Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Alexey N. Shiklomanov
CORRESPONDING AUTHOR
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Michael C. Dietze
Department of Earth and Environment, Boston University, Boston, MA, USA
Istem Fer
Finnish Meteorological Institute, Helsinki, Finland
Toni Viskari
Finnish Meteorological Institute, Helsinki, Finland
Shawn P. Serbin
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Related authors
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steve J. Smith, Claudia Tebaldi, Dawn Woodard, and Ben Bond-Lamberty
EGUsphere, https://doi.org/10.5194/egusphere-2023-1477, https://doi.org/10.5194/egusphere-2023-1477, 2023
Short summary
Short summary
Hector is an easy-to-use global climate-carbon cycle model. With its quick run time Hector can provide climate information from a run in a fraction of a second. Hector models global and annual basis. Here we present an updated version of the model, Hector V3. In this manuscript, we document Hector’s new features. Hector V3 is capable of reproducing historical observations and its future temperature projections are consistent with more complex models.
Dawn L. Woodard, Alexey N. Shiklomanov, Ben Kravitz, Corinne Hartin, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 4751–4767, https://doi.org/10.5194/gmd-14-4751-2021, https://doi.org/10.5194/gmd-14-4751-2021, 2021
Short summary
Short summary
We have added a representation of the permafrost carbon feedback to the simple, open-source global carbon–climate model Hector and calibrated the results to be consistent with historical data and Earth system model projections. Our results closely match previous work, estimating around 0.2 °C of warming from permafrost this century. This capability will be useful to explore uncertainties in this feedback and for coupling with integrated assessment models for policy and economic analysis.
Jeff W. Atkins, Elizabeth Agee, Alexandra Barry, Kyla M. Dahlin, Kalyn Dorheim, Maxim S. Grigri, Lisa T. Haber, Laura J. Hickey, Aaron G. Kamoske, Kayla Mathes, Catherine McGuigan, Evan Paris, Stephanie C. Pennington, Carly Rodriguez, Autym Shafer, Alexey Shiklomanov, Jason Tallant, Christopher M. Gough, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 943–952, https://doi.org/10.5194/essd-13-943-2021, https://doi.org/10.5194/essd-13-943-2021, 2021
Short summary
Short summary
The fortedata R package is an open data notebook from the Forest Resilience Threshold Experiment (FoRTE) – a modeling and manipulative field experiment that tests the effects of disturbance severity and disturbance type on carbon cycling dynamics in a temperate forest. The data included help to interpret how carbon cycling processes respond over time to disturbance.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steve J. Smith, Claudia Tebaldi, Dawn Woodard, and Ben Bond-Lamberty
EGUsphere, https://doi.org/10.5194/egusphere-2023-1477, https://doi.org/10.5194/egusphere-2023-1477, 2023
Short summary
Short summary
Hector is an easy-to-use global climate-carbon cycle model. With its quick run time Hector can provide climate information from a run in a fraction of a second. Hector models global and annual basis. Here we present an updated version of the model, Hector V3. In this manuscript, we document Hector’s new features. Hector V3 is capable of reproducing historical observations and its future temperature projections are consistent with more complex models.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Toni Viskari, Janne Pusa, Istem Fer, Anna Repo, Julius Vira, and Jari Liski
Geosci. Model Dev., 15, 1735–1752, https://doi.org/10.5194/gmd-15-1735-2022, https://doi.org/10.5194/gmd-15-1735-2022, 2022
Short summary
Short summary
We wanted to examine how the chosen measurement data and calibration process affect soil organic carbon model calibration. In our results we found that there is a benefit in using data from multiple litter-bag decomposition experiments simultaneously, even with the required assumptions. Additionally, due to the amount of noise and uncertainties in the system, more advanced calibration methods should be used to parameterize the models.
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022, https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Short summary
Better monitoring of soil carbon sequestration is needed to understand the best carbon farming practices in different soils and climate conditions. We, the Field Observatory Network (FiON), have therefore established a methodology for monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, and modeling. To disseminate our work, we built a website called the Field Observatory (fieldobservatory.org).
Dawn L. Woodard, Alexey N. Shiklomanov, Ben Kravitz, Corinne Hartin, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 4751–4767, https://doi.org/10.5194/gmd-14-4751-2021, https://doi.org/10.5194/gmd-14-4751-2021, 2021
Short summary
Short summary
We have added a representation of the permafrost carbon feedback to the simple, open-source global carbon–climate model Hector and calibrated the results to be consistent with historical data and Earth system model projections. Our results closely match previous work, estimating around 0.2 °C of warming from permafrost this century. This capability will be useful to explore uncertainties in this feedback and for coupling with integrated assessment models for policy and economic analysis.
Kathryn I. Wheeler and Michael C. Dietze
Biogeosciences, 18, 1971–1985, https://doi.org/10.5194/bg-18-1971-2021, https://doi.org/10.5194/bg-18-1971-2021, 2021
Short summary
Short summary
Monitoring leaf phenology (i.e., seasonality) allows for tracking the progression of climate change and seasonal variations in a variety of organismal and ecosystem processes. Recent versions of the Geostationary Operational Environmental Satellites allow for the monitoring of a phenological-sensitive index at a high temporal frequency (5–10 min) throughout most of the western hemisphere. Here we show the high potential of these new data to measure the phenology of deciduous forests.
Jeff W. Atkins, Elizabeth Agee, Alexandra Barry, Kyla M. Dahlin, Kalyn Dorheim, Maxim S. Grigri, Lisa T. Haber, Laura J. Hickey, Aaron G. Kamoske, Kayla Mathes, Catherine McGuigan, Evan Paris, Stephanie C. Pennington, Carly Rodriguez, Autym Shafer, Alexey Shiklomanov, Jason Tallant, Christopher M. Gough, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 943–952, https://doi.org/10.5194/essd-13-943-2021, https://doi.org/10.5194/essd-13-943-2021, 2021
Short summary
Short summary
The fortedata R package is an open data notebook from the Forest Resilience Threshold Experiment (FoRTE) – a modeling and manipulative field experiment that tests the effects of disturbance severity and disturbance type on carbon cycling dynamics in a temperate forest. The data included help to interpret how carbon cycling processes respond over time to disturbance.
Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski
Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020, https://doi.org/10.5194/gmd-13-5959-2020, 2020
Short summary
Short summary
The research here established whether a Bayesian statistical method called state data assimilation could be used to improve soil organic carbon (SOC) forecasts. Our test case was a fallow experiment where SOC content was measured over several decades from a plot where all vegetation was removed. Our results showed that state data assimilation improved projections and allowed for the detailed model state be updated with coarse total carbon measurements.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Marcos Longo, Ryan G. Knox, David M. Medvigy, Naomi M. Levine, Michael C. Dietze, Yeonjoo Kim, Abigail L. S. Swann, Ke Zhang, Christine R. Rollinson, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, https://doi.org/10.5194/gmd-12-4309-2019, 2019
Short summary
Short summary
Our paper describes the Ecosystem Demography model. This computer program calculates how plants and ground exchange heat, water, and carbon with the air, and how plants grow, reproduce and die in different climates. Most models simplify forests to an average big tree. We consider that tall, deep-rooted trees get more light and water than small plants, and that some plants can with shade and drought. This diversity helps us to better explain how plants live and interact with the atmosphere.
Marcos Longo, Ryan G. Knox, Naomi M. Levine, Abigail L. S. Swann, David M. Medvigy, Michael C. Dietze, Yeonjoo Kim, Ke Zhang, Damien Bonal, Benoit Burban, Plínio B. Camargo, Matthew N. Hayek, Scott R. Saleska, Rodrigo da Silva, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, https://doi.org/10.5194/gmd-12-4347-2019, 2019
Short summary
Short summary
The Ecosystem Demography model calculates the fluxes of heat, water, and carbon between plants and ground and the air, and the life cycle of plants in different climates. To test if our calculations were reasonable, we compared our results with field and satellite measurements. Our model predicts well the extent of the Amazon forest, how much light forests absorb, and how much water forests release to the air. However, it must improve the tree growth rates and how fast dead plants decompose.
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019, https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Short summary
We assess the differences of six stomatal conductance formulations, embedded into a land–vegetation model JSBACH, on 10 boreal coniferous evergreen forest sites. We calibrate the model parameters using all six functions in a multi-year experiment, as well as for a separate drought event at one of the sites, using the adaptive population importance sampler. The analysis reveals weaknesses in the stomatal conductance formulation-dependent model behaviour that we are able to partially amend.
Istem Fer, Ryan Kelly, Paul R. Moorcroft, Andrew D. Richardson, Elizabeth M. Cowdery, and Michael C. Dietze
Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, https://doi.org/10.5194/bg-15-5801-2018, 2018
Short summary
Short summary
The computer models we use to understand and forecast the ecosystem changes have multiple components that determine their outcomes. Due to our limited observation capacities, these components bear uncertainties that in return affect our predictions. While there are techniques for reducing these uncertainties, they are not applicable to every model due to computational and statistical barriers. This research presents a method that lowers those barriers and allows us to improve model predictions.
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018, https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary
Short summary
Large uncertainty is inherent in model predictions due to imperfect knowledge of how to describe the processes that a model is intended to represent. Yet methods to quantify and evaluate this model hypothesis uncertainty are limited. To address this, the multi-assumption architecture and testbed (MAAT) automates the generation of all possible models by combining multiple representations of multiple processes. MAAT provides a formal framework for quantification of model hypothesis uncertainty.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Keith F. Lewin, Andrew M. McMahon, Kim S. Ely, Shawn P. Serbin, and Alistair Rogers
Biogeosciences, 14, 4071–4083, https://doi.org/10.5194/bg-14-4071-2017, https://doi.org/10.5194/bg-14-4071-2017, 2017
Short summary
Short summary
Experiments that manipulate the temperature of plants and ecosystems are used to improve understanding of how they will respond to climate change. In logistically challenging locations passive warming using solar energy is the the only viable option for warming experiments. Unfortunately current passive warming approaches can only raise air temperature by about 1.5 °C. We have developed a novel approach that doubles the warming possible using solar energy and requires no power.
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
T. Viskari, E. Asmi, P. Kolmonen, H. Vuollekoski, T. Petäjä, and H. Järvinen
Atmos. Chem. Phys., 12, 11767–11779, https://doi.org/10.5194/acp-12-11767-2012, https://doi.org/10.5194/acp-12-11767-2012, 2012
T. Viskari, E. Asmi, A. Virkkula, P. Kolmonen, T. Petäjä, and H. Järvinen
Atmos. Chem. Phys., 12, 11781–11793, https://doi.org/10.5194/acp-12-11781-2012, https://doi.org/10.5194/acp-12-11781-2012, 2012
Related subject area
Biogeosciences
SedTrace 1.0: a Julia-based framework for generating and running reactive-transport models of marine sediment diagenesis specializing in trace elements and isotopes
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands
Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water and nitrogen perturbations
Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
Implementation of trait-based ozone plant sensitivity in the Yale Interactive terrestrial Biosphere model v1.0 to assess global vegetation damage
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0
An along-track biogeochemical Argo modelling framework, a case study of model improvements for the Nordic Seas
Peatland-VU-NUCOM (PVN 1.0): Using dynamic PFTs to model peatland vegetation, CH4 and CO2 emissions
CompLaB v1.0: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics
Validation of a new spatially explicit process-based model (HETEROFOR) to simulate structurally and compositionally complex forest stands in eastern North America
Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES-HYDRO V1.0)
A Novel Eulerian Reaction-Transport Model to Simulate Age and Reactivity Continua Interacting with Mixing Processes
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model
FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8.1
Simulating long-term responses of soil organic matter turnover to substrate stoichiometry by abstracting fast and small-scale microbial processes: the Soil Enzyme Steady Allocation Model (SESAM; v3.0)
Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0)
Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the Caxiuanã drought experiment
Matrix representation of lateral soil movements: scaling and calibrating CE-DYNAM (v2) at a continental level
CANOPS-GRB v1.0: a new Earth system model for simulating the evolution of ocean–atmosphere chemistry over geologic timescales
Low sensitivity of three terrestrial biosphere models to soil texture over the South American tropics
FESDIA (v1.0): exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling
Impact of changes in climate and CO2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02
FORCCHN V2.0: an individual-based model for predicting multiscale forest carbon dynamics
Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation
Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5)
The impact of hurricane disturbances on a tropical forest: implementing a palm plant functional type and hurricane disturbance module in ED2-HuDi V1.0
A validation standard for area of habitat maps for terrestrial birds and mammals
Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases: SCEPTER v0.9
Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)
A map of global peatland extent created using machine learning (Peat-ML)
Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Jianghui Du
Geosci. Model Dev., 16, 5865–5894, https://doi.org/10.5194/gmd-16-5865-2023, https://doi.org/10.5194/gmd-16-5865-2023, 2023
Short summary
Short summary
Trace elements and isotopes (TEIs) are important tools to study the changes in the ocean environment both today and in the past. However, the behaviors of TEIs in marine sediments are poorly known, limiting our ability to use them in oceanography. Here we present a modeling framework that can be used to generate and run models of the sedimentary cycling of TEIs assisted with advanced numerical tools in the Julia language, lowering the coding barrier for the general user to study marine TEIs.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Hocheol Seo and Yeonjoo Kim
Geosci. Model Dev., 16, 4699–4713, https://doi.org/10.5194/gmd-16-4699-2023, https://doi.org/10.5194/gmd-16-4699-2023, 2023
Short summary
Short summary
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of carbon is released into the atmosphere by wildfires annually. Because the fire processes are still limitedly represented in land surface models, we forced the daily GFED4 burned area into the land surface model over Alaska and Siberia. The results with the GFED4 burned area significantly improved the simulated carbon emissions and net ecosystem exchange compared to the default simulation.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-107, https://doi.org/10.5194/gmd-2023-107, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-74, https://doi.org/10.5194/gmd-2023-74, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We develop a machine learning based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a lightweight way.
Jens Heinke, Susanne Rolinski, and Christoph Müller
Geosci. Model Dev., 16, 2455–2475, https://doi.org/10.5194/gmd-16-2455-2023, https://doi.org/10.5194/gmd-16-2455-2023, 2023
Short summary
Short summary
We develop a livestock module for the global vegetation model LPJmL5.0 to simulate the impact of grazing dairy cattle on carbon and nitrogen cycles in grasslands. A novelty of the approach is that it accounts for the effect of feed quality on feed uptake and feed utilization by animals. The portioning of dietary nitrogen into milk, feces, and urine shows very good agreement with estimates obtained from animal trials.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-66, https://doi.org/10.5194/gmd-2023-66, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Yimian Ma, Xu Yue, Stephen Sitch, Nadine Unger, Johan Uddling, Lina M. Mercado, Cheng Gong, Zhaozhong Feng, Huiyi Yang, Hao Zhou, Chenguang Tian, Yang Cao, Yadong Lei, Alexander W. Cheesman, Yansen Xu, and Maria Carolina Duran Rojas
Geosci. Model Dev., 16, 2261–2276, https://doi.org/10.5194/gmd-16-2261-2023, https://doi.org/10.5194/gmd-16-2261-2023, 2023
Short summary
Short summary
Plants have been found to respond differently to O3, but the variations in the sensitivities have rarely been explained nor fully implemented in large-scale assessment. This study proposes a new O3 damage scheme with leaf mass per area to unify varied sensitivities for all plant species. Our assessment reveals an O3-induced reduction of 4.8 % in global GPP, with the highest reduction of >10 % for cropland, suggesting an emerging risk of crop yield loss under the threat of O3 pollution.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-72, https://doi.org/10.5194/gmd-2023-72, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on Earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential Earth-surface, ecological and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how the evolution of land and landforms co-evolve to produce distinct biodiversity patterns on geological time scales.
Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer
Geosci. Model Dev., 16, 2011–2036, https://doi.org/10.5194/gmd-16-2011-2023, https://doi.org/10.5194/gmd-16-2011-2023, 2023
Short summary
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-25, https://doi.org/10.5194/gmd-2023-25, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a framework that links biogeochemical-Argo data to models. We utilize Argo dataset to identify sources of model errors, improve and validate model configurations. We imitate the observed physical conditions along the biogeochemical-Argo tracks and focus on the biogeochemical model formulations and parameterizations. We showcase the framework for the Nordic Seas and focus on improvements towards model chlorophyll-a and production dynamics.
Tanya J. R. Lippmann, Monique M. P. D. Heijmans, Ype van der Velde, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-48, https://doi.org/10.5194/gmd-2023-48, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Peatlands store approximately one third of the planet’s terrestrial carbon and have the ability to bother further sequester or release the stored carbon. Process based model are useful tools to understand how peatlands change with changing environmental conditions. Vegetation is a critical component to the exchange of carbon in peatlands but an often overlooked concept in many peatland models. We developed a new model, capable of simulating the response of vegetation to changing environments.
Heewon Jung, Hyun-Seob Song, and Christof Meile
Geosci. Model Dev., 16, 1683–1696, https://doi.org/10.5194/gmd-16-1683-2023, https://doi.org/10.5194/gmd-16-1683-2023, 2023
Short summary
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.
Arthur Guignabert, Quentin Ponette, Frédéric André, Christian Messier, Philippe Nolet, and Mathieu Jonard
Geosci. Model Dev., 16, 1661–1682, https://doi.org/10.5194/gmd-16-1661-2023, https://doi.org/10.5194/gmd-16-1661-2023, 2023
Short summary
Short summary
Spatially explicit and process-based models are useful to test innovative forestry practices under changing and uncertain conditions. However, their larger use is often limited by the restricted range of species and stand structures they can reliably account for. We therefore calibrated and evaluated such a model, HETEROFOR, for 23 species across southern Québec. Our results showed that the model is robust and can predict accurately both individual tree growth and stand dynamics in this region.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
EGUsphere, https://doi.org/10.5194/egusphere-2023-278, https://doi.org/10.5194/egusphere-2023-278, 2023
Short summary
Short summary
This paper introduces a plant hydrodynamic model for the DOE-sponsored dynamic vegetation model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest systems in particular, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We have identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
EGUsphere, https://doi.org/10.5194/egusphere-2023-46, https://doi.org/10.5194/egusphere-2023-46, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, bottom trawling, etc. We derive equations for simulating the effect of mixing on central moments that describe the distributions. Then, we demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt
Geosci. Model Dev., 16, 813–832, https://doi.org/10.5194/gmd-16-813-2023, https://doi.org/10.5194/gmd-16-813-2023, 2023
Short summary
Short summary
Planktic foraminifera are marine-calcifying zooplankton; their shells are widely used to measure past temperature and productivity. We developed ForamEcoGEnIE 2.0 to simulate the four subgroups of this organism. We found that the relative abundance distribution agrees with marine sediment core-top data and that carbon export and biomass are close to sediment trap and plankton net observations respectively. This model provides the opportunity to study foraminiferal ecology in any geological era.
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023, https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Thomas Wutzler, Lin Yu, Marion Schrumpf, and Sönke Zaehle
Geosci. Model Dev., 15, 8377–8393, https://doi.org/10.5194/gmd-15-8377-2022, https://doi.org/10.5194/gmd-15-8377-2022, 2022
Short summary
Short summary
Soil microbes process soil organic matter and affect carbon storage and plant nutrition at the ecosystem scale. We hypothesized that decadal dynamics is constrained by the ratios of elements in litter inputs, microbes, and matter and that microbial community optimizes growth. This allowed the SESAM model to descibe decadal-term carbon sequestration in soils and other biogeochemical processes explicitly accounting for microbial processes but without its problematic fine-scale parameterization.
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, and Panos Panagos
Geosci. Model Dev., 15, 7835–7857, https://doi.org/10.5194/gmd-15-7835-2022, https://doi.org/10.5194/gmd-15-7835-2022, 2022
Short summary
Short summary
Currently, spatially explicit models for soil carbon stock can simulate the impacts of several changes. However, they do not incorporate the erosion, lateral transport, and deposition (ETD) of soil material. The present work developed ETD formulation, illustrated model calibration and validation for Europe, and presented the results for a depositional site. We expect that our work advances ETD models' description and facilitates their reproduction and incorporation in land surface models.
Kazumi Ozaki, Devon B. Cole, Christopher T. Reinhard, and Eiichi Tajika
Geosci. Model Dev., 15, 7593–7639, https://doi.org/10.5194/gmd-15-7593-2022, https://doi.org/10.5194/gmd-15-7593-2022, 2022
Short summary
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean–atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 level and has the potential to greatly refine our current understanding of Earth's oxygenation history.
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022, https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Short summary
Drought stress occurs in plants when water supply (i.e. root water uptake) is lower than the water demand (i.e. atmospheric demand). It is strongly related to soil properties and expected to increase in intensity and frequency in the tropics due to climate change. In this study, we show that contrary to the expectations, state-of-the-art terrestrial biosphere models are mostly insensitive to soil texture and hence probably inadequate to reproduce in silico the plant water status in drying soils.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Jing Fang, Herman H. Shugart, Feng Liu, Xiaodong Yan, Yunkun Song, and Fucheng Lv
Geosci. Model Dev., 15, 6863–6872, https://doi.org/10.5194/gmd-15-6863-2022, https://doi.org/10.5194/gmd-15-6863-2022, 2022
Short summary
Short summary
Our study provided a detailed description and a package of an individual tree-based carbon model, FORCCHN2. This model used non-structural carbohydrate (NSC) pools to couple tree growth and phenology. The model could reproduce daily carbon fluxes across Northern Hemisphere forests. Given the potential importance of the application of this model, there is substantial scope for using FORCCHN2 in fields as diverse as forest ecology, climate change, and carbon estimation.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Jiaying Zhang, Rafael L. Bras, Marcos Longo, and Tamara Heartsill Scalley
Geosci. Model Dev., 15, 5107–5126, https://doi.org/10.5194/gmd-15-5107-2022, https://doi.org/10.5194/gmd-15-5107-2022, 2022
Short summary
Short summary
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model with observations of a tropical forest. We used the model to study forest recovery from hurricane disturbance and found that a single hurricane disturbance enhances AGB and BA in the long term compared with a no-hurricane situation. The model developed and results presented in this study can be utilized to understand the impact of hurricane disturbances on forest recovery under the changing climate.
Prabhat Raj Dahal, Maria Lumbierres, Stuart H. M. Butchart, Paul F. Donald, and Carlo Rondinini
Geosci. Model Dev., 15, 5093–5105, https://doi.org/10.5194/gmd-15-5093-2022, https://doi.org/10.5194/gmd-15-5093-2022, 2022
Short summary
Short summary
This paper describes the validation of area of habitat (AOH) maps produced for terrestrial birds and mammals. The main objective was to assess the accuracy of the maps based on independent data. We used open access data from repositories, such as ebird and gbif to check if our maps were a better reflection of species' distribution than random. When points were not available we used logistic models to validate the AOH maps. The majority of AOH maps were found to have a high accuracy.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022, https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Short summary
We describe the coupled bio-physical model ECOSMO II(CHL), which is used for regional configurations for the North Atlantic and the Arctic hind-casting and operational purposes. The model is consistent with the large-scale climatological nutrient settings and is capable of representing regional and seasonal changes, and model primary production agrees with previous measurements. For the users of this model, this paper provides the underlying science, model evaluation and its development.
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022, https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Short summary
We present the Water Ecosystems Tool (WET) – a new modular aquatic ecosystem model configurable to a wide array of physical setups, ecosystems and research questions based on the popular FABM–PCLake model. We aim for the model to become a community staple, thus helping to consolidate the state of the art under a few flexible models, with the aim of improving comparability across studies and preventing the
re-inventions of the wheelthat are common to our scientific modeling community.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Cited articles
Asner, G. P.: Biophysical and Biochemical Sources of Variability in
Canopy Reflectance, Remote Sens. Environ., 64, 234–253,
https://doi.org/10.1016/S0034-4257(98)00014-5, 1998. a
Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and
da Rocha, H. R.: Seasonal Drought Stress in the Amazon: Reconciling
Models and Observations, J. Geophys. Res.-Biogeo.,
113, G00B01, https://doi.org/10.1029/2007JG000644, 2008. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and
the Climate Benefits of Forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008. a, b
Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnère, A.,
Myneni, R., Knyazikhin, Y., and Wang, L.: Retrieval of Canopy Biophysical
Variables from Bidirectional Reflectance: Using Prior Information to
Solve the Ill-Posed Inverse Problem, Remote Sens. Environ., 84,
1–15, https://doi.org/10.1016/S0034-4257(02)00035-4, 2003. a, b
Dickinson, R. E.: Land Surface Processes and
Climate–Surface Albedos and Energy Balance, in:
Advances in Geophysics, edited by: Saltzman, B., vol. 25 of Theory of
Climate Proceedings of a Symposium Commemorating the
Two-Hundredth Anniversary of the Academy of Sciences of
Lisbon, Elsevier, 305–353, 1983. a, b, c
Dietze, M. C., Wolosin, M. S., and Clark, J. S.: Capturing Diversity and
Interspecific Variability in Allometries: A Hierarchical Approach, Forest
Ecol. Manage., 256, 1939–1948, https://doi.org/10.1016/j.foreco.2008.07.034,
2008. a
Dietze, M. C., Serbin, S. P., Davidson, C., Desai, A. R., Feng, X., Kelly, R.,
Kooper, R., LeBauer, D., Mantooth, J., McHenry, K., and Wang, D.: A
Quantitative Assessment of a Terrestrial Biosphere Model's Data Needs across
North American Biomes, J. Geophys. Res.-Biogeo.,
119, 2013JG002392, https://doi.org/10.1002/2013JG002392, 2014. a
Dolezal, J., Jandova, V., Macek, M., and Liancourt, P.: Contrasting Biomass
Allocation Responses across Ontogeny and Stress Gradients Reveal Plant
Adaptations to Drought and Cold, Funct. Ecol., 35, 32–42,
https://doi.org/10.1111/1365-2435.13687, 2021. a
Fang, H., Wei, S., and Liang, S.: Validation of MODIS and CYCLOPES LAI
Products Using Global Field Measurement Data, Remote Sens. Environ.,
119, 43–54, https://doi.org/10.1016/j.rse.2011.12.006, 2012. a
Fensholt, R., Sandholt, I., and Rasmussen, M. S.: Evaluation of MODIS LAI,
fAPAR and the Relation between fAPAR and NDVI in a Semi-Arid
Environment Using in Situ Measurements, Remote Sens. Environ., 91,
490–507, https://doi.org/10.1016/j.rse.2004.04.009, 2004. a
Feret, J.-B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E.,
Bidel, L. P. R., Ustin, S. L., le Maire, G., and Jacquemoud, S.:
PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model
Separating Photosynthetic Pigments, Remote Sens. Environ., 112,
3030–3043, https://doi.org/10.1016/j.rse.2008.02.012, 2008. a, b
Ferraz, A., Saatchi, S., Longo, M., and Clark, D. B.: Tropical Tree
Size–Frequency Distributions from Airborne Lidar, Ecol. Appl., 30, e02154,
https://doi.org/10.1002/eap.2154, 2020. a
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze,
M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence,
P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman,
J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu,
C., Xu, X., Zhang, T., and Moorcroft, P. R.: Vegetation Demographics in
Earth System Models: A Review of Progress and Priorities, Glob.
Change Biol., 24, 35–54, https://doi.org/10.1111/gcb.13910, 2018. a, b
Forrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch,
H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty,
T., Saha, S., and Sileshi, G. W.: Generalized Biomass and Leaf Area
Allometric Equations for European Tree Species Incorporating Stand
Structure, Tree Age and Climate, Forest Ecol. Manage., 396,
160–175, https://doi.org/10.1016/j.foreco.2017.04.011, 2017. a, b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using Multiple
Sequences, Stat. Sci., 7, 457–472, 1992. a
Goudriaan, J.: Crop Micrometeorology: A Simulation Study, PhD thesis,
Wageningen University, 1977. a
Hartig, F., Minunno, F., and Paul, S.: BayesianTools: General-Purpose
MCMC and SMC Samplers and Tools for Bayesian Statistics, R package version 0.1.7,
available at: https://CRAN.R-project.org/package=BayesianTools (last access: 10 May 2021), 2019. a
Heinze, C., Eyring, V., Friedlingstein, P., Jones, C., Balkanski, Y., Collins, W., Fichefet, T., Gao, S., Hall, A., Ivanova, D., Knorr, W., Knutti, R., Löw, A., Ponater, M., Schultz, M. G., Schulz, M., Siebesma, P., Teixeira, J., Tselioudis, G., and Vancoppenolle, M.: ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation, Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, 2019. a
Hikosaka, K. and Terashima, I.: A Model of the Acclimation of Photosynthesis in
the Leaves of C3 Plants to Sun and Shade with Respect to Nitrogen Use,
Plant Cell Environ., 18, 605–618,
https://doi.org/10.1111/j.1365-3040.1995.tb00562.x, 1995. a
Hogan, R. J., Quaife, T., and Braghiere, R.: Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1, Geosci. Model Dev., 11, 339–350, https://doi.org/10.5194/gmd-11-339-2018, 2018. a, b, c
Huntingford, C., Fisher, R. A., Mercado, L., Booth, B. B., Sitch, S., Harris,
P. P., Cox, P. M., Jones, C. D., Betts, R. A., Malhi, Y., Harris, G. R.,
Collins, M., and Moorcroft, P.: Towards Quantifying Uncertainty in
Predictions of Amazon “Dieback”, Philos. T. Roy.
Soc. B, 363, 1857–1864,
https://doi.org/10.1098/rstb.2007.0028, 2008. a
Iio, A., Hikosaka, K., Anten, N. P. R., Nakagawa, Y., and Ito, A.: Global
Dependence of Field-Observed Leaf Area Index in Woody Species on Climate: A
Systematic Review, Global Ecol. Biogeogr., 23, 274–285,
https://doi.org/10.1111/geb.12133, 2014. a
Ivanov, V. Y., Bras, R. L., and Vivoni, E. R.: Vegetation-Hydrology Dynamics in
Complex Terrain of Semiarid Areas: 1. A Mechanistic Approach to Modeling
Dynamic Feedbacks, Water Resour. Res., 44, W03429, https://doi.org/10.1029/2006WR005588,
2008.
a
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J.,
Asner, G. P., François, C., and Ustin, S. L.: PROSPECT + SAIL
Models: A Review of Use for Vegetation Characterization, Remote Sens.
Environ., 113, Supplement 1, S56–S66, https://doi.org/10.1016/j.rse.2008.01.026,
2009. a
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R. A.:
Comprehensive Database of Diameter-Based Biomass Regressions for North
American Tree Species, Tech. Rep. NE-GTR-319, U.S. Department of
Agriculture, Forest Service, Northeastern Research Station, Newtown Square,
PA, https://doi.org/10.2737/NE-GTR-319, 2004. a, b
Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner,
G. P., Guralnick, R., Kattge, J., Latimer, A. M., Moorcroft, P., Schaepman,
M. E., Schildhauer, M. P., Schneider, F. D., Schrodt, F., Stahl, U., and
Ustin, S. L.: Monitoring Plant Functional Diversity from Space, Nature
Plants, 2, 16024, https://doi.org/10.1038/nplants.2016.24, 2016. a
Keenan, T. F. and Niinemets, Ü.: Global Leaf Trait Estimates Biased Due to
Plasticity in the Shade, Nature Plants, 3, p. 16201,
https://doi.org/10.1038/nplants.2016.201, 2016. a
Kennedy, R. E., Andréfouët, S., Cohen, W. B., Gómez, C., Griffiths,
P., Hais, M., Healey, S. P., Helmer, E. H., Hostert, P., Lyons, M. B., Meigs,
G. W., Pflugmacher, D., Phinn, S. R., Powell, S. L., Scarth, P., Sen, S.,
Schroeder, T. A., Schneider, A., Sonnenschein, R., Vogelmann, J. E., Wulder,
M. A., and Zhu, Z.: Bringing an Ecological View of Change to
Landsat-Based Remote Sensing, Front. Ecol. Environ.,
12, 339–346, https://doi.org/10.1890/130066, 2014. a
Knorr, W. and Lakshmi, V.: Assimilation of FAPAR and Surface
Temperature into a Land Surface and Vegetation Model, in: Land
Surface Hydrology, Meteorology, and Climate: Observations and
Modeling, American Geophysical Union (AGU), 177–200,
2001. a
Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Giering, R., and
Mathieu, P.-P.: Carbon Cycle Data Assimilation with a Generic Phenology
Model, J. Geophys. Res.-Biogeo., 115, G04017,
https://doi.org/10.1029/2009JG001119, 2010. a
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen, B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowell, N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T., Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C., Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020. a
Lewis, P. and Disney, M.: Spectral Invariants and Scattering across Multiple
Scales from Within-Leaf to Canopy, Remote Sens. Environ., 109,
196–206, https://doi.org/10.1016/j.rse.2006.12.015, 2007. a, b, c, d
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., Li, D., and Zhou, Y.:
Satellite-Derived LAI Products Exhibit Large Discrepancies and Can Lead
to Substantial Uncertainty in Simulated Carbon and Water Fluxes, Remote
Sens. Environ., 206, 174–188, https://doi.org/10.1016/j.rse.2017.12.024, 2018. a
Loew, A., van Bodegom, P. M., Widlowski, J.-L., Otto, J., Quaife, T., Pinty, B., and Raddatz, T.: Do we (need to) care about canopy radiation schemes in DGVMs? Caveats and potential impacts, Biogeosciences, 11, 1873–1897, https://doi.org/10.5194/bg-11-1873-2014, 2014. a
Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., Swann, A. L. S., Zhang, K., Rollinson, C. R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description, Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, 2019. a, b, c, d
Lucht, W., Schaaf, C. B., and Strahler, A. H.: An Algorithm for the Retrieval
of Albedo from Space Using Semiempirical BRDF Models, IEEE T.
Geosci. Remote, 38, 977–998, https://doi.org/10.1109/36.841980,
2000. a, b
McMahon, S. M., Harrison, S. P., Armbruster, W. S., Bartlein, P. J., Beale,
C. M., Edwards, M. E., Kattge, J., Midgley, G., Morin, X., and Prentice,
I. C.: Improving Assessment and Modelling of Climate Change Impacts on Global
Terrestrial Biodiversity, Trends Ecol. Evol., 26, 249–259,
https://doi.org/10.1016/j.tree.2011.02.012, 2011. a
Meador, W. E. and Weaver, W. R.: Two-Stream Approximations to Radiative
Transfer in Planetary Atmospheres: A Unified Description of
Existing Methods and a New Improvement, J. Atmos.
Sci., 37, 630–643,
https://doi.org/10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2, 1980. a
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft,
P. R.: Mechanistic Scaling of Ecosystem Function and Dynamics in Space and
Time: Ecosystem Demography Model Version 2, J. Geophys.
Res.-Biogeo., 114, G01002, https://doi.org/10.1029/2008JG000812, 2009. a, b
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A Method for Scaling
Vegetation Dynamics: The Ecosystem Demography Model (ED), Ecol.
Monogr., 71, 557–586,
https://doi.org/10.1890/0012-9615(2001)071[0557:amfsvd]2.0.co;2, 2001. a
Myneni, R. and Williams, D.: On the Relationship between FAPAR and
NDVI, Remote Sens. Environ., 49, 200–211,
https://doi.org/10.1016/0034-4257(94)90016-7, 1994. a
Niinemets, Ü.: Within-Canopy Variations in Functional Leaf Traits:
Structural, Chemical and Ecological Controls and Diversity of
Responses, in: Canopy Photosynthesis: From Basics to
Applications, edited by: Hikosaka, K., Niinemets, Ü., and Anten, N.
P. R., no. 42 in Advances in Photosynthesis and Respiration,
101–141, https://doi.org/10.1007/978-94-017-7291-4_4, 2016. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
Community Noah Land Surface Model with Multiparameterization Options
(Noah-MP): 1. Model Description and Evaluation with Local-Scale
Measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011. a
Nouvellon, Y., Moran, M. S., Seen, D. L., Bryant, R., Rambal, S., Ni, W.,
Bégué, A., Chehbouni, A., Emmerich, W. E., Heilman, P., and Qi, J.:
Coupling a Grassland Ecosystem Model with Landsat Imagery for a 10-Year
Simulation of Carbon and Water Budgets, Remote Sens. Environ., 78,
131–149, https://doi.org/10.1016/S0034-4257(01)00255-3, 2001. a
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven,
C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque,
J.-F., Lawrence, P. J., Leung, R., Lipscom, W., Muszala, S., Ricciuto, D. M.,
Sacks, W., Sun, Y., Tang, J., and Zong-Liang, Y.: Technical Description of
Version 4.5 of the Community Land Model (CLM), Tech. Rep.
NCAR/TN-503+STR, NCAR Earth System Laboratory Climate and Global Dynamics
Division, 2013. a, b, c
Pacala, S. W. and Deutschman, D. H.: Details That Matter: The Spatial
Distribution of Individual Trees Maintains Forest Ecosystem Function, Oikos,
74, 357–365, https://doi.org/10.2307/3545980, 1995. a
Pasquarella, V. J., Holden, C. E., Kaufman, L., and Woodcock, C. E.: From
Imagery to Ecology: Leveraging Time Series of All Available Landsat
Observations to Map and Monitor Ecosystem State and Dynamics, Remote Sensing
in Ecology and Conservation, 2, 152–170, https://doi.org/10.1002/rse2.24, 2016. a
Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet, P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016. a
Pinty, B., Gobron, N., Widlowski, J.-L., Lavergne, T., and Verstraete, M. M.:
Synergy between 1-D and 3-D Radiation Transfer Models to Retrieve
Vegetation Canopy Properties from Remote Sensing Data, J. Geophys.
Res.-Atmos., 109, D21205, https://doi.org/10.1029/2004JD005214, 2004. a
Quaife, T., Lewis, P., De Kauwe, M., Williams, M., Law, B. E., Disney, M., and
Bowyer, P.: Assimilating Canopy Reflectance Data into an Ecosystem Model with
an Ensemble Kalman Filter, Remote Sens. Environ., 112,
1347–1364, https://doi.org/10.1016/j.rse.2007.05.020, 2008. a
Raczka, B., Dietze, M. C., Serbin, S. P., and Davis, K. J.: What Limits
Predictive Certainty of Long-term Carbon Uptake?, J. Geophys.
Res.-Biogeo., 123, 3570–3588, https://doi.org/10.1029/2018jg004504, 2018. a
Robakowski, P., Wyka, T., Samardakiewicz, S., and Kierzkowski, D.: Growth,
Photosynthesis, and Needle Structure of Silver Fir (Abies Alba Mill.)
Seedlings under Different Canopies, Forest Ecol. Manage., 201,
211–227, https://doi.org/10.1016/j.foreco.2004.06.029, 2004. a
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A Continuous Satellite-Derived Measure of Global
Terrestrial Primary Production, BioScience, 54, 547–560,
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004. a
Schaaf, C. and Wang, Z.: MCD43A1 MODIS/Terra+Aqua BRDF/Albedo
Model Parameters Daily L3 Global – 500m V006, United States Geological Survey (USGS) Land Processes Distributed Active Archive Center (LP DAAC),
https://doi.org/10.5067/MODIS/MCD43A1.006, 2015. a
Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and
Martonchik, J. V.: Reflectance Quantities in Optical Remote
Sensing – Definitions and Case Studies, Remote Sens.
Environ., 103, 27–42, https://doi.org/10.1016/j.rse.2006.03.002, 2006.
a, b, c
Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend,
P., Miller, C., Frankenberg, C., Hibbard, K., and Cox, P.: Observing
Terrestrial Ecosystems and the Carbon Cycle from Space, Glob. Change
Biol., 21, 1762–1776, https://doi.org/10.1111/gcb.12822, 2015. a
Schürmann, G. J., Kaminski, T., Köstler, C., Carvalhais, N., Voßbeck, M., Kattge, J., Giering, R., Rödenbeck, C., Heimann, M., and Zaehle, S.: Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0, Geosci. Model Dev., 9, 2999–3026, https://doi.org/10.5194/gmd-9-2999-2016, 2016. a
Serbin, S. P., Dillaway, D. N., Kruger, E. L., and Townsend, P. A.: Leaf
Optical Properties Reflect Variation in Photosynthetic Metabolism and Its
Sensitivity to Temperature, J. Exp. Bot., 63, 489–502,
https://doi.org/10.1093/jxb/err294, 2012. a
Shiklomanov, A. N.: Cutting out the middle man: Calibrating and validating a dynamic vegetation model using remotely sensed surface reflectance, Open Science Framework (OSF), https://doi.org/10.17605/OSF.IO/B6UMF, 2021. a
Shiklomanov, A. N., Dietze, M. C., Viskari, T., Townsend, P. A., and Serbin,
S. P.: Quantifying the Influences of Spectral Resolution on Uncertainty in
Leaf Trait Estimates through a Bayesian Approach to RTM Inversion,
Remote Sens. Environ., 183, 226–238,
https://doi.org/10.1016/j.rse.2016.05.023, 2016. a, b, c, d
Shiklomanov, A. N., Bond-Lamberty, B., Atkins, J. W., and Gough, C. M.:
Structure and Parameter Uncertainty in Centennial Projections of Forest
Community Structure and Carbon Cycling, Glob. Change Biol., 26,
6080–6096, https://doi.org/10.1111/gcb.15164, 2020a. a
Shiklomanov, A. N., Cowdery, E. M., Bahn, M., Byun, C., Jansen, S., Kramer, K.,
Minden, V., Niinemets, Ü., Onoda, Y., Soudzilovskaia, N. A., and Dietze,
M. C.: Does the Leaf Economic Spectrum Hold within Plant Functional Types?
A Bayesian Multivariate Trait Meta-analysis, Ecol. Appl., 30, 02064,
https://doi.org/10.1002/eap.2064, 2020b. a
Singh, A., Serbin, S. P., McNeil, B. E., Kingdon, C. C., and Townsend, P. A.:
Imaging Spectroscopy Algorithms for Mapping Canopy Foliar Chemical and
Morphological Traits and Their Uncertainties, Ecol. Appl., 25,
2180–2197, https://doi.org/10.1890/14-2098.1, 2015. a, b
ter Braak, C. J. F. and Vrugt, J. A.: Differential Evolution Markov Chain
with Snooker Updater and Fewer Chains, Stat. Comput., 18,
435–446, https://doi.org/10.1007/s11222-008-9104-9, 2008. a
Verhoef, W.: Light Scattering by Leaf Layers with Application to Canopy
Reflectance Modeling: The SAIL Model, Remote Sens. Environ., 16,
125–141, https://doi.org/10.1016/0034-4257(84)90057-9, 1984. a, b, c
Viskari, T., Hardiman, B., Desai, A. R., and Dietze, M. C.: Model-Data
Assimilation of Multiple Phenological Observations to Constrain and Predict
Leaf Area Index, Ecol. Appl., 25, 546–558,
https://doi.org/10.1890/14-0497.1, 2015. a
Viskari, T., Shiklomanov, A., Dietze, M. C., and Serbin, S. P.: The Influence
of Canopy Radiation Parameter Uncertainty on Model Projections of Terrestrial
Carbon and Energy Cycling, PLOS ONE, 14, e0216512,
https://doi.org/10.1371/journal.pone.0216512, 2019. a, b, c, d
Wang, Z., Zeng, X., Barlage, M., Dickinson, R. E., Gao, F., and Schaaf, C. B.:
Using MODIS BRDF and Albedo Data to Evaluate Global Model Land
Surface Albedo, J. Hydrometeorol., 5, 3–14,
https://doi.org/10.1175/1525-7541(2004)005<0003:UMBAAD>2.0.CO;2, 2004. a
Widlowski, J.-L., Taberner, M., Pinty, B., Bruniquel-Pinel, V., Disney, M.,
Fernandes, R., Gastellu-Etchegorry, J.-P., Gobron, N., Kuusk, A., Lavergne,
T., Leblanc, S., Lewis, P. E., Martin, E., Mõttus, M., North, P. R. J.,
Qin, W., Robustelli, M., Rochdi, N., Ruiloba, R., Soler, C., Thompson, R.,
Verhoef, W., Verstraete, M. M., and Xie, D.: Third Radiation Transfer Model
Intercomparison (RAMI) Exercise: Documenting Progress in Canopy
Reflectance Models, J. Geophys. Res.-Atmos., 112,
D09111, https://doi.org/10.1029/2006JD007821, 2007. a, b
Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger,
C., Brennan, J., Busetto, L., Chelle, M., Ceccherini, G., Colombo, R.,
Côté, J.-F., Eenmäe, A., Essery, R., Gastellu-Etchegorry,
J.-P., Gobron, N., Grau, E., Haverd, V., Homolová, L., Huang, H., Hunt,
L., Kobayashi, H., Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P. E.,
Lovell, J. L., Malenovský, Z., Meroni, M., Morsdorf, F., Mõttus, M.,
Ni-Meister, W., Pinty, B., Rautiainen, M., Schlerf, M., Somers, B.,
Stuckens, J., Verstraete, M. M., Yang, W., Zhao, F., and Zenone, T.: The
Fourth Phase of the Radiative Transfer Model Intercomparison (RAMI)
Exercise: Actual Canopy Scenarios and Conformity Testing, Remote Sens.
Environ., 169, 418–437, https://doi.org/10.1016/j.rse.2015.08.016, 2015. a
Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D.,
Wu, J., and Moorcroft, P.: Leaf Surface Water, Not Plant Water Stress, Drives
Diurnal Variation in Tropical Forest Canopy Water Content, New Phytol.,
https://doi.org/10.1111/nph.17254, online first, 2021. a
Yan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., Nemani, R. R.,
Knyazikhin, Y., and Myneni, R. B.: Evaluation of MODIS LAI/FPAR Product
Collection 6. Part 2: Validation and Intercomparison, Remote
Sensing, 8, 460, https://doi.org/10.3390/rs8060460, 2016. a
Yuan, H., Dai, Y., Dickinson, R. E., Pinty, B., Shangguan, W., Zhang, S., Wang,
L., and Zhu, S.: Reexamination and Further Development of Two-Stream Canopy
Radiative Transfer Models for Global Land Modeling, J. Adv.
Model. Earth Sy., 9, 113–129, https://doi.org/10.1002/2016MS000773, 2017. a, b, c, d, e
Zeide, B.: Comparison of Self-Thinning Models: An Exercise in Reasoning, Trees,
24, 1117–1126, https://doi.org/10.1007/s00468-010-0484-z, 2010. a
Zhang, Q., Yao, T., Huemmrich, K. F., Middleton, E. M., Lyapustin, A., and
Wang, Y.: Evaluating Impacts of Snow, Surface Water, Soil and Vegetation on
Empirical Vegetation and Snow Indices for the Utqiaġvik Tundra
Ecosystem in Alaska with the LVS3 Model, Remote Sens.
Environ., 240, 111677, https://doi.org/10.1016/j.rse.2020.111677, 2020. a
Zobitz, J., Moore, D. J., Quaife, T., Braswell, B. H., Bergeson, A., Anthony,
J. A., and Monson, R. K.: Joint Data Assimilation of Satellite Reflectance
and Net Ecosystem Exchange Data Constrains Ecosystem Carbon Fluxes at a
High-Elevation Subalpine Forest, Agr. Forest Meteorol.,
195–196, 73–88, https://doi.org/10.1016/j.agrformet.2014.04.011, 2014. a
Short summary
Airborne and satellite images are a great resource for calibrating and evaluating computer models of ecosystems. Typically, researchers derive ecosystem properties from these images and then compare models against these derived properties. Here, we present an alternative approach where we modify a model to predict what the satellite would see more directly. We then show how this approach can be used to calibrate model parameters using airborne data from forest sites in the northeastern US.
Airborne and satellite images are a great resource for calibrating and evaluating computer...