–1606, 1993.
Lal, M., Cubasch, U., Perlwitz, J. P., and Waszkewitz, J.: Simulation of the
Indian monsoon climatology in ECHAM3 climate model: Sensitivity to
horizontal resolution, Int. J. Climatol., 17, 847–858, 1997.
Large, W., McWilliams, J., and Doney, S.: Oceanic vertical mixing: a review
and a model with a nonlocal boundary layer
parameterization, Rev. Geophys., 32, 363–403, 1994.
Li, G. and Xie, S.-P.: Tropical biases in CMIP5 multimodel ensemble: The
excessive equatorial Pacific cold tongue and double ITCZ problems, J.
Climate, 27, 1765–1780, 2014.
Li, H. and Sriver, R. L.: Tropical Cyclone Activity in the High-Resolution
Community Earth System Model and the Impact of Ocean Coupling, J. Adv. Model. Earth Sy., 10, 165–186, https://doi.org/10.1002/2017MS001199, 2018.
Li, W., Zhang, Y., Shi, X., Zhou, W., Huang, A., Mu, M., Qiu, B., and Ji,
J.: Development of the Land Surface Model BCC_AVIM2.0 and Its
Preliminary Performance in LS3MIP/CMIP6, J. Meteorol. Res.-PRC, 33, 851–869,
https://doi.org/10.1007/s13351-019-9016-y, 2019.
Liebmann, B. and Smith, C. A.: Description of a Complete (Interpolated)
Outgoing Longwave Radiation Dataset, B. Am. Meteorol. Soc., 77, 1275–1277, 1996.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 data product, J. Climate, 31, 895–918,
https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.
Lu, Y., Wu, T., Jie, W., Scaife, A. A., Andrews, M. B., and Richter, J. H.:
Variability of the Stratospheric Quasi-Biennial Oscillation and Its Wave
Forcing Simulated in the Beijing Climate Center Atmospheric General
Circulation Model, J. Atmos. Sci., 77, 149–165, https://doi.org/10.1175/JAS-D-19-0123.1,
2020a.
Lu, Y., Wu, T., Li, Y., and Yang, B.: Mitigation of the double ITCZ syndrome in BCC-CSM2-MR through improving parameterizations of boundary-layer turbulence and shallow convection, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-40, in review, 2020b.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 Day Oscillation in
the Zonal Wind in the Tropical Pacific, J. Atmos. Sci., 28, 702–708, 1971.
Manganello, J. V., Hodges, K. I., Kinter, J. L., Cash, B. A., Marx, L.,
Jung, T., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Huang, B., Jin,
E. K., Stan, C., Towers, P., and Wedi, N.: Tropical Cyclone Climatology in a
10 km Global Atmospheric GCM: Toward Weather-Resolving Climate Modeling, J.
Climate, 25, 3867–3893, https://doi.org/10.1175/JCLI-D-11-00346.1, 2012.
Manizza, M., Le Quere, C., Watson, A. J., and Buitenhuis, E. T.: Bio-optical
feedbacks among phytoplankton, upper ocean physics and sea-ice in a global
model, Geophys. Res. Lett., 32, L05603, https://doi.org/10.1029/2004GL020778, 2005.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res., 102, 5733–5752, 1997.
Martin, G. M.: The simulation of the Asian summer monsoon, and its
sensitivity to horizontal resolution, in the UK meteorological office
unified model, Q. J. Roy. Meteor. Soc., 125, 1499–1525,
https://doi.org/10.1002/qj.49712555703, 1999.
Masson, S., Terray, P., Madec, G., Luo, J.-J., Yamagata, T., and Takahashi,
K.: Impact of intra-daily SST variability on ENSO characteristics in a
coupled model, Clim. Dynam., 39, 681–707, 2012.
Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y.,
Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., and
Yamagata, T.: A fifty-year eddy-resolving simulation of the world ocean –
Preliminary outcomes of OFES (OGCM for the Earth Simulator), J. Earth Sim.,
1, 35–56, 2004.
McFarlane, N. A.: The effect of orographically excited gravity wave drag on
the general circulation of the lower stratosphere and troposphere, J. Atmos.
Sci., 44, 1775–1800, 1987.
Medhaug, I., Martin, B. S., Erich, M. F., and Knutti, R.: Reconciling
controversies about the “global warming hiatus”, Nature, 545, 41–47, 2017.
Mizielinski, M. S., Roberts, M. J., Vidale, P. L., Schiemann, R., Demory, M.-E., Strachan, J., Edwards, T., Stephens, A., Lawrence, B. N., Pritchard, M., Chiu, P., Iwi, A., Churchill, J., del Cano Novales, C., Kettleborough, J., Roseblade, W., Selwood, P., Foster, M., Glover, M., and Malcolm, A.: High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign, Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, 2014.
Mizuta, R., Oouchi, K., Yoshimura, H., Noda, A., Katayama, K., Yukimoto, S.,
Hosaka, M., Kusunoki, S., Kawai, H., and Nakagawa, M.: 20 km-Mesh Global
Climate Simulations Using JMAGSMModel: Mean Climate States,
J. Meteorol. Soc. Jpn., 84, 165–185, 2006.
Morel, A. and Antoine, D.: Heating rate within the upper ocean in relation
to its bio-optical state, J. Phys. Oceanogr., 24, 1652–1665, 1994.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res. 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
Murakami, H.: Tropical cyclones in reanalysis data sets, Geophys. Res. Lett., 41, 2133–2141, 2014.
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E.,
Adachi, Y., Yukimoto, S., Hosaka, M., Kusunoki, S., Ose, T., and Kitoh, A.:
Future Changes in Tropical Cyclone Activity Projected by the New
High-Resolution MRI-AGCM, J. Climate, 25, 3237–3260,
https://doi.org/10.1175/JCLI-D-11-00415.1, 2012.
Murakami, H., Vecchi, G. A., Underwood, S., Delworth, T. L., Wittenberg, A.
T., Anderson, W. G., Chen, J.-H., Gudgel, R. G., Harris, L. M., Lin, S.-J.,
and Zeng, F.: Simulation and Prediction of Category 4 and 5 Hurricanes in
the High-Resolution GFDL HiFLOR Coupled Climate Model, J. Climate, 28,
9058–9079, 2015.
Nicholls, S. and Turton, J. D.: An observational study of the structure of
stratiform cloud sheets: Part II. Entrainment, Q. J. Roy. Meteor. Soc.,
112, 461–480, 1986.
Ohfuchi, W., Nakamura, H., Yoshioka, M. K., Enomoto, T., Takaya, K., Peng,
X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K.: 10 km mesh
meso-scale resolving simulations of the global atmosphere on the Earth
Simulator: Preliminary outcomes of AFES (AGCM for the Earth Simulator),
J. Earth Sim., 1, 8–34, 2004.
Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer,
P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P.,
Vertenstein, M., Yang, Z.-L., and Zeng, X.: Technical description of the
Community Land Model (CLM), NCAR Tech. Note TN-461+STR, University Corporation for Atmospheric Research, USA, 174 pp., https://doi.org/10.5065/D6N877R0, 2004.
Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and
Noda, A.: Tropical Cyclone Climatology in a Global-Warming Climate as
Simulated in a 20 km-Mesh Global Atmospheric Model: Frequency and Wind
Intensity Analyses, J. Meteorol. Soc. Jpn., 84, 259–276, 2006.
Park, S. and Bretherton, C. S.: The University of Washington shallow
convection and moist turbulence schemes and their impact on climate
simulations in the Community Atmosphere Model, J. Climate, 22, 3449–3469,
2009.
Peatman, S. C., Matthews, A. J., and Stevens, D. P.: Propagation of the
Madden-Julian Oscillation and scale interaction with the diurnal cycle in a
high-resolution GCM, Clim. Dynam., 45, 2901–2918,
https://doi.org/10.1007/s00382-015-2513-5, 2015.
Rackow, T., Goessling, H. F., Jung, T., Sidorenko, D., Semmler, T., Barbi,
D., and Handorf, D.: Towards multi-resolution global climate modeling with
ECHAM6-FESOM, Part II: climate variability, Clim. Dynam., 50, 2369–2394,
https://doi.org/10.1007/s00382-016-3192-6, 2016.
Rasch, P. J. and Kristjánsson, J. E.: A comparison of the
CCM3 model climate using diagnosed and predicted condensate
parameterizations, J. Climate, 11, 1587–1614, 1998.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Reed, K. A., Bacmeister, J. T., Rosenbloom, N. A., Wehner, M. F., Bates, S. C., Lauritzen, P. H., Truesdale, J. E., and Hannay, C.: Impact of the
dynamical core on the direct simulation of tropical cyclones in a
high-resolution global model, Geophys. Res. Lett., 42, GL063974,
https://doi.org/10.1002/2015GL063974, 2015.
Richter, I.: Climate model biases in the eastern tropical oceans: Causes,
impacts and ways forward, WIRES. Clim. Change, 6, 345–358, https://doi.org/10.1002/wcc.338, 2015.
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based
gravity wave source parameterization in a general circulation model, J.
Atmos. Sci., 67, 136–156, 2010.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018.
Roberts, M. J., Hewitt, H. T., Hyder, P., Ferreira, D., Josey, S. A.,
Mizielinski, M., and Shelly, A.: Impact of ocean resolution on coupled
air-sea fluxes and large-scale climate, Geophys. Res. Lett.,
43, 10430–10438, https://doi.org/10.1002/2016GL070559, 2016.
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019.
Sakamoto, T. T., Komuro, Y., Nishimura, T., Ishi, M., Tatebe, H., Shiogama,
H., Hasegawa, A., Toyoda, T., Mori, M., Suzuki, T., Imada, Y., Nozawa, T.,
Takata, K., Mochizuki, T., Ogochi, K., Emori, S., Hasumi, H., and Kimoto,
M.: MIROC4h – A New High-Resolution Atmosphere-Ocean Coupled General
Circulation Model, J. Meteorol. Soc. Jpn., 90, 325–359, 2012.
Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., and Wang, Y. Q.: Diurnal
cycle of precipitation in the tropics simulated in a global cloud-resolving
model, J. Climate, 22, 4809–4826, 2009.
Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda,
A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M.,
Ohno, Y., Iga, S., Arakawa, T., Inoue, T., and Kubokawa, H.: The
Non-hydrostatic Icosahedral Atmospheric Model: Description and development,
Progress in Earth and Planetary Science, 1, 18,
https://doi.org/10.1186/s40645-014-0018-1, 2014.
Schenzinger, V., Osprey, S., Gray, L., and Butchart, N.: Defining metrics of the Quasi-Biennial Oscillation in global climate models, Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, 2017.
Schiemann, R., Demory, M.-E., Mizielinski, M. S., Roberts, M. J.,
Shaffrey, L. C., Strachan, J., and Vidale, P. L.: The sensitivity of the
tropical circulation and Maritime Continent precipitation to climate model
resolution, Clim. Dynam., 42, 2455–2468, https://doi.org/10.1007/s00382-013-1997-0,
2014.
Semtner, A. J.: A model for the thermodynamic growth of sea ice in numerical
investigations of climate, J. Phys. Oceanogr., 6, 379–389, 1976.
Shaevitz, D., Camargo, S. J., Sobel, A. H., Jonas, J. A., Kim, D., Kumar,
A., LaRow, T. E., Lim, Y.-K., Murakami, H., Reed, K., Roberts, M. J.,
Scoccimarro, E., Vidale, P. L., Wang, H., Wehner, M. F., Zhao, M., and
Henderson, N.: Characteristics of tropical cyclones in high-resolution
models in the present climate, J. Adv. Model. Earth Sy., 6, 1154–1172,
https://doi.org/10.1002/2014MS000372, 2014.
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L.,
Harle, J. D., Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E.,
Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S.,
Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New,
A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.: UK
HiGEM: the new UK High-resolution Global Environment Model – model
description and basic evaluation, J. Climate, 22, 1861–1896,
https://doi.org/10.1175/2008JCLI2508.1, 2009.
Shi, Q. and Wang, G.: ObservedWarm Filaments from the Kuroshio Associated
with Mesoscale Eddies, Remote Sens.-Basel, 12, 3090, https://doi.org/10.3390/rs12183090, 2020.
Small, R. J., Bacmeister, J., Bailey, D. A., Baker, A., Bishop, S., Bryan,
F. O., Caron, J., Dennis, J., Gent, P. R., Hsu, H.-M., Jochum, M., Lawrence,
D. M., Munoz Acevedo, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia,
J., Tseng, Y., and Vertenstein, M.: A new synoptic scale resolving global
climate simulation using the Community Earth System Model, J. Adv. Model. Earth Sy., 6, 1065–1094, https://doi.org/10.1002/2014MS000363, 2014.
Small, R. J., Curchitser, E., Hedstrom, K., Kauffman, B., and Large, W. G.:
The Benguela upwelling system: Quantifying the sensitivity to resolution and
coastal wind representation in a global climate model, J. Climate, 28,
9409–9432, https://doi.org/10.1175/JCLI-D-15-0192.1, 2015.
Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M. W.: Numerical
Simulation of the North Atlantic Ocean at 1/10∘, J. Phys.
Oceanogr., 30, 1532–1561, 2000.
Sperber, K. R., Sultan, H., Potter, G. L., and Boyle, J. S.: Simulation of
the Northern summer monsoon in the ECMWF model: sensitivity to horizontal
resolution, Mon. Weather Rev., 122, 2461–2481, 1994.
Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6, Geosci. Model Dev., 10, 433–452, https://doi.org/10.5194/gmd-10-433-2017, 2017.
Strachan, J., Vidale, P. L., Hodges, K., Roberts, M., and Demory, M.-E.:
Investigating global tropical cyclone activity with a hierarchy of AGCMs:
The role of model resolution, J. Climate, 26, 133–152, 2013.
Sugi, M., Murakami, H., and Yoshida, K.: Projection of future changes in
the frequency of intense tropical cyclones, Clim. Dynam., 49, 619–632, 2017.
Sweby, P. K.: High resolution schemes using flux limiters for hyperbolic
conservation laws, SIAM J. Numer. Anal., 21, 995–1011, 1984.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of Cmip5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Tian, B., Fetzer, E. J., Kahn, B. H., Teixeira, J., Manning, E., and Hearty,
T.: Evaluating CMIP5 models using AIRS tropospheric air temperature and
specific humidity climatology, J. Geophys. Res.-Atmos., 118, 114–134, https://doi.org/10.1029/2012JD018607, 2013.
Turton, J. D. and Nicholls, L.: A study of the diurnal variation of
stratocumulus using a multiple mixed-layer model, Q. J. Roy. Meteor. Soc.,
113, 969–1009, 1987.
Vecchi, G. A., Delworth, T., Murakami, H., Underwood, S., Wittenberg, A. T.,
Zeng, F., Zhang, W., Baldwin, J. W., Bhatia, K., Cooke, W., He, J., Kapnick,
S. B., Knutson, T., Villarini, G., van der Wiel, K., Anderson, W., Balaji,
V., Chen, J., Dixon, K., Gudgel, R., Harris, L., Jia, L., Johnson, N., Lin,
S., Liu, M., Ng, J., Rosati, A., Smith, J., and Yang, X.: Tropical cyclone
sensitivities to CO2 doubling: Roles of atmospheric resolution,
synoptic variability and background climate changes, Clim. Dynam.,
53, 5999–6033, 2019.
Vellinga, M., Roberts, M., Vidale, P. L., Mizielinski, M., Demory, M.-E.,
Schiemann, R., Strachan, J., Bain, C., Kettleborough, J., Good, P., Edmond,
I., and Hibling, E.: Organised convection as the main carrier of Sahel
rainfall variability at multi-annual timescales, Geophys. Res. Lett., 43,
326–333, https://doi.org/10.1002/2015GL066690, 2016.
Walsh, K., Lavender, S., Scoccimarro, E., and Murakami, H.: Resolution
dependence of tropical cyclone formation in CMIP3 and finer resolution
models, Clim. Dynam., 40, 585–599, 2012.
Wehner, M. F., Smith, R. L., Bala, G., and Duffy, P.: The effect of
horizontal resolution on simulation of very extreme US precipitation events
in a global atmosphere model, Clim. Dynam., 34, 241–247, 2010.
Wehner, M. F., Prabhat, Reed, K. A., Stone, D., Collins, W. D., and
Bacmeister, J. T.: Resolution dependence of future tropical cyclone
projections of CAM5.1 in the US CLIVAR Hurricane Working Group idealized
configurations, J. Climate, 28, 3905–3925, https://doi.org/10.1175/JCLI-D-14-00311.1,
2015.
Wheeler, M. and Kiladis, G. N.: Convectively coupled equatorial waves:
Analysis of clouds and temperature in the wavenumber-frequency domain, J.
Atmos. Sci., 56, 374–399, 1999.
Wheeler, M. C. and Hendon, H. H.: An all-season real-time multivariate MJO
index: Development of an index for monitoring and prediction, Mon. Weather
Rev., 132, 1917–1932, 2004.
Whitehead, J. P., Jablonowski, C., Rood, R. B., and Lauritzen, P. H.: A
stability analysis of divergence damping on a latitude-longitude grid, Mon. Weather Rev., 139, 2976–2993, 2011.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Smith, G. L.,
and Cooper, J. E.: Clouds and the earth's radiant energy system (CERES): an
earth observing system experiment, B. Am. Meteorol. Soc., 77, 853–868,
1996.
Winton, M.: A reformulated three-layer sea ice model, J. Atmos.
Ocean. Tech., 17, 525–531, 2000.
Wood, R. and Bretherton, C. S.: Boundary-layer depth, entrainment, and
decoupling in the cloud-capped subtropical and tropical marine boundary
layer, J. Climate, 17, 3576–3588, 2004.
Wu, T.: A Mass-Flux Cumulus Parameterization Scheme for Large-sistercale
Models: Description and Test with Observations, Clim. Dynam., 38, 725–744,
https://doi.org/10.1007/s00382-011-0995-3, 2012.
Wu, T., Yu, R., and Zhang, F.: A modified dynamic framework for atmospheric
spectral model and its application, J. Atmos. Sci., 65, 2235–2253, 2008.
Wu, T., Yu, R., Zhang, F., Wang, Z., Dong, M., Wang, L., Jin, X., Chen, D.,
and Li, L.: The Beijing Climate Center atmospheric general circulation
model: description and its performance for the present-day climate,
Clim. Dynam., 34, 123–147, https://doi.org/10.1007/s00382-008-0487-2, 2010.
Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., Zhang, Y., Li, J., Zhang,
F., Wei, M., Shi, X., Wu, F., Zhang, L., Chu, M., Jie, W., Liu, Y., Wang,
F., Liu, X., Li, Q., Dong, M., Liang, X., Gao, Y., and Zhang, J.: Global
carbon budgets simulated by the Beijing climate center climate system model
for the last century, J. Geophys. Res.-Atmos., 118,
4326–4347, https://doi.org/10.1002/jgrd.50320, 2013.
Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang,
L., Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J., Fang,
Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q., Zhou, W., Dong, M., Zhao,
Q., Ji, J., Li, L., and Zhou, M.: An overview of BCC climate system model
development and application for climate change studies, J. Meteorol. Res.-PRC, 28, 34–56, 2014.
Wu, T., Hu, A., Gao, F., Zhang, J., and Meehl, G. A.: New insights into
natural variability and anthropogenic forcing of global/regional climate
evolution, npj Climate and Atmospheric Science, 2, 18, https://doi.org/10.1038/s41612-019-0075-7, 2019a.
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019b.
Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., Li, L., Yan, J., Liu, X., Lu, X., Tan, H., Zhang, L., Wang, J., and Hu, A.: Beijing Climate Center Earth System Model version 1 (BCC-ESM1): model description and evaluation of aerosol simulations, Geosci. Model Dev., 13, 977–1005, https://doi.org/10.5194/gmd-13-977-2020, 2020a.
Wu, T., Yu, R., Lu, Y., Jie, W., Fang, Y., Zhang, F., Zhang, J., Zhang, L., Xin, X., Wang, Z., Liu, Y., Wu, F., Chu, M., Li, J., Li, W., Zhang, Y., Shi, X., Yao, J., Liu, X., Yan, J., Zhao, H., Wei, M., Zhou, W., Li, L., Xue, W., Huang, A., Zhang, Y., Zhang, Y., and Shu, Q.: Source code for Wu et al.,
“BCC-CSM2-HR: A High-Resolution Version of the Beijing Climate Center
Climate System Model”, Geosci. Model Dev. publication, Zenodo,
https://doi.org/10.5281/zenodo.4127457, 2020b.
Xin, X., Wu, T., and Zhang, J.: Introduction of CMIP5 experiments carried
out with the climate system models of Beijing Climate Center, Advances in Climate Change Research, 4, 41–49, https://doi.org/10.3724/SP.J.1248.2013.041, 2013.
Xin, X., Wu, T., Zhang, J., Zhang, F., Li, W., Zhang, Y., Lu, Y., Fang, Y.,
Jie, W., Zhang, L., Dong, M., Shi, X., Chu, M., Liu, Q., and Yan, J.:
Introduction of BCC models and its participation in CMIP6,
Climate Change Research, 15, 533–539,
https://doi.org/10.12006/j.issn.1673-1719.2019.039, 2019.
Yao, J., Zhou, T., Guo, Z., and Chen, X.: Improved Performance of
High-Resolution Atmospheric Models in Simulating the East Asian Summer
Monsoon Rain Belt, J. Climate, 30, 8825–8840,
https://doi.org/10.1175/JCLI-D-16-0372.1, 2017.
Yu, R., Zhou, T., Wu, T., Xue, W., and Zhou, G.: Development
and Evaluation of High Resolution Climate System Models, Springer, Singapore, 258 pp., https://doi.org/10.1007/978-981-10-0033-1, 2016.
Zarzycki, C. M., Reed, K. A., Bacmeister, J. T., Craig, A. P., Bates, S. C., and Rosenbloom, N. A.: Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations, Geosci. Model Dev., 9, 779–788, https://doi.org/10.5194/gmd-9-779-2016, 2016.
Zhang, L., Zhou, T., Klingaman, N. P., Wu, P., and Roberts, M.: Effect of
Horizontal Resolution on the Representation of the Global Monsoon Annual
Cycle in AGCMs, Adv. Atmos. Sci., 35, 1003–1020, https://doi.org/10.1007/s00376-018-7273-9, 2018.
Zhang, M., Lin, W., Bretherton, C. S., Hack, J. J., and Rasch, P. J.: A
modified formulation of fractional stratiform condensation rate in the NCAR
community atmospheric model CAM2, J. Geophys. Res., J. Geophys. Res., 108, 4035, https://doi.org/10.1029/2002JD002523, 2003.
Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., and Chen, J.: On the computation of planetary boundary-layer height using the bulk Richardson number method, Geosci. Model Dev., 7, 2599–2611, https://doi.org/10.5194/gmd-7-2599-2014, 2014.
Zhao, M., Held, I. M., Lin, S. J., and Vecchi, G. A.: Simulations of Global
Hurricane Climatology, Interannual Variability, and Response to Global
Warming Using a 50 km Resolution GCM, J. Climate, 33, 6653–6678, 2009.
Zhao, M., Held, I. M., and Lin, S.-J.: Some counterintuitive dependencies of
tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69,
2272–2283, 2012.
Zhou, T., Chen, Z., Zou, L., Chen, X., Yu, Y., Wang, B., Bao, Q., Bao, Y.,
Cao, J., He, B., Hu, S., Li, L., Li, J., Lin, Y., Ma, L., Qiao, F., Rong,
X., Song, Z., Tang, Y., Wu, B., Wu, T., Xin, X., Zhang, H., and Zhang, M.:
Development of climate and earth system models in China: Past achievements
and new CMIP6 results, J. Meteorol. Res.-PRC, 34, 1–19, https://doi.org/10.1007/s13351-020-9164-0, 2020.
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate...