Articles | Volume 14, issue 5
Geosci. Model Dev., 14, 2603–2633, 2021
Geosci. Model Dev., 14, 2603–2633, 2021

Methods for assessment of models 12 May 2021

Methods for assessment of models | 12 May 2021

Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance

Alexey N. Shiklomanov et al.

Related authors

The fortedata R package: open-science datasets from a manipulative experiment testing forest resilience
Jeff W. Atkins, Elizabeth Agee, Alexandra Barry, Kyla M. Dahlin, Kalyn Dorheim, Maxim S. Grigri, Lisa T. Haber, Laura J. Hickey, Aaron G. Kamoske, Kayla Mathes, Catherine McGuigan, Evan Paris, Stephanie C. Pennington, Carly Rodriguez, Autym Shafer, Alexey Shiklomanov, Jason Tallant, Christopher M. Gough, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 943–952,,, 2021
Short summary
A Permafrost Implementation in the Simple Carbon-Climate Model Hector
Dawn L. Woodard, Alexey N. Shiklomanov, Ben Kravitz, Corinne Hartin, and Ben Bond-Lamberty
Geosci. Model Dev. Discuss.,,, 2021
Revised manuscript accepted for GMD
Short summary

Related subject area

Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812,,, 2021
Short summary
Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU)
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898,,, 2021
Short summary
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382,,, 2021
Short summary
Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601,,, 2021
Short summary
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417,,, 2021
Short summary

Cited articles

Asner, G. P.: Biophysical and Biochemical Sources of Variability in Canopy Reflectance, Remote Sens. Environ., 64, 234–253,, 1998. a
Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and da Rocha, H. R.: Seasonal Drought Stress in the Amazon: Reconciling Models and Observations, J. Geophys. Res.-Biogeo., 113, G00B01,, 2008. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699,, 2011. a
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444–1449,, 2008. a, b
Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnère, A., Myneni, R., Knyazikhin, Y., and Wang, L.: Retrieval of Canopy Biophysical Variables from Bidirectional Reflectance: Using Prior Information to Solve the Ill-Posed Inverse Problem, Remote Sens. Environ., 84, 1–15,, 2003. a, b
Short summary
Airborne and satellite images are a great resource for calibrating and evaluating computer models of ecosystems. Typically, researchers derive ecosystem properties from these images and then compare models against these derived properties. Here, we present an alternative approach where we modify a model to predict what the satellite would see more directly. We then show how this approach can be used to calibrate model parameters using airborne data from forest sites in the northeastern US.