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Abstract. Canopy radiative transfer is the primary mech-
anism by which models relate vegetation composition and
state to the surface energy balance, which is important to
light- and temperature-sensitive plant processes as well as
understanding land–atmosphere feedbacks. In addition, cer-
tain parameters (e.g., specific leaf area, SLA) that have an
outsized influence on vegetation model behavior can be con-
strained by observations of shortwave reflectance, thus re-
ducing model predictive uncertainty. Importantly, calibrat-
ing against radiative transfer outputs allows models to di-
rectly use remote sensing reflectance products without rely-
ing on highly derived products (such as MODIS leaf area
index) whose assumptions may be incompatible with the
target vegetation model and whose uncertainties are usu-
ally not well quantified. Here, we created the EDR model
by coupling the two-stream representation of canopy radia-
tive transfer in the Ecosystem Demography model version
2 (ED2) with a leaf radiative transfer model (PROSPECT-
5) and a simple soil reflectance model to predict full-range,
high-spectral-resolution surface reflectance that is dependent
on the underlying ED2 model state. We then calibrated this
model against estimates of hemispherical reflectance (cor-
rected for directional effects) from the NASA Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) and survey data
from 54 temperate forest plots in the northeastern United
States. The calibration significantly reduced uncertainty in
model parameters related to leaf biochemistry and morphol-
ogy and canopy structure for five plant functional types. Us-
ing a single common set of parameters across all sites, the

calibrated model was able to accurately reproduce surface
reflectance for sites with highly varied forest composition
and structure. However, the calibrated model’s predictions of
leaf area index (LAI) were less robust, capturing only 46 %
of the variability in the observations. Comparing the ED2
radiative transfer model with another two-stream soil–leaf–
canopy radiative transfer model commonly used in remote
sensing studies (PRO4SAIL) illustrated structural errors in
the ED2 representation of direct radiation backscatter that
resulted in systematic underestimation of reflectance. In ad-
dition, we also highlight that, to directly compare with a two-
stream radiative transfer model like EDR, we had to perform
an additional processing step to convert the directional re-
flectance estimates of AVIRIS to hemispherical reflectance
(also known as “albedo”). In future work, we recommend
that vegetation models add the capability to predict direc-
tional reflectance, to allow them to more directly assimilate
a wide range of airborne and satellite reflectance products.
We ultimately conclude that despite these challenges, using
dynamic vegetation models to predict surface reflectance is a
promising avenue for model calibration and validation using
remote sensing data.
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1 Introduction

Dynamic vegetation models play a vital role in modern ter-
restrial ecology and Earth science more generally. The terres-
trial carbon cycle is a major biogeochemical feedback in the
global climate system (Heinze et al., 2019), and accurate pre-
dictions of terrestrial carbon cycling rely on accurate repre-
sentations of vegetation dynamics (Pacala and Deutschman,
1995). Vegetation also plays an important role in the water
cycle and surface energy balance, with major climate impli-
cations (Bonan, 2008). In addition, the distribution of tree
species, the structure of plant canopies, and many other vari-
ables simulated by dynamic vegetation models are also im-
portant predictors of biodiversity, making vegetation models
an important tool for conservation management (McMahon
et al., 2011). Robust calibration and validation of model pro-
jections is therefore of broad concern.

Past efforts to calibrate or constrain dynamic vegeta-
tion model parameters and states used a variety of data
streams. Among these data streams, remote sensing is partic-
ularly promising due to its consistent measurement method-
ology and largely uninterrupted global coverage in recent
decades. Data products derived from remote sensing obser-
vations have been used to inform, among others, vegeta-
tion phenology (Knorr et al., 2010; Viskari et al., 2015) and
absorbed photosynthetically active radiation (Peylin et al.,
2016; Schürmann et al., 2016; Zobitz et al., 2014). However,
there are issues with using derived remote sensing products
to calibrate vegetation models. The relationships between re-
motely sensed surface reflectance and vegetation structure
and function are complex and multifaceted. Simple poly-
nomial relationships between spectral indices (e.g., normal-
ized difference vegetation index, NDVI; enhanced vegeta-
tion index, EVI) and vegetation properties (e.g., leaf area
index, LAI) are often confounded by other ecosystem char-
acteristics, including soil (Myneni and Williams, 1994) and
snow (Zhang et al., 2020), or sensor configuration (Fen-
sholt et al., 2004). More sophisticated approaches for esti-
mating vegetation properties based on physically based ra-
diative transfer models (RTMs) face issues of equifinality,
whereby many different combinations of vegetation and soil
properties can ultimately produce the same modeled surface
reflectance (Combal et al., 2003; Lewis and Disney, 2007).
Meanwhile, estimating quantities with more indirect rela-
tionships to surface reflectance, such as rates of primary pro-
ductivity, requires a number of assumptions about resource
use efficiency and other factors (Running et al., 2004) that
can introduce considerable uncertainty and bias into the esti-
mates. Collectively, these issues help explain the large differ-
ences in estimates of surface characteristics across different
remote sensing instruments (Liu et al., 2018). Robust, pixel-
level uncertainty estimates for remote sensing data products
would help alleviate some of these concerns, but such esti-
mates are not widely available for most data products.

One way to overcome these limitations of derived remote
sensing data products while still leveraging the capabili-
ties of remote sensing is to work with lower-level surface
reflectance products. Although generating these reflectance
products still requires multiple processing steps, such as at-
mospheric correction, orthorectification, and correction for
Sun-sensor geometry effects, all of these processing steps in-
volve significantly fewer assumptions about the relationship
between the remotely sensed signal and the surface prop-
erty or phenomenon of interest than derived products. This
can be accomplished by coupling dynamic vegetation models
with leaf and canopy radiative transfer models that simulate
surface reflectance as a function of known surface charac-
teristics (Knorr and Lakshmi, 2001; Nouvellon et al., 2001;
Quaife et al., 2008). Such an approach draws on decades of
research on simulation of vegetation optical properties given
their structural and biochemical characteristics (Dickinson,
1983; Sellers, 1985; Verhoef, 1984; Lewis and Disney, 2007;
Jacquemoud et al., 2009; Pinty et al., 2004; Widlowski et al.,
2007, 2015; Hogan et al., 2018) while avoiding the compu-
tational and conceptual challenges of inverse parameter esti-
mation in radiative transfer modeling (Combal et al., 2003;
Lewis and Disney, 2007).

Instead of coupling a dynamic vegetation model to an ex-
ternal canopy radiative transfer model, we propose a more
direct approach of using a vegetation model’s own internal
representation of canopy radiative transfer. Radiative trans-
fer models have long been an important component of land
surface models (Dickinson, 1983; Sellers, 1985). Canopy ra-
diative transfer is the primary mechanism by which models
relate vegetation composition and state to the surface energy
balance. This is important to both the plants themselves –
as many plant processes (including evaporation and enzyme
kinetics) are sensitive to temperature (Serbin et al., 2012) –
and to the impact of plants on local, regional, and global cli-
mate (Bonan, 2008). Canopy radiative transfer also controls
how much light is available to plants for photosynthesis and
is therefore a first-order driver of plant function (Hikosaka
and Terashima, 1995; Robakowski et al., 2004; Niinemets,
2016; Keenan and Niinemets, 2016). Canopy radiative trans-
fer is particularly important to the current generation of de-
mographically enabled dynamic vegetation models, where
differences in canopy radiative transfer representations and
parameters have major impacts on predicted community
composition and biogeochemistry (Loew et al., 2014; Fisher
et al., 2018; Viskari et al., 2019). Finally, parameters to which
vegetation models are known to be highly sensitive – namely,
those related to leaf biochemistry and canopy structure (Di-
etze et al., 2014; Raczka et al., 2018; Shiklomanov et al.,
2020a) – play an important role in canopy radiative transfer.
Therefore, calibration and validation against radiative trans-
fer outputs can be an important source of constraint on a va-
riety of model processes.

Our previous work demonstrated that predictions of car-
bon cycling and community composition by the Ecosys-
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tem Demography model version 2 (ED2; Medvigy et al.,
2009) are highly sensitive to changes in parameters related to
canopy structure and radiative transfer (Viskari et al., 2019).
In this study, we build on this work by calibrating and val-
idating the ED2 model using remotely sensed surface re-
flectance. First, we couple the internal ED2 canopy radia-
tive transfer model to the PROSPECT-5 leaf radiative trans-
fer model (Feret et al., 2008) and the Hapke soil reflectance
model (Verhoef and Bach, 2007) to allow ED2 to predict sur-
face reflectance spectra at 1 nm resolution across the com-
plete visible–shortwave infrared (VSWIR) spectral region
(400 to 2500 nm). Second, we jointly calibrate this model at
54 sites in the US Midwest and Northeast where coincident
vegetation survey data and NASA Airborne Visible/Infrared
Imaging Spectrometer – Classic (AVIRIS-Classic) surface
reflectance observations are available. We hypothesize that,
with known stand composition and informative priors on fo-
liar biochemistry, calibration against airborne imaging spec-
troscopy will significantly constrain model parameters re-
lated to canopy structure. Although the scope of our study
is limited to the ED2 model, both the underlying size-and-
age structure approximation of ED2 as well as many aspects
of its canopy radiative transfer (e.g., two-stream approxima-
tion, treatment of leaf angles) are common to other land sur-
face models (e.g., FATES; Koven et al., 2020), meaning the
insights from this work are more broadly applicable in model
vegetation modeling.

2 Methods

2.1 ED2 model description

The ED2 model simulates plot-level vegetation dynamics
and biogeochemistry (Moorcroft et al., 2001; Medvigy et al.,
2009; Longo et al., 2019). ED2 has a fundamentally hierar-
chical structure: the fundamental unit of analysis is a plant
cohort – a group of individual plants of similar size, age, and
species composition (grouped into plant functional types,
PFTs). A group of cohorts with a common disturbance his-
tory (i.e., time since last disturbance) constitutes a patch, and
a group of co-located patches experiencing the same mete-
orological conditions constitutes a site. At the spatial scale
of this work (60× 60 m plots; see Sect. 2.3), we assume one
patch per site.

Relevant to this work, ED2 includes a multi-layer canopy
radiative transfer model that is a generalization of the two-
layer, two-stream radiative transfer scheme in the Commu-
nity Land Model (CLM) v4.5 (Oleson et al., 2013), which in
turn is derived from Sellers (1985). At every time step, this
model simulates the bi-hemispherical reflectance (BHR, also
known as “intrinsic surface albedo” or “blue-sky albedo”;
see Schaepman-Strub et al., 2006) as a function of that time
step’s vegetation composition and canopy structure. A com-
plete description of the model derivation is provided in the

supplementary information of Longo et al. (2019), but for
completeness, we provide an abbreviated description below.

2.1.1 Radiative transfer parameters

Two-stream radiative transfer theory (Meador and Weaver,
1980) defines the change in radiative flux through a medium
in terms of hemispherically integrated upward (F↑i ) and
downward (F↓i ) radiative fluxes via the following system of
differential equations (adapting the notation of Yuan et al.,
2017):

−
dF↑i
dx
=−(ai + γi)F

↑

i︸ ︷︷ ︸
Interception

+ γiF
↓

i︸ ︷︷ ︸
Diffuse scatter

+ siF
�

i︸ ︷︷ ︸
Direct backscatter

(1)

dF↓i
dx
=−(ai + γi)F

↓

i︸ ︷︷ ︸
Interception

+ γiF
↑

i︸ ︷︷ ︸
Diffuse scatter

+ s′iF
�

i︸ ︷︷ ︸
Direct scatter

, (2)

where dx represents the vertical change in the total plant area
index (combined area of leaves and woody elements), a de-
scribes absorption of diffuse radiation, γ describes scattering
of diffuse radiation, s and s′ describe the upward and down-
ward scattering of direct (“beam”) radiation, and F�i is the
incident direct (or “beam”) radiative flux at canopy layer i.

Following Sellers (1985), the coefficients above are de-
fined as follows:

ai + γi = [1− (1−βi)]
1
µ̄i

(3)

γi = βiωi
1
µ̄i

(4)

si =
1
µ�i

ωiβ0,i (5)

s′i =
1
µ�i

ωi
(
1−β0,i

)
, (6)

where µ̄i is the optical depth per unit plant area index for dif-
fuse radiation, βi is the backscattering coefficient for diffuse
radiation, ωi is the scattering coefficient for diffuse radiation,
µ�i is the optical depth per unit plant area index for direct
radiation, and β0 is the backscattering coefficient for direct
radiation.

For a given incident radiation (i.e., solar zenith) angle θ
and leaf orientation angle ϕ, the optical depth is defined as

µ(θ,ϕ)=
cos(θ)
G(θ,ϕ)

, (7)

where G(θ,ϕ) is a function describing the projected leaf
area. Following Goudriaan (1977), this function can be ap-
proximated as
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G(θ,ϕ)≈G∗(θ,χi)= φ1,i +φ2,i cos(θ) (8)

φ1,i = 0.5− 0.633χi − 0.33χ2
i (9)

φ2,i = 0.877−
(
1− 2φ1,i

)
, (10)

where χ is the leaf orientation factor – a PFT-specific pa-
rameter whose values theoretically range from −1 (vertical
leaves) to 0 (randomly distributed leaf angles) to 1 (horizon-
tal leaves) but in practice are restricted to −0.4≤ χ ≤ 0.6.

For a given solar zenith angle (θs), the optical depth for
direct radiation, µ�i , is defined as

µ�i = µ(θs,χi)=
cos(θs)

G∗(θs,χi)
. (11)

The optical depth for diffuse radiation, µ̄i , is defined as
the integral of Eq. (7) over all zenith angles:

µ̄i =

π
2∫

0

cos(θ)
G∗(θ,χi)

dθ =
1
φ2,i

[
1+

φ1,i

φ2,i
ln

φ1,i

φ1,i +φ2,i

]
. (12)

Following Sellers (1985), diffuse scattering (ω) and
backscattering (β) coefficients of canopy elements (leaves
or stems) are defined as a function of those elements’ re-
flectance (R) and transmittance (T ; wood transmittance is
assumed to be zero). (We use index p to refer to PFT and
p(i) to refer to the PFT of cohort i.)

ωi,leaf = Rp(i),leaf+ Tp(i),leaf (13)
ωi,wood = Rp(i),wood (14)

βi,leaf =
1

2ωi

[
Ri,leaf+ Ti,leaf+

(
Ri,leaf− Ti,leaf

)
J (χi)

]
(15)

βi,wood =
1

2ωi

[
Ri,wood+Ri,woodJ (χi)

]
, (16)

where J (χi) captures the effect of leaf and branch inclination
and is approximated as (similarly to Oleson et al., 2013)

J (χi)=
1+χi

2
. (17)

Both ω and β are calculated independently for leaves and
wood and then averaged based on the relative effective area
of leaves (Li) and wood (Wi) within a canopy layer.

ωi = ωi,leaf
Li

Li +Wi

+ωi,wood

(
1−

Li

Li +Wi

)
(18)

βi = βi,leaf
Li

Li +Wi

+βwood

(
1−

Li

Li +Wi

)
(19)

To account for non-uniform distribution of leaves within a
canopy, ED2 has a PFT-specific clumping factor (q) param-
eter that serves as a scaling factor on leaf area index. There-
fore, the effective leaf area index (L) is related to the true leaf
area index (LAI) by

Li = LAIi × qp(i). (20)

The leaf area of a cohort (LAIi) is calculated as a func-
tion of leaf biomass (Bleaf,i , kgCplant−1), specific leaf area
(SLAp, m2 kgC−1), and stem density (nplant, plantsm−2):

LAIi = nplant,iBleaf,iSLAp(i). (21)

In turn, Bleaf,i is calculated from cohort diameter at breast
height (DBHi , cm) according to the following allometric
equations:

Bleaf,i = b1Blp(i)DBH
b2Blp(i)
i , (22)

where b1Blp(i) and b2Blp(i) are PFT-specific parameters.
The wood area of a cohort (WAIi) is calculated directly from
DBH according to a similar allometric equation:

WAIi = nplant,ib1Bwp(i)DBH
b2Bwp(i)
i , (23)

where b1Bwp(i) and b2Bwp(i) are PFT-specific parameters.
Backscattering of direct radiation (β�i ) is defined as a

function of single scattering albedo (αs(θs)):

β�i =
µ̄i +µ

�

i

µ̄i
αs(θs). (24)

Single scattering albedo (αs(θs)) is in turn defined as an
integral over all illumination angles (ϑ), following Sellers
(1985):

αs(θs)= ω

π
2∫

0

0(θs,ϑ)cos(ϑ)
G(θs,ϕ)cos(θs)+G(ϑ,ϕ)cos(ϑ)

sin(ϑ)dϑ (25)
0(θ,ϑ)=G(θ,ϕ)G(ϑ,ϕ)P (θ,ϑ) (26)
π
2∫

−
π
2

P(θ,ϑ)G(ϑ,ϕ)sin(ϑ)dϑ = 1, (27)

where P(θ,ϑ) is the scattering phase function that defines
the relative fraction of scattered flux in any direction relative
to the projected leaf area in that direction (Dickinson, 1983).
Substituting G=G∗ (Eq. 8), and assuming uniform scatter-
ing (i.e., P(θ,ϑ)= 1

4π , and therefore 0(θ,ϑ)= G(θ,ϕ)
2 ; see a

detailed discussion of these assumptions in Yuan et al., 2017)
gives the following analytical solution to this integral:

αs,i(θ)=
ωi

2
(
1+φ2,iµ

�

i

)[
1−

φ1,iµ
�

i

1+φ2,iµ
�

i

ln

(
1+ (φ1,i +φ2,i)µ

�

i

φ1,iµ
�

i

)]
. (28)
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2.1.2 Solution for the multi-layer canopy

In ED2, the direct radiation profile, F�i , is governed by ex-
ponential decay, following Beer’s law:

F�i = F
�

i+1 exp

(
−

TAIi
µ�i

)
(29)

F�n+1 = F
�

sky, (30)

where F�sky is the incident direct (“beam”) radiation from the
atmosphere, a prescribed input; and TAIi is the total plant
area index, defined as the sum of effective leaf area index
(Li ; Eq. 20) and wood area index (WAI).

For n cohorts, the full diffuse canopy radiation profile in
ED2 is defined by a vector A of size 2n+ 2 that contains
the upward (F↑i ) and downward (F↓i ) radiative fluxes for ev-
ery “interface” immediately below cohort i; therefore, F↑(n+1)
refers to the upward diffuse radiative flux from the top of the
canopy towards the atmosphere (the quantity used to calcu-
late the albedo), F↓(n+1) refers to the downward diffuse radia-

tive flux from the atmosphere into the top of the canopy, F↑1
refers to the upward diffuse radiative flux from the ground
into the canopy layer of the shortest cohort, and F↓1 refers
to the downward diffuse radiative flux from the canopy layer
of the shortest cohort towards the ground. To derive each of
these F terms, ED2 uses the following analytical solution for
Eqs. (2) and (1) (see Longo et al., 2019, Sect. S12, for a full
derivation):

F
↓

i = x(2i−1)γ
+

i exp(−λiTAI)+ x(2i)γ−i exp(+λiTAI)

+ δ+ exp

(
−

TAIi
µ�i

)
(31)

F
↑

i = x(2i−1)γ
−

i exp(−λiTAI)+ x(2i)γ+i exp(+λiTAI)

+ δ− exp

(
−

TAIi
µ�i

)
, (32)

where xi is a vector of cohort-specific unknowns, and the
remaining terms are

γ±i =
1
2

(
1±

√
1−ωi

1− (1− 2βi)ωi

)
(33)

δ±i =

(
κ+± κ−

)
µ�2
i

2
(

1− λ2
iµ
�2
i

) (34)

λ2
i =

[1− (1− 2βi)ωi](1−ωi)
µ̄2
i

(35)

κ+i =−

[
1− (1− 2βi)ωi

µ̄i
+

1− 2βi
µ�i

]
ωiF

�

(i+1)

µ�k
(36)

κ−i =−

[
(1− 2βi)(1−ωi)

µ̄i
+

1
µ�i

]
ωiF

�

(i+1)

µ�k
. (37)

The problem of solving for xi in Eqs. (31) and (32) can be
written as a matrix equation:

Sx = Y , (38)

where x = (x1,x2, . . .,x2n+1,x2n+2), y =(
y1,y2, . . .,y(2n+1),y(2n+2)

)
, and S is a (2n+ 2)× (2n+ 2)

tridiagonal matrix. To solve this matrix equation, ED2
defines the following boundary conditions: at the top
of the canopy (i = n+ 1), F

↓

(n+1) ≡ F
↓

sky, the incident
diffuse flux from the atmosphere (a prescribed input);
TAI(n+1) = 0; µ̄(n+1) = 1; ω(n+1) = 1 (no absorption); and
β(n+1) = β

�

(n+1) = 0 (no scattering; all radiance is trans-
mitted). At the bottom of the canopy (i = 1), we redefine
the ground scattering, ωg , based on a soil radiative transfer
model (Sect. 2.2). With these boundary conditions, the
elements of S are given by

S1,1 =
(
γ−1 −ωgγ

+
)

exp(−λ1TAI1)

S1,2 =
(
γ+1 −ωgγ

−
)

exp(+λ1TAI1)

S(2i,2i−1) = γ
+

i

S(2i,2i) = γ
−

i

S(2i,2i+1) =−γ
+

(i+1) exp(−λ(i+1)TAI(i+1))

S(2i,2i+2) =−γ
−

(i+1) exp(+λ(i+1)TAI(i+1))

S(2i+1,2i−1) = γ
−

i

S(2i+1,2i) = γ
+

i

S(2n,2n+1) =−γ
+

(n+1) exp(−λ(n+1)TAI(n+1))

S(2n,2n+2) =−γ
−

(n+1) exp(+λ(n+1)TAI(n+1)), (39)

and the elements of y are given by

y1 = ω0F
�

1 −
(
δ−1 −ωgδ

+

1
)

exp

(
−

TAI
µ�1

)

y(2i) = δ
+

(i+1) exp

(
−

TAI(i+1)

µ�(i+1)

)
− δ+i

y(2i+1) = δ
−

(i+1) exp

(
−

TAI(i+1)

µ�(i+1)

)
− δ−i

y(2n+2) = F
↓

sky− δ
+

(n+1). (40)

Finally, the surface albedo (ρ) is defined as the fraction of
the total radiative flux incident on the canopy (F�sky+F

↓

sky)
that is reflected:

ρ =
F
↑

(n+1)

F�sky+F
↓

sky

. (41)

2.2 ED2-PROSPECT coupling

By default, ED2 performs the canopy shortwave radiative
transfer calculations described in two broad spectral bands:
visible (400–700 nm) and near infrared (700–2500 nm). For
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each of these regions, ED2 has user-defined prescribed, PFT-
specific leaf and wood reflectance and transmittance values
and calculates soil reflectance as the average of constant wet
and dry soil reflectance values weighted by the relative soil
moisture (0 indicates fully dry; 1 indicates fully wet). In this
study, we modified ED2 to perform the same canopy ra-
diative transfer calculations but in 1 nm increments across
the range 400–2500 nm. We then simulated leaf reflectance
and transmittance using the PROSPECT-5 leaf RTM, which
has the following five parameters: effective number of leaf
mesophyll layers (N , unitless, >=1), total chlorophyll con-
tent (Cab, µgcm−2), total carotenoid content (Car, µgcm−2),
water content (Cw, gcm−2), and dry matter content (Cm,
gcm−2) (Feret et al., 2008). For wood reflectance, we used a
single representative spectrum – the mean of all wood spec-
tra from Asner (1998), resampled to 1 nm resolution – for all
PFTs. For soil scattering (ωg), we used the simple Hapke soil
submodel used in the soil–leaf–canopy RTM (Verhoef and
Bach, 2007), whereby soil reflectance is the average of pre-
scribed wet and dry soil reflectance spectra weighted by a rel-
ative soil moisture parameter (%soil, unitless, 0–1). The final
coupled ED2-PROSPECT canopy radiative transfer model
(hereafter known as “EDR”) has 12 parameters for each PFT
– five parameters for PROSPECT, specific leaf area, two pa-
rameters each for the leaf and wood allometries, and clump-
ing (q) and leaf orientation (χ ) factors – and one site-specific
parameter – the relative soil moisture (Table 1).

EDR shares many assumptions and internal coefficients
with SAIL (Verhoef, 1984; Verhoef and Bach, 2007), a
canopy radiative transfer model that is popular in the optical
remote sensing community due to its ability to simulate both
hemispherical and directional reflectance. Unlike EDR’s ver-
tically heterogeneous canopy, SAIL takes only a single ho-
mogenous canopy layer as an input, which precludes a valid
comparison of the two models’ simulations for real heteroge-
neous sites. Nevertheless, to help identify possible structural
issues with EDR and to explore differences between hemi-
spherical and directional reflectance streams, we compared
the sensitivities of EDR and SAIL to LAI and solar zenith
angles for a single-layer homogeneous canopy.

2.3 Site and data description

For model calibration, we selected 54 sites from the NASA
forest functional type (FFT) field campaign that contained
plot-level inventory data coincident with observations of
NASA’s AVIRIS-Classic. A full description of this dataset is
provided in Singh et al. (2015). Briefly, each site consisted of
a 60× 60 m transect within which forest inventory data (stem
density, species identity, and diameter at breast height, DBH)
were collected. These sites are located in the United States
upper Midwest, northern New York, and western Maryland
(Fig. 1), and include stands dominated by either evergreen
or deciduous trees and spanning a wide range of structures,

Figure 1. Map of sites used in this analysis. Sites shown in Fig. 6
are labeled.

from dense groups of saplings to sparse groups of large trees
(Fig. 2).

For this study, because our goal was only to calibrate the
ED2 canopy radiative transfer parameters and not to evaluate
ED2 predictions of vegetation dynamics, we prescribed the
vegetation composition at each site based on the inventory
data described above. We grouped the tree species in these
sites into five different PFTs as defined by ED2: early suc-
cessional hardwood, northern mid-successional hardwood,
late successional hardwood, northern pine, and late suc-
cessional conifer. The mappings of tree species onto these
PFTs are provided as a CSV-formatted table in the file
inst/pfts-species.csv in the source code repository
for this project (see Code and Data Availability section).

AVIRIS-Classic measures the directional radiance of a sur-
face from 365 to 2500 nm at approximately 10 nm incre-
ments. Atmospheric correction routines use this level-1 radi-
ance product to estimate the surface reflectance (technically,
hemispherical–directional reflectance factor, HDRF, sensu
Schaepman-Strub et al., 2006) – a quantity that can be more
directly related to intrinsic physical properties of the surface.
For this study, in addition to the standard atmospheric correc-
tion and orthorectification conducted by NASA Jet Propul-
sion Laboratory (JPL), the AVIRIS data were also cross-track
illumination corrected and bidirectional reflectance distribu-
tion function (BRDF) corrected, following the procedure of
Lucht et al. (2000). Briefly, this BRDF correction estimates
“intrinsic surface albedo” – the quantity that is simulated by
EDR – from directional reflectance data by fitting a poly-
nomial approximation to the Ross–Li semi-empirical BRDF
model and then integrating this model over all angles. The
full AVIRIS processing pipeline for the AVIRIS data (includ-
ing the BRDF approximation) we used is described in Singh
et al. (2015).

Because of unrealistic values in the shortwave infrared
spectral region (> 1300 nm) in the AVIRIS observations
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Figure 2. Stand structure and composition characteristics of sites
selected for analysis. The dashed line is a forest self-thinning curve
(see Zeide, 2010) parameterized based on an analysis of US Forest
Service Forest Inventory and Analysis (FIA) data (Travis Andrews,
unpublished data). Colors indicate dominant PFT, calculated as the
PFT contributing most to site total stem-density-weighted DBH.
Sites shown in Fig. 6 are labeled.

(likely caused by faulty atmospheric correction), we only
used observations from 400 to 1300 nm for model calibra-
tion and validation. Following Shiklomanov et al. (2016),
we used the relative spectral response functions of AVIRIS-
Classic to relate the 1 nm EDR predictions to the 10 nm
AVIRIS-Classic measurements.

For each AVIRIS-Classic observation, we retrieved the so-
lar zenith angle directly from the flight-line metadata, where
available, and calculated it based on the local time and po-
sition if not. In addition, we retrieved the relative fraction of
diffuse vs. direct incident radiation from the hourly Modern-
Era Retrospective analysis for Research and Applications
version 2 (MERRA-2) meteorological reanalysis (Gelaro et
al., 2017) for each observation’s location and time (rounded
to the nearest hour).

2.4 Model calibration

To estimate EDR parameters from AVIRIS observations, we
used a Bayesian approach that builds on our previous work
at the leaf scale (Shiklomanov et al., 2016). For a parameter
vector 2 and matrix of observations X, the typical form of
Bayes’ rule is given by

P(2|X)︸ ︷︷ ︸
Posterior

∼ P(X|2)︸ ︷︷ ︸
Likelihood

P(2)︸ ︷︷ ︸
Prior

. (42)

Rather than performing a separate calibration at each site,
we performed a single joint calibration across all sites. There-
fore, our overall likelihood (P(X|2)) was the product of the
likelihood at each site (P(Xs|2), for site s):

P(X|2)=
∏

s
P(Xs|2). (43)

The likelihood at each site s is based on how well
EDR-predicted albedo (Rpred,s) matches that site’s observed
AVIRIS albedo (Xs) given the known forest composition
at that site (comps) and the current estimate of the over-
all parameter vector. Similar to Shiklomanov et al. (2016),
we assumed the residual error between predicted and ob-
served reflectance followed a multivariate normal distribu-
tion (MvNormal):

P(Xs|2)=MvNormal(Xs|Rpred,s,6s), (44)

where 6 is the residual variance–covariance matrix. Shiklo-
manov et al. (2016) assumed 6 was a diagonal matrix with
the same residual variance for all elements. For this study,
we made two important changes to this methodology. First,
to account for the large differences in the range of feasi-
ble reflectance values in different wavelength regions (for
vegetation, reflectance in the 400–700 nm range is typically
much lower than in the 700–1400 nm range), we used a het-
eroscedastic error model where the residual standard devia-
tion (σ s) was a linear function of the predicted reflectance
R(pred,s) with slope m and intercept b. Second, to account
for autocorrelation in hyperspectral bands, we replaced the
diagonal residual covariance matrix with an order-1 autore-
gressive (AR-1) covariance matrix. Collectively, these two
changes produce the following calculation for 6:

σ s =mRpred,s+ b (45)

6s = σ s%
Hσ s, (46)

where H is a matrix describing the distance between bands
(0 on the diagonal, increasing regularly toward the corners)
and % is the AR-1 autocorrelation parameter. To simplify the
inversion procedure, we first performed the inversion using a
diagonal covariance matrix (i.e., % = 0), then calculated the
mean % from the residuals of this fit, and then used this aver-
age value (0.700) for our final inversion.

In addition, to mitigate sampling issues related to EDR’s
saturating response to increasing total LAI (Fig. A1), we
added an additional term to our likelihood that assigns a uni-
form probability distribution over the range 0 to 10 to the
EDR-predicted LAI for a given site (LAIpred,s). In practice,
this term causes any parameters resulting in total LAI greater
than 10 to be immediately rejected but has no effect on pa-
rameters with LAI values less than 10. The maximum value
of 10 was selected as a reasonable upper bound on temper-
ate deciduous and evergreen forests in our study region. By
comparison, the global maximum of MODIS LAI estimates
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is between 6 and 7, depending on collection (with most val-
ues less than 5; Fang et al., 2012; Yan et al., 2016). A global
database of field LAI measurements (Iio et al., 2014) con-
tains values as high as 23.5 for evergreen conifer trees and
12.1 for deciduous broadleaf trees, but these are extreme val-
ues, and our maximum of 10 is at least 3 standard deviations
away from the mean value for evergreen conifer and decidu-
ous broadleaf trees.

The final expression for the site-specific likelihood is
therefore

Rpred,s,LAIpred,s = EDR(2|comps) (47)
P(Xs|2)=MvNormal(Xs|Rpred,s,6)

Uniform(LAIpred,s|0,10). (48)

Therefore, our parameter vector 2 consists of the follow-
ing (summarized in Table 1): 10 EDR parameters per PFT
– five parameters for the PROSPECT-5 model (N , Cab, Car,
Cw, Cm) and five EDR parameters related to canopy struc-
ture (q, χ , SLA, b1Bl, b1Bw) – one parameter per site (rel-
ative soil moisture, ψs), and the residual slope (m) and inter-
cept (b). With five PFTs and 54 sites, this means that 2 has
length (10× 5)+ 54+ 2= 106.

For priors on the PROSPECT-5 parameters and SLA,
we performed a hierarchical multivariate analysis (Shik-
lomanov et al., 2020b) on PROSPECT-5 parameters
and direct SLA measurements from (Shiklomanov, 2018,
chap. 3). For priors on the leaf biomass allometry pa-
rameters, we fit a multivariate normal distribution to al-
lometry coefficients from Jenkins et al. (2003, 2004) us-
ing the PEcAn.allometry package (https://github.com/
pecanproject/pecan/tree/develop/modules/allometry, last ac-
cess: 6 May 2021). For the clumping factor, we used a uni-
form prior across its full range (0 to 1), and for the leaf orien-
tation factor, we used a weakly informative beta distribution
rescaled to the range (−1,1) and centered on 0.5 (Table 1).

To alleviate issues with strong collinearity between the al-
lometry parameters and the specific leaf area, we fixed the al-
lometry exponent parameters (b2Bl and b2Bw) to their prior
means for each PFT. Doing so dramatically improved the sta-
bility of the inversion algorithm and the accuracy of the re-
sults.

We fit this model using the differential evolution with
Snooker update (DEzs) Markov chain Monte Carlo (MCMC)
sampling algorithm (ter Braak and Vrugt, 2008) as imple-
mented in the R package BayesianTools (Hartig et al.,
2019). We ran the algorithm using three independent chains
for as many iterations as required to achieve convergence, as-
sessed according to a Gelman–Rubin potential scale reduc-
tion factor (PSRF) diagnostic value of less than 1.1 for all
parameters (Gelman and Rubin, 1992).

2.5 Analysis

To assess the extent to which AVIRIS-Classic observations
were able to constrain parameter estimates, we compared

the prior and posterior distributions for all parameters. To
evaluate the performance of the calibrated model, we com-
pared the posterior credible and predicted 95 % intervals of
EDR-predicted spectra against the AVIRIS observations at
each site. We examined the residuals between EDR-predicted
and AVIRIS-observed reflectance across all sites pooled to-
gether and evaluated whether residuals varied systematically
with site composition or structure by separating sites based
on the dominant PFT (calculated as the PFT with the largest∑
iDBHinplant,i at each site), mean DBH, or mean stem den-

sity. We also compared the EDR-predicted LAI against field
observations at each site, both across all sites together and
within the above site groups based on composition and struc-
ture. To evaluate goodness of fit and additive and multiplica-
tive biases, we used an ordinary least-squares regression of
mean observed vs. posterior mean predicted LAI.

3 Results

Model calibration improved the precision of most PFT-
specific parameter estimates, including estimates of leaf pa-
rameters whose prior distributions were already indepen-
dently constrained by an earlier analysis (Fig. 3). Across all
PFT-specific parameters, the posterior 95 % credible interval
(CI) was, on average, 10 % the size of the prior credible inter-
val. The most constrained parameters on average were EDR
canopy structure parameters – namely the wood biomass al-
lometry (< 1 % of prior CI), leaf biomass allometry (1 %),
leaf orientation factor (8 %), and clumping factor (9 %) –
while the least constrained parameters were those related to
leaf morphology and biochemistry – namely, effective num-
ber of leaf layers (19 %), total chlorophyll content (16 %),
total carotenoid content (15 %), specific leaf area (13 %), dry
matter content (11 %), and leaf water content (11 %). For
PFTs, the largest average relative constraint was for early
hardwood (7 %) and the smallest relative constraint was for
late hardwood (14 % of prior CI).

For leaf traits, PFT rankings of the posterior estimates
largely followed the relative positions of the priors, though
there were a few exceptions. In both the prior and poste-
rior, the estimated effective number of leaf mesophyll lay-
ers (a.k.a., PROSPECT N parameter) was higher for needle-
leaf than broadleaf PFTs, with the highest value for north-
ern pine and the lowest value for mid-hardwood. Similarly,
specific leaf area (SLA) was lower in conifer than broadleaf
PFTs, with the lowest value for late conifer, a higher value
for northern pine (despite a similar prior), and higher val-
ues still in mid-hardwood and late hardwood and the high-
est value for early hardwood. Estimated total chlorophyll
content (Cab) was similarly high for all hardwood PFTs in
both the prior and posterior, but posterior estimates for late
conifer and northern pine were lower. Posterior estimates of
total carotenoid content (Car) were lower in early and mid-
hardwood and northern pine and higher in mid-hardwood and
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Table 1. EDR parameters and prior distributions.

Type Name Description Unit Prior

Leaf RTM parameters (one per PFT) N Effective number of leaf mesophyll layers unitless MvNormal(µ,6)1

Cab Total leaf chlorophyll content µgcm−2 MvNormal(µ,6)1

Car Total leaf carotenoid content µgcm−2 MvNormal(µ,6)1

Cw Leaf water content gcm−2 MvNormal(µ,6)1

Cm Leaf dry matter content gcm−2 MvNormal(µ,6)1

Canopy RTM parameters (one per PFT) SLA Specific leaf area kgm−2 MvNormal(µ,6)1

q Canopy clumping factor unitless Uniform(0,1)
χ Leaf orientation factor unitless 2×Beta(18,12)− 1
b1Bl Leaf biomass allometry base unitless LogNormal(ml, sl)

2

b1Bw Wood biomass allometry base unitless LogNormal(mw, sw)
2

Other parameters ψs Relative soil moisture content at site s unitless Uniform(0,1)
m Residual slope unitless Exponential(1)
b Residual intercept unitless Exponential(10)

1 PFT-specific multivariate normal distribution fit to PROSPECT parameters and SLA from Shiklomanov (2018), chap. 3. 2 PFT-specific results from Bayesian fits of allometric
equations to allometry data from Jenkins et al. (2003, 2004) using the PEcAn.allometry package.

Figure 3. Marginal prior (pre-calibration; gray) and posterior (post-calibration; black) distributions of PFT-specific parameters related to leaf
biochemistry and canopy structure. Distributions are shown as violin plots (rotated and mirrored kernel density plots). PFTs are abbreviated
as follows: EH: early hardwood; MH: north mid-hardwood; LH: late hardwood; NP: northern pine; LC: late conifer. Leaf and wood biomass
allometry panels are clipped at 0.2 to facilitate differentiation of posterior distributions.
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late conifer. Posterior estimates of leaf water content (Cw)
were low for early hardwood and northern pine and high for
mid- and late hardwood and late conifer; these differences
were despite strongly overlapping priors across all PFTs.
Posterior estimates of leaf dry matter content (Cm) were low-
est for mid- and late hardwood, higher for early hardwood
and northern pine, and highest for late conifer, again despite
a strongly overlapping prior across all PFTs.

Compared to leaf traits, canopy structural traits had less
informative (and PFT-agnostic) priors, and the posterior dis-
tributions exhibited some differences across PFTs. Posterior
leaf biomass allometry (b1Bl) estimates were lowest in early
hardwood and northern pine, higher for late conifer, and
highest for late and mid-hardwood. Posterior wood biomass
allometry (b1Bw) estimates were lowest for early hardwood
and late conifer, slightly higher in mid- and late hardwood,
and highest for northern pine. Posterior canopy clumping
factor (q) estimates were clustered at or near its upper limit of
1 (i.e., exhibited “edge-hitting behavior”) for early and mid-
hardwood, were slightly lower in late hardwood and northern
pine, and lowest in late conifer. Posterior leaf orientation fac-
tor (χ ) estimates were lowest (near zero, indicating randomly
distributed leaf angles) for northern pine, higher (more hori-
zontal leaves) for early and mid-hardwoods and late conifer,
and highest (at the upper limit of 0.6) for late hardwood. Fi-
nally, the calibration was able to constrain site-specific soil
optical properties across all sites (Fig. A4).

The accuracy and precision of EDR simulated spectra rel-
ative to AVIRIS observations varied across sites (Figs. 4, 5,
6, and A5). On average, EDR tended to accurately (within
0.01) reproduce reflectance in the 400–750 nm range, under-
predict AVIRIS reflectance by ∼ 0.02 in the 750–1100 nm
range, and overpredict AVIRIS reflectance by ∼ 0.03 in the
1100–1300 nm range. However, only the latter behavior was
consistent across sites; below 1100 nm, sites dominated by
any PFT could have low, accurate, or high estimates relative
to the AVIRIS observations. The only consistent bias (ex-
pressed as interquartile range in bias not overlapping zero)
we observed with respect to PFT was an underestimate of re-
flectance in the 750–1100 nm range for northern pine; other-
wise, we did not observe any consistent patterns in mismatch
between AVIRIS-observed and EDR-predicted reflectance
with respect to tree size, stem density, or composition (Figs. 5
and A6–A15). The EDR posterior predictive interval over-
lapped AVIRIS observations in all but a few individual cases
(Fig. A5), suggesting that our estimates of model uncertainty
are realistic.

Leaf area index predicted from calibrated EDR parameters
captured 46 % of the variability in the observations (Fig. 7).
The observed vs. predicted line had a slope of 0.35 and an
intercept of 3.09, indicating that EDR calibration underpre-
dicted true LAI on average but exaggerated LAI variability
across sites. In general, EDR tended to underpredict LAI at
high-density sites with low mean DBH and overpredict LAI
at low-density sites with high mean DBH (Figs. 8 and 9). The

trend with mean DBH was generally true across all PFTs but
was most pronounced for early-hardwood- and late-conifer-
dominated sites (Fig. 8), while the trend with stand den-
sity was most pronounced for late-conifer-dominated sites
(Fig. 9).

For identical canopies, EDR consistently predicted lower
hemispherical reflectance than PRO4SAIL (Fig. 10). This
difference was most pronounced when the Sun was directly
overhead (θs = 0◦; cos(θs)= 1) and declined with increas-
ing solar zenith angle. For solar zenith angles typical of
our study (θs ≈ 30◦; cos(θs)= 0.85), EDR hemispherical re-
flectance predictions were very close to PRO4SAIL direc-
tional reflectance predictions over a wide range of LAI val-
ues (Fig. A16).

4 Discussion

Calibrating and validating vegetation models using optical
remote sensing data have typically involved derived data
products (e.g., MODIS gross primary production, GPP) that
rely on their own models, in other words, “bringing the ob-
servations closer to the models”. In this study, we presented
an alternative approach whereby we “bring the models closer
to the observations” by training a vegetation model to simu-
late full-range hyperspectral surface reflectance that is closer
to the measurements made by optical remote sensing instru-
ments. We argue this is a more generalized approach, as
many dynamic vegetation models already contain their own
internal representations of canopy radiative transfer and thus
can be modified to provide outputs that can mimic optical
remote sensing (i.e., can be used as “satellite simulators”
to connect underlying model state to emergent reflectance).
We then demonstrated how this approach could be used to
calibrate the model against airborne imaging spectroscopy
data from AVIRIS-Classic. We found that such calibration
reduced uncertainties in parameters related to leaf biochem-
istry and canopy structure, even for parameters with well-
informed priors (Fig. 3). Moreover, we found that the cali-
brated model was able to reproduce observed surface albedo
(Figs. 4, 5, 6, and A5) reasonably well across a large number
of geographically (Fig. 1), structurally, and compositionally
(Fig. 2) diverse sites. However, the calibrated model under-
predicted LAI at sites with mostly small trees and overpre-
dicted LAI at sites with mostly large trees (Figs. 7 and 8).

In this study, the vegetation composition at each site (in-
cluding the PFT distribution and size–age structure) was pre-
scribed in detail based on inventory data. This allowed us
to focus the calibration on model-parameter-related canopy
radiative transfer model parameters. However, ED2 is a dy-
namic vegetation model whose core purpose is to predict how
vegetation composition and structure evolve through time.
An important future direction of this work is to evaluate
such dynamic ED2 simulations where vegetation composi-
tion and structure are predicted with some uncertainty. In
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Figure 4. Differences between AVIRIS-observed and EDR posterior predictive mean surface reflectance by site. Each thin gray line is a
site-specific AVIRIS observation. Top left panel shows results across all sites, and remaining panels group sites according to dominant PFT.
Within each panel, blue shading shows the 25 %–75 % quantile range and the thick black line is the median by wavelength for that specific
site.

Figure 5. Differences between AVIRIS-observed and EDR posterior predictive mean surface reflectance by site, averaged across wavelength
regions. Sites are grouped by dominant PFT, as in Fig. 4. Note the differences in the y-axis scale across panels.

ED2, shortwave canopy radiative transfer is already linked
(through shared parameters and state variables) to other im-
portant model processes, including thermal radiative trans-
fer, micrometeorology, photosynthesis, respiration, and com-
petition (Longo et al., 2019), and therefore changes in
canopy radiative transfer parameters have profound conse-

quences for ED2 predictions of ecosystem fluxes and com-
position (Viskari et al., 2019). Future work could further
strengthen this link by embedding the PROSPECT coupling
demonstrated in this study into ED2 itself, replacing ED2’s
currently prescribed leaf optical properties with simulated
optical properties that change with leaf morphology and bio-

https://doi.org/10.5194/gmd-14-2603-2021 Geosci. Model Dev., 14, 2603–2633, 2021



2614 A. N. Shiklomanov et al.: Calibrating a vegetation model using reflectance

Figure 6. Left: comparison between AVIRIS-observed (black) and EDR-predicted (mean prediction in green; 95 % posterior predictive
interval in gray) surface reflectance for a geographically (Fig. 1), compositionally, and structurally (Fig. 2) representative sample of sites
used in the calibration. Right: histogram of stem DBH by PFT at the corresponding site.

Figure 7. EDR predictions of site-specific true LAI compared to
observed values. Horizontal error bars are posterior 95 % predic-
tive intervals. Vertical error bars are mean ±1 standard deviation of
the observed values. Dashed line shows the 1 : 1 relationship, and
solid line is a least-squares predicted vs. observed regression with
the equation marked in the upper left corner. Points are colored ac-
cording to dominant PFT, calculated as in Fig. 4.

chemistry. For example, the PROSPECT leaf water content
parameter (Cw) provides a physical link between leaf opti-
cal properties and hydraulics, so such a configuration could
allow surface reflectance information to constrain ED2’s re-
cently developed dynamic hydraulics module (Xu et al.,
2021).

With 54 sites in our calibration, any single site represents
< 2 % of the data, and for a joint calibration without site ran-
dom effects, we have every reason to believe that the cali-
bration is not overfitting to any individual site. Trying to fit
any one site well would cause others to do worse (especially
given the large observed variability in forest structure; Fig. 2)
unless the EDR model structure was reasonable and the pa-
rameters chosen were genuinely good choices. We therefore
did not perform an in-sample cross validation, as we be-
lieved the benefit of doing so would be low relative to the
high computational cost. That said, we recognize that out-
of-sample validation is a useful test of model performance,
and we recommend performing out-of-sample validation in
similar studies in the future.

The canopy radiative transfer model in ED2 is derived
from the two-stream model of Sellers (1985) and adapted
to a multi-level canopy. Similar versions of this two-stream
formulation are present in other land surface models, in-
cluding CLM (Oleson et al., 2013), SiB (Baker et al.,
2008), Noah (Niu et al., 2011), tRIBS-VEGGIE (Ivanov
et al., 2008), IMOGEN (Huntingford et al., 2008), and
JULES (Best et al., 2011). Although the exact parameteri-
zation and implementation differs across these models, the
similarity of the underlying conceptual framework and ra-
diative transfer coefficients means that our approach should
be directly transferable to all of these models.

Nevertheless, our analysis echoed some known challenges
in canopy radiative transfer modeling. One challenge is equi-
finality in the contributions of leaf biochemistry, leaf mor-
phology, and different aspects of canopy structure to canopy
albedo, which means that multiple variable and parameter
combinations can produce very similar canopy albedo re-
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Figure 8. Bias in LAI predictions from calibrated EDR relative to observations, as a function of site mean DBH. Sites are grouped according
to dominant PFT, same as in Fig. 4.

Figure 9. Same as above but as a function of mean site stem density.

sponses (Lewis and Disney, 2007; Figs. A1–A3). We miti-
gated the equifinality between leaf traits and canopy struc-
ture by using informative priors on leaf traits from an in-
dependent data source (Shiklomanov, 2018). However, there
is additional equifinality in the effects of the EDR canopy
structure parameters. For example, because the effective LAI
used in EDR’s actual radiative transfer calculations is defined
as the product of “true” LAI and clumping factor (Eq. 20),
and because LAI is, in turn, derived from multiple parame-

ters (leaf biomass allometry, specific leaf area; Eq. 21), these
parameters collectively cannot be independently determined
from reflectance data alone. At the same time, increasing
the leaf orientation factor (more horizontal, or “planophile”,
leaf orientation) has a similar (although not identical) effect
to increasing LAI and clumping factor – namely, increasing
canopy reflectance, especially in the near-infrared spectral
region (Fig. A3). Collectively, these issues may help explain
some of the edge-hitting behavior (parameter distributions
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Figure 10. Comparison of EDR and PRO4SAIL (labeled as “SAIL” for conciseness) predictions of reflectance for identical, single-cohort
canopies as a function of solar zenith angle (θs). These simulations use identical PROSPECT and canopy structure parameters, a nadir-
viewing sensor, and LAI of 3. For EDR, we use a single cohort with LAI of 3 prescribed directly. “SAIL: HR” is the “hemispherical
reflectance” (“blue-sky albedo”), calculated (as in EDR) as the average of directional–hemispherical reflectance (DHR) and BHR streams
weighted by the direct sky fraction (0.9; same value used for EDR). Similarly, “SAIL: DR” is the “directional reflectance”, calculated
analogously from the bi-directional reflectance (BDR) and hemispherical–directional reflectance (HDR) streams. Individual SAIL fluxes are
shown with dotted lines.

clustered at the ends of the distribution) observed in our pos-
terior estimates (Fig. 3) and some of the bias in our LAI es-
timates (Fig. 7). In future work, we suggest combining our
approach with additional kinds of remote sensing measure-
ments capable of directly constraining these structural pa-
rameters such as waveform lidar (which can provide a ro-
bust constraint on the canopy structural profile; Ferraz et al.,
2020) to reduce equifinality.

That being said, one major advantage of the Bayesian cal-
ibration approach is that its output is a joint posterior dis-
tribution that includes not only fully quantified uncertainties
for each parameter but also the variance–covariance matrix
across the full set of parameters. Equifinality in parameters
would manifest as strong pairwise correlation between pa-
rameters in the posterior distribution. Examining this corre-
lation matrix shows that there are some parameter pairs with
strong correlations, such as the hypothesized negative cor-
relations between leaf allometry and clumping factor across
some PFTs (Fig. A17). However, these correlations do not
occur in all parameters that exhibited edge-hitting behav-
ior. For instance, clumping factor exhibited edge-hitting be-
havior only for early- and mid-successional hardwood PFTs
(Fig. 3), but the corresponding correlation coefficients were
positive and near zero, respectively, while strong negative
correlations for the other PFTs did not result in edge-hitting
posteriors (Fig. A17). Similarly, the edge-hitting leaf orien-
tation factor posterior for late hardwood (Fig. 3) had near-
zero (or, in one case, positive) correlations with all other

parameters (Fig. A17). Strong correlations also occurred
among some of the PROSPECT parameters and between
PROSPECT and structural parameters but contributed little
to equifinality because the strong constraints on PROSPECT
led to overall small covariance terms (results not shown). Fi-
nally, because our calibration captured all of these covari-
ances, the presence of moderate equifinality did not preclude
ecologically meaningful parameter constraints or accurate
predictions because these covariances are being propagated
into predictions. This is directly analogous to how a linear
regression can have a tight confidence interval, despite high
correlations between the slope and intercept, with that equi-
finality driving the characteristic hourglass shape of a regres-
sion confidence interval.

EDR tended to underpredict LAI at high-density sites with
low mean DBH and overpredict LAI at low-density sites
with high mean DBH (Figs. 7, 8, and 9). The relationship
between DBH and LAI is controlled primarily by the leaf
biomass allometry, which in EDR is fixed at the PFT level
(Eq. 22). This fixed relationship neglects the known inter-
and intra-specific variability in tree allocation strategies (For-
rester et al., 2017; Dolezal et al., 2021). For example, For-
rester et al. (2017) showed that the relationship between
DBH and foliar biomass is modulated by tree age, stand den-
sity, and climate variables, none of which are accounted for
in the ED2 allometry routines. This variability can be incor-
porated directly into ED2 by making allometry parameters
dynamic functions of some of the aforementioned covari-
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ates or indirectly via hierarchical calibration whereby model
parameters vary across sites (Dietze et al., 2008). Overall,
this analysis reiterates the importance of evaluating models
against multiple distinct variables – after all, none of these
biases would have been apparent from looking at the re-
flectance simulations alone.

Our analysis also revealed some structural issues with
EDR itself. EDR consistently predicted lower hemispheri-
cal reflectance than SAIL (Figs. 10 and A16). This differ-
ence can be attributed primarily to differences in how each
model defines the direct radiation backscatter coefficient in
the radiative transfer equation. A detailed description of the
discrepancy is provided in Yuan et al. (2017). Briefly, EDR
(and the Sellers, 1985 model from which EDR is derived) de-
fines direct radiation backscatter as a function of the single-
scattering albedo (Eq. 24), which in turn is a challenging in-
tegral involving the leaf scattering phase function and leaf-
projected area function (Eq. 25). The analytical solution to
this integral in EDR (Eq. 28) assumes a uniform scattering
phase function, which is appropriate for point scatterers but
less so for horizontal surfaces like leaves. The practical con-
sequence of this assumption is a lower value of the direct
radiation backscatter and therefore a lower albedo, which is
consistent with the results of our sensitivity analysis. This
underestimation of albedo described above may also help ex-
plain the edge-hitting behavior in our posterior distributions
(Fig. 3) as well as the relatively low accuracy of our LAI esti-
mates (Fig. 7). Specifically, our EDR calibration may be try-
ing to compensate for underestimated albedos via a tendency
to prefer higher effective LAI values (which results in higher
values of the leaf biomass allometry and clumping factor for
some PFTs; e.g., early and mid-hardwood and northern pine
in Fig. 3) and more horizontal leaf distributions (i.e., higher
leaf orientation factor; e.g., late hardwood in Fig. 3), both of
which increase albedo (Figs. A1–A3).

Meanwhile, the SAIL definition of direct backscatter is a
more simple function of leaf scattering, leaf angle distribu-
tion, and canopy optical depth that also produces a more
accurate albedo estimate (Yuan et al., 2017). Given that
underestimating albedo can have significant consequences
for the biological, ecological, and physical predictions of
ED2 (Viskari et al., 2019), incorporating this fix into the
ED2 canopy RTM is an important future direction of our
work. However, doing so is outside the scope of this work be-
cause it would require propagating the different coefficients
through the complex, multiple-canopy-layer solution of EDR
(Sect. 2.1.2) – a non-trivial task.

A significant caveat to the broader application of our ap-
proach is that there is a subtle but significant difference be-
tween the physical quantity EDR predicts and the quantities
typically measured by optical remote sensing. Specifically,
EDR predicts the hemispherical reflectance – the ratio of
total radiation leaving the surface to the total radiation in-
cident upon the surface, integrated over all viewing angles
(also known as “blue-sky albedo”). On the other hand, op-

tical remote sensing platforms typically measure the direc-
tional reflectance factor – the ratio of actual radiation re-
flected by a surface to the radiation reflected from an ideal
diffuse scattering source (e.g., a Spectralon calibration panel)
subject to the same illumination, in a specific viewing direc-
tion (Schaepman-Strub et al., 2006). These two quantities are
numerically equivalent only for ideal Lambertian surfaces or,
for non-Lambertian surfaces, under specific Sun-sensor ge-
ometries. However, vegetation canopies – the focus of this
study – are known to exhibit reflectance with very strong an-
gular dependence, so a comparison of canopy hemispheri-
cal reflectance with a remotely sensed directional reflectance
factor is invalid.

Our specific analysis is valid because – as described in the
Methods section (Sect. 2.3) – we used AVIRIS data that were
also BRDF corrected, whereby the directional reflectance es-
timates from the atmospheric correction process were fur-
ther converted to estimates of hemispherical reflectance via
a polynomial approximation of the Ross–Li semi-empirical
BRDF model (Lucht et al., 2000). Another dataset that would
have been valid for our analysis (albeit, one with much lower
spatial and spectral resolution) is the MODIS albedo prod-
uct (MOD43), which takes advantage of the angular sam-
pling of the MODIS instrument to quantify the surface BRDF
characteristics and therefore more precisely estimate the
albedo (Wang et al., 2004; Schaaf and Wang, 2015). How-
ever, our approach as described here would not be valid for
the surface reflectance products produced by nadir-viewing
instruments such as Landsat, Sentinel-2, or most airborne
platforms, at least without additional processing steps on
the data, or, preferably, modification of the underlying ra-
diative transfer models to allow for the prediction of di-
rectional reflectance. Fortunately, the assumptions and pa-
rameters that comprise two-stream radiative transfer mod-
els like EDR and its parent model (Sellers, 1985) are read-
ily adaptable to prediction of directional reflectance. For ex-
ample, the SAIL model (Verhoef, 1984; Verhoef and Bach,
2007) – which predicts both hemispherical and directional
reflectance, and which has a long history of successful appli-
cation to remote sensing – makes the same general assump-
tions as EDR and even shares many of the underlying coeffi-
cients (Yuan et al., 2017). Alternatively, land surface models
can take advantage of recent advances in radiative transfer
theory to improve their accuracy without significant compu-
tational penalty (e.g., Hogan et al., 2018).

A related issue is the missing or simplistic treatment of
two- and three-dimensional heterogeneity in canopy struc-
ture in EDR. For one, the treatment of leaves as infinitely
small elements randomly distributed through the canopy
space – a common feature of all two-stream approximations
– neglects complex realities of the canopy light environment
such as gaps and self-shading. In EDR, self-shading is han-
dled via the clumping factor parameter, which functions as
a scalar correction on the leaf area index (Eq. 20). A key
feature of EDR design is its representation of multiple co-
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existing plant cohorts competing for light within a single
patch; however, horizontal heterogeneity and competition be-
tween these cohorts is ignored. Improved representation of
lateral energy transfer can improve the accuracy of simula-
tions of the canopy light environment, and recent theoreti-
cal advances show that this can be accomplished without a
significant loss in computational performance (Hogan et al.,
2018). Treatment of horizontal competition also plays an im-
portant role in the outcomes of competition for light between
different plants (Fisher et al., 2018). A useful avenue for
development and parameterization of these models is com-
parison to more sophisticated and realistic three-dimensional
representations of radiative transfer (e.g., Widlowski et al.,
2007), which are themselves too computationally demand-
ing to be coupled to ecosystem models, but from which em-
pirical distributions and response functions could be derived
and against which the behavior of simpler models could be
evaluated.

5 Conclusions

Remote sensing observations are unrivaled in their spatial
completeness and extent, notably extending to regions like
the tropics and high latitudes that are relatively undersam-
pled but have a disproportionate impact on the global cli-
mate system (Schimel et al., 2015) and/or global biodiver-
sity (Jetz et al., 2016). At the same time, satellite time se-
ries provide multidecadal records with relatively high tem-
poral frequency, which have tremendous utility for calibrat-
ing model projections of past ecological dynamics (Kennedy
et al., 2014; Pasquarella et al., 2016). Used in combina-
tion with other emerging data sources, including global trait
databases and eddy covariance measurements, remote sens-
ing can be a transformative force in ecosystem ecology.

In this paper, we showed that using a vegetation model to
directly simulate surface reflectance is a promising approach
for calibrating and validating models against remotely sensed
observations. To do this, we modified the ED2 dynamic
vegetation model to predict full-range hyperspectral hemi-
spherical surface reflectance and then calibrated this modi-
fied model against airborne, BRDF-corrected imaging spec-
troscopy data. The calibration successfully reduced uncer-
tainties in model parameters related to canopy structure and
leaf biogeochemistry for five plant functional types charac-
teristic of temperate forests of the northeastern United States.
The calibrated model was able to accurately reproduce ob-
served surface reflectance for sites with highly varied for-
est composition and structure using a single common set of
parameters (i.e., not site-specific parameters). However, the
calibrated model predicted leaf area index values that did not
agree well with observations and had parameter estimates
that exhibited edge-hitting behavior, both of which suggest
structural issues in the model. Comparison against a canopy
radiative transfer model commonly used in the remote sens-

ing community (PRO4SAIL; Verhoef and Bach, 2007) sug-
gested that our model may be systematically underpredict-
ing surface albedo. Given the direct role albedo plays in the
canopy light and thermal environment in ED2, this bias could
have significant downstream consequences for ED2 predic-
tions of physiological and ecological processes. We there-
fore recommend structural changes to the ED2 canopy ra-
diative transfer model to resolve this bias and recommend
calibrating the updated model against remotely sensed sur-
face reflectance, as we demonstrated here. We note that the
basic structure and assumptions of the ED2 canopy radiative
transfer scheme are shared by many other vegetation mod-
els, so we expect that both this issue and our recommenda-
tions for resolving it are highly transferable within the vege-
tation modeling community. More generally, we recommend
the development of additional “observation operators” sim-
ilar to ours for other classes of remote sensing data, such
as thermal, microwave, and lidar, in ED2 and other dynamic
vegetation models, to allow these models to take full advan-
tage of remote sensing observations.
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Appendix A: Supplementary figures

Figure A1. Sensitivity of EDR-predicted hemispherical reflectance to true LAI. These simulations assume a single-cohort canopy with
effective number of mesophyll layers N = 1.4, total chlorophyll content Cab = 40, total carotenoid content Car = 10, leaf water content Cw
= 0.01, leaf dry matter content Cm = 0.01, clumping factor q = 1, leaf orientation factor χ = 0, cos(θs)= 0.85, and soil moisture fraction
ψ = 0.5.

Figure A2. Same as above but with LAI fixed to 3 and varying clumping factor (q).

https://doi.org/10.5194/gmd-14-2603-2021 Geosci. Model Dev., 14, 2603–2633, 2021



2620 A. N. Shiklomanov et al.: Calibrating a vegetation model using reflectance

Figure A3. Same as above but instead varying leaf orientation factor (χ ).

Figure A4. Site-specific relative soil moisture (0 indicates dry; 1 indicates wet) posterior estimates. Sites are sorted in order of increasing
weighted evergreen fraction.
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Figure A5. Comparison between AVIRIS-observed (black) and surface reflectance for each site used in the calibration. Sites are sorted
in order of decreasing mean difference between observed and EDR-predicted reflectance (largest underestimates first; largest overestimates
last).
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Figure A6. Mean reflectance bias (EDR predicted − observed) for each by spectral region and dominant PFT as a function of site stem
density. PFTs are abbreviated as follows: EH: early hardwood; MH: north mid-hardwood; LH: late hardwood; NP: northern pine; LC: late
conifer.
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Figure A7. EDR-predicted vs. observed spectra and species composition for the first quartile of sites by DBH.

Figure A8. As above but for the second quartile of sites by DBH.
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Figure A9. As above but for the third quartile of sites by DBH.

Figure A10. As above but for the fourth quartile of sites by DBH.
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Figure A11. As above but for sites where early hardwood trees had the largest mean DBH.

Figure A12. As above but for sites where mid-hardwood trees had the largest mean DBH.
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Figure A13. As above but for sites where late hardwood trees had the largest mean DBH.

Figure A14. As above but for sites where pine trees had the largest mean DBH.
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Figure A15. As above but for sites where late conifer trees had the largest mean DBH.

Figure A16. Same as Fig. 10 but varying LAI and fixing cos(θs)= 0.85, a typical value for our study.
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Figure A17. Posterior correlation matrix for PFT-specific parameters. Note that only correlations among parameters within the same PFT
are shown – the full 106 × 106 dimensional correlation matrix is far too large to display in this format.
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