Articles | Volume 14, issue 5
Geosci. Model Dev., 14, 2801–2826, 2021
https://doi.org/10.5194/gmd-14-2801-2021
Geosci. Model Dev., 14, 2801–2826, 2021
https://doi.org/10.5194/gmd-14-2801-2021

Model description paper 19 May 2021

Model description paper | 19 May 2021

SimCloud version 1.0: a simple diagnostic cloud scheme for idealized climate models

Qun Liu et al.

Related authors

The Flexible Modelling Framework for the Met Office Unified Model (Flex-UM, part of the UM 12.1 release)
Penelope Maher and Paul Earnshaw
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-193,https://doi.org/10.5194/gmd-2021-193, 2021
Preprint under review for GMD
Short summary
Quantifying the potential future contribution to global mean sea level from the Filchner-Ronne basin, Antarctica
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-120,https://doi.org/10.5194/tc-2021-120, 2021
Preprint under review for TC
Short summary
Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes
Alex West, Mat Collins, and Ed Blockley
Geosci. Model Dev., 13, 4845–4868, https://doi.org/10.5194/gmd-13-4845-2020,https://doi.org/10.5194/gmd-13-4845-2020, 2020
Short summary
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019,https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity
Geoffrey K. Vallis, Greg Colyer, Ruth Geen, Edwin Gerber, Martin Jucker, Penelope Maher, Alexander Paterson, Marianne Pietschnig, James Penn, and Stephen I. Thomson
Geosci. Model Dev., 11, 843–859, https://doi.org/10.5194/gmd-11-843-2018,https://doi.org/10.5194/gmd-11-843-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Oil palm modelling in the global land surface model ORCHIDEE-MICT
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021,https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary
Testing the reliability of interpretable neural networks in geoscience using the Madden–Julian oscillation
Benjamin A. Toms, Karthik Kashinath, Prabhat, and Da Yang
Geosci. Model Dev., 14, 4495–4508, https://doi.org/10.5194/gmd-14-4495-2021,https://doi.org/10.5194/gmd-14-4495-2021, 2021
Short summary
Climate-model-informed deep learning of global soil moisture distribution
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 14, 4429–4441, https://doi.org/10.5194/gmd-14-4429-2021,https://doi.org/10.5194/gmd-14-4429-2021, 2021
Short summary
fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model
Jeremy McGibbon, Noah D. Brenowitz, Mark Cheeseman, Spencer K. Clark, Johann P. S. Dahm, Eddie C. Davis, Oliver D. Elbert, Rhea C. George, Lucas M. Harris, Brian Henn, Anna Kwa, W. Andre Perkins, Oliver Watt-Meyer, Tobias F. Wicky, Christopher S. Bretherton, and Oliver Fuhrer
Geosci. Model Dev., 14, 4401–4409, https://doi.org/10.5194/gmd-14-4401-2021,https://doi.org/10.5194/gmd-14-4401-2021, 2021
Short summary
Recalibrating decadal climate predictions – what is an adequate model for the drift?
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021,https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary

Cited articles

Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008jd010049, 2009. a
Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S., Zhang, Y., Marchand, R., Haynes, J., Pincus, R., and John, V.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011bams2856.1, 2011. a
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005gl023851, 2005. a
Bony, S., Dufresne, J.-L., Le Treut, H., Morcrette, J.-J., and Senior, C.: On dynamic and thermodynamic components of cloud changes, Clim. Dynam., 22, 71–86, https://doi.org/10.1007/s00382-003-0369-6, 2004. a, b
Boville, B. A., Rasch, P. J., Hack, J. J., and McCaa, J. R.: Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3), J. Climate, 19, 2184–2198, https://doi.org/10.1175/jcli3749.1, 2006. a, b, c
Download
Short summary
Clouds play an vital role in Earth's energy budget, and even a small change in cloud fields can have a large impact on the climate system. They also bring lots of uncertainties to climate models. Here we implement a simple diagnostic cloud scheme in order to reproduce the general radiative properties of clouds. The scheme can capture some key features of the cloud fraction and cloud radiative properties and thus provide a useful tool to explore unsolved problems relating to clouds.