Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2471-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2471-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A mechanistic analysis of tropical Pacific dynamic sea level in GFDL-OM4 under OMIP-I and OMIP-II forcings
University of Arizona, Department of Geoscience, 1040 E 4th St, Tucson, AZ, USA
Jianjun Yin
University of Arizona, Department of Geoscience, 1040 E 4th St, Tucson, AZ, USA
Stephen M. Griffies
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Princeton University Atmospheric and Oceanic Sciences Program, Princeton, NJ, USA
Raphael Dussin
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Related authors
No articles found.
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Cordero, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Rémi Pagès, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev., 18, 5245–5290, https://doi.org/10.5194/gmd-18-5245-2025, https://doi.org/10.5194/gmd-18-5245-2025, 2025
Short summary
Short summary
We made a new regional ocean model to assist fisheries and ecosystem managers in making decisions in the Northeast Pacific Ocean (NEP). We found that the model did well simulating past ocean conditions like temperature and nutrient and oxygen levels and can even reproduce metrics used by, and important to, ecosystem managers.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
Gustavo M. Marques, Nora Loose, Elizabeth Yankovsky, Jacob M. Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen M. Griffies, Robert W. Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna
Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, https://doi.org/10.5194/gmd-15-6567-2022, 2022
Short summary
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
Trevor J. McDougall, Paul M. Barker, Ryan M. Holmes, Rich Pawlowicz, Stephen M. Griffies, and Paul J. Durack
Geosci. Model Dev., 14, 6445–6466, https://doi.org/10.5194/gmd-14-6445-2021, https://doi.org/10.5194/gmd-14-6445-2021, 2021
Short summary
Short summary
We show that the way that the air–sea heat flux is treated in ocean models means that the model's temperature variable should be interpreted as being Conservative Temperature, irrespective of whether the equation of state used in an ocean model is EOS-80 or TEOS-10.
Cited articles
Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O.,
Dunne, J. P., Griffies, S. M., Hallberg, R., Harrison, M. J., Held, I. M.,
Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S.,
Liang, Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels,
B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B.,
Zadeh, N., and Zhang, R.: The GFDL Global Ocean and Sea Ice Model
OM4.0: Model Description and Simulation Features, J.
Adv. Model Earth Sy., 11, 3167–3211,
https://doi.org/10.1029/2019MS001726, 2019. a, b, c
Bromirski, P. D., Miller, A. J., Flick, R. E., and Auad, G.: Dynamical
Suppression of Sea Level Rise along the Pacific Coast of North
America: Indications for Imminent Acceleration, J. Geophys.
Res.-Oceans, 116, C07005, https://doi.org/10.1029/2010JC006759, 2011. a, b
Busalacchi, A. J. and Cane, M. A.: Hindcasts of Sea Level Variations during
the 1982–83 El Niño, J. Phys. Oceanogr., 15, 213–221,
https://doi.org/10.1175/1520-0485(1985)015<0213:HOSLVD>2.0.CO;2, 1985. a
Cane, M. A.: Modeling Sea Level During El Niño, J. Phys. Oceanogr., 14,
1864–1874, https://doi.org/10.1175/1520-0485(1984)014<1864:MSLDEN>2.0.CO;2, 1984. a
Chassignet, E. P., Smith, L. T., Halliwell, G. R., and Bleck, R.: North
Atlantic Simulations with the Hybrid Coordinate Ocean Model
(HYCOM): Impact of the Vertical Coordinate Choice, Reference
Pressure, and Thermobaricity, J. Phys. Oceanogr., 33, 2504–2526,
https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2, 2003. a
Deser, C. and Wallace, J. M.: Large-Scale Atmospheric Circulation Features
of Warm and Cold Episodes in the Tropical Pacific, J. Climate, 3,
1254–1281, https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2, 1990. a
Durack, P. J., Taylor, K. E., Eyring, V., Ames, S. K., Hoang, T., Nadeau, D., Doutriaux, C., Stockhause, M., and Gleckler, P. J.:
input4MIPs: Making CMIP Model Forcing more transparent,
available at: https://esgf-node.llnl.gov/search/input4mips/, last access: 26 May 2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Gill, A. E. and Niller, P. P.: The Theory of the Seasonal Variability in the
Ocean, Deep-Sea Res. Abstracts, 20, 141–177,
https://doi.org/10.1016/0011-7471(73)90049-1, 1973. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality Controlled
Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with
Uncertainty Estimates: THE EN4 DATA SET, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a, b
Gregory, J., Griffies, S. M., Hughes, C., Lowe, J., Church, J., Fukimori, I.,
Gomez, N., Kopp, R., Landerer, F., Ponte, R., Stammer, D., Tamisiea, M., and
van den Wal, R.: Concepts and terminology for sea level–mean, variability
and change, both local and global, Surv. Geophys., 40, 1251–1289,
https://doi.org/10.1007/s10712-019-09555-7, 2019. a
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G.,
Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated
Ocean-Ice Reference Experiments (COREs), Ocean Model., 26,
1–46, https://doi.org/10.1016/j.ocemod.2008.08.007, 2009. a
Griffies, S. M., Yin, J., Durack, P. J., Goddard, P., Bates, S. C., Behrens,
E., Bentsen, M., Bi, D., Biastoch, A., Böning, C. W., Bozec, A.,
Chassignet, E., Danabasoglu, G., Danilov, S., Domingues, C. M., Drange, H.,
Farneti, R., Fernandez, E., Greatbatch, R. J., Holland, D. M., Ilicak, M.,
Large, W. G., Lorbacher, K., Lu, J., Marsland, S. J., Mishra, A.,
George Nurser, A. J., Salas y Mélia, D., Palter, J. B., Samuels, B. L.,
Schröter, J., Schwarzkopf, F. U., Sidorenko, D., Treguier, A. M., Tseng,
Y.-H., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q., Winton,
M., and Zhang, X.: An Assessment of Global and Regional Sea Level for Years
1993–2007 in a Suite of Interannual CORE-II Simulations,
Ocean Model., 78, 35–89, https://doi.org/10.1016/j.ocemod.2014.03.004, 2014. a, b, c, d
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016. a, b, c, d, e
Hamlington, B. D., Strassburg, M. W., Leben, R. R., Han, W., Nerem, R. S., and
Kim, K.-Y.: Uncovering an Anthropogenic Sea-Level Rise Signal in the
Pacific Ocean, Nat. Clim. Change, 4, 782–785,
https://doi.org/10.1038/nclimate2307, 2014. a, b
Hamlington, B. D., Frederikse, T., Nerem, R. S., Fasullo, J. T., and Adhikari,
S.: Investigating the Acceleration of Regional Sea Level Rise During
the Satellite Altimeter Era, Geophys. Res. Lett., 47,
e2019GL086528, https://doi.org/10.1029/2019GL086528, 2020. a
Holmes, R. M., Zika, J. D., and England, M. H.: Diathermal Heat Transport
in a Global Ocean Model, J. Phys. Oceanogr., 49, 141–161,
https://doi.org/10.1175/JPO-D-18-0098.1, 2019. a
Hsu, C.-W.: chiaweh2/OMIP_TropPac_SeaLevel: GMD publication release (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.4725993, 2021. a
Jin, F.-F.: An Equatorial Ocean Recharge Paradigm for ENSO. Part I:
Conceptual Model, J. Atmos. Sci., 54, 811–829,
https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2, 1997. a
Johnson, M. A. and O'Brien, J. J.: The Role of Coastal Kelvin Waves on the
Northeast Pacific Ocean, J. Marine Syst., 1, 29–38,
https://doi.org/10.1016/0924-7963(90)90085-O, 1990. a
Knauss, J. A. and Garfield, N.: Introduction to Physical Oceanography,
3rd Edn., Waveland Press, 2016. a
Large, W. G. and Yeager, S. G.: The Global Climatology of an Interannually
Varying Air–Sea Flux Data Set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009. a, b, c
Lee, T., Fukumori, I., and Tang, B.: Temperature Advection: Internal
versus External Processes, J. Phys. Oceanogr., 34, 1936–1944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2, 2004. a
McGregor, S., Gupta, A. S., and England, M. H.: Constraining Wind Stress
Products with Sea Surface Height Observations and Implications for
Pacific Ocean Sea Level Trend Attribution, J. Climate, 25, 8164–8176,
https://doi.org/10.1175/JCLI-D-12-00105.1, 2012. a
McPhaden, M. J., Busalacchi, A. J., and Picaut, J.: Observations and
Wind-Forced Model Simulations of the Mean Seasonal Cycle in Tropical
Pacific Sea Surface Topography, J. Geophys. Res.-Oceans,
93, 8131–8146, https://doi.org/10.1029/JC093iC07p08131, 1988. a
Merrifield, M. A.: A Shift in Western Tropical Pacific Sea Level Trends
during the 1990s, J. Climate, 24, 4126–4138, https://doi.org/10.1175/2011JCLI3932.1,
2011. a
Meyers, G.: On the Annual Rossby Wave in the Tropical North Pacific
Ocean, J. Phys. Oceanogr., 9, 663–674,
https://doi.org/10.1175/1520-0485(1979)009<0663:OTARWI>2.0.CO;2, 1979. a
Peyser, C. E., Yin, J., Landerer, F. W., and Cole, J. E.: Pacific Sea Level
Rise Patterns and Global Surface Temperature Variability: pacific sea level
and global temperature, Geophys. Res. Lett., 43, 8662–8669,
https://doi.org/10.1002/2016GL069401, 2016. a, b
Picaut, J., Masia, F., and du Penhoat, Y.: An Advective-Reflective
Conceptual Model for the Oscillatory Nature of the ENSO, Science,
277, 663–666, https://doi.org/10.1126/science.277.5326.663, 1997. a
Pujol, M.-I. and Mertz, F.: Sea Level TAC DUACS Products, available at: https://resources.marine.copernicus.eu/, last access: 1 July 2019. a
Ray, S., Wittenberg, A. T., Griffies, S. M., and Zeng, F.: Understanding the
Equatorial Pacific Cold Tongue Time-Mean Heat Budget. Part I:
Diagnostic Framework, J. Climate, 31, 9965–9985,
https://doi.org/10.1175/JCLI-D-18-0152.1, 2018. a
Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate Polynomial
Expressions for the Density and Specific Volume of Seawater Using the
TEOS-10 Standard, Ocean Model., 90, 29–43,
https://doi.org/10.1016/j.ocemod.2015.04.002, 2015. a
Taboada, F. G., Stock, C. A., Griffies, S. M., Dunne, J., John, J. G., Small,
R. J., and Tsujino, H.: Surface winds from atmospheric reanalysis lead to
contrasting oceanic forcing and coastal upwelling patterns, Ocean Model.,
133, 79–111, https://doi.org/10.1016/j.ocemod.2018.11.003, 2018. a, b
Tokinaga, H. and Xie, S.-P.: Wave- and Anemometer-Based Sea Surface
Wind (WASWind) for Climate Change Analysis, J. Climate, 24,
267–285, https://doi.org/10.1175/2010JCLI3789.1, 2011. a, b
Trenberth, K. E.: Evolution of El Niño–Southern Oscillation
and Global Atmospheric Surface Temperatures, J. Geophys. Res.,
107, AAC 5-1–AAC 5-17, https://doi.org/10.1029/2000JD000298, 2002. a
Tseng, Y.-h., Lin, H., Chen, H.-C., Thompson, K., Bentsen, M., Böning,
C. W., Bozec, A., Cassou, C., Chassignet, E., Chow, C. H., Danabasoglu, G.,
Danilov, S., Farneti, R., Fogli, P. G., Fujii, Y., Griffies, S. M., Ilicak,
M., Jung, T., Masina, S., Navarra, A., Patara, L., Samuels, B. L., Scheinert,
M., Sidorenko, D., Sui, C.-H., Tsujino, H., Valcke, S., Voldoire, A., Wang,
Q., and Yeager, S. G.: North and Equatorial Pacific Ocean Circulation in
the CORE-II Hindcast Simulations, Ocean Model., 104, 143–170,
https://doi.org/10.1016/j.ocemod.2016.06.003, 2016. a, b
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W.,
Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J.,
Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 Based Surface Dataset for Driving Ocean–Sea-Ice Models
(JRA55-Do), Ocean Model., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a, b
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020.
a, b, c, d, e
Vinogradov, S. V., Ponte, R. M., Heimbach, P., and Wunsch, C.: The Mean
Seasonal Cycle in Sea Level Estimated from a Data-Constrained General
Circulation Model, J. Geophys. Res.-Oceans, 113, C03032,
https://doi.org/10.1029/2007JC004496, 2008. a
Weisberg, R. H. and Wang, C.: A Western Pacific Oscillator Paradigm for the
El Niño-Southern Oscillation, Geophys. Res. Lett., 24,
779–782, https://doi.org/10.1029/97GL00689, 1997. a, b, c
Wyrtki, K.: Sea Level and the Seasonal Fluctuations of the Equatorial
Currents in the Western Pacific Ocean, J. Phys. Oceanogr., 4, 91–103,
https://doi.org/10.1175/1520-0485(1974)004<0091:SLATSF>2.0.CO;2, 1974. a
Yin, J., Griffies, S. M., and Stouffer, R.: Spatial variability of sea-level
rise in 21st century projections, J. Climate, 23, 4585–4607,
https://doi.org/10.1175/2010JCLI3533.1, 2010. a
Zebiak, S. E. and Cane, M. A.: A Model El Niño Southern
Oscillation, Mon. Weather Rev., 115, 2262–2278,
https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2, 1987. a, b
Zhang, X. and Church, J. A.: Sea Level Trends, Interannual and Decadal
Variability in the Pacific Ocean, Geophys. Res. Lett., 39, L21701,
https://doi.org/10.1029/2012GL053240, 2012. a, b
Zhang, Z., Xue, H., Chai, F., and Chao, Y.: Variability of the Pacific North
Equatorial Current from 1993 to 2012 Based on a 1/8∘ Pacific
Model Simulation, J. Geophys. Res.-Oceans, 122, 2382–2400,
https://doi.org/10.1002/2016JC012143, 2017. a, b
Short summary
The new surface forcing from JRA55-do (OMIP II) significantly improved the underestimated sea level trend across the entire Pacific Ocean along 10° N in the simulation forced by CORE (OMIP I). We summarize and list out the reasons for the existing sea level biases across all studied timescales as a reference for improving the sea level simulation in the future. This study on the evaluation and improvement of ocean climate models should be of broad interest to a large modeling community.
The new surface forcing from JRA55-do (OMIP II) significantly improved the underestimated sea...