Clauser, C.: Heat transport processes in the Earth's crust, Surv.
Geophys., 30, 163–191, 2009. a
Cynn, H., Carnes, J. D., and Anderson, O. L.: Thermal properties of forsterite,
including Cv, calculated rom
αKT through the entropy, J.
Phys. Chem. Solids, 57, 1593–1599, 1996. a
Degen, D., Veroy, K., Cacace, M., Scheck-Wenderoth, M., and Wellmann, F.: How well do we know our models?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10482,
https://doi.org/10.5194/egusphere-egu2020-10482, 2020a.
a
Degen, D., Veroy, K., Freymark, J., Scheck-Wenderoth, M., and Wellmann, F.:
Global Sensitivity Analysis to Optimize Basin-Scale Conductive Model
Calibration – Insights on the Upper Rhine Graben, arXiv [preprint],
https://doi.org/10.31223/osf.io/b7pgs, 1 April 2020b.
a,
b,
c,
d,
e,
f,
g
Degen, D., Veroy, K., and Wellmann, F.: Certified reduced basis method in
geosciences, Computat. Geosci., 24, 241–259,
https://doi.org/10.1007/s10596-019-09916-6, 2020c.
a,
b,
c
Dentzer, J., Lopez, S., Violette, S., and Bruel, D.: Quantification of the
impact of paleoclimates on the deep heat flux of the Paris Basin,
Geothermics, 61, 35–45, 2016. a
Ebigbo, A., Niederau, J., Marquart, G., Dini, I., Thorwart, M., Rabbel, W.,
Pechnig, R., Bertani, R., and Clauser, C.: Influence of depth, temperature,
and structure of a crustal heat source on the geothermal reservoirs of
Tuscany: numerical modelling and sensitivity study, Geothermal Energy, 4, 5,
https://doi.org/10.1186/s40517-016-0047-7,
2016.
a
Frangos, M., Marzouk, Y., Willcox, K., and van Bloemen Waanders, B.: Surrogate
and reduced-order modeling: a comparison of approaches for large-scale
statistical inverse problems [Chapter 7], in: Large-scale inverse problems and quantification of uncertainty, edited by: Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Marzouk, Y., Tenorio, L., van Bloemen Waanders, B., and Willcox, K., 123–149, 2010.
a,
b
Freymark, J., Sippel, J., Scheck-Wenderoth, M., Bär, K., Stiller, M.,
Fritsche, J.-G., and Kracht, M.: The deep thermal field of the Upper Rhine
Graben, Tectonophysics, 694, 114–129, 2017. a
Freymark, J., Bott, J., Cacace, M., Ziegler, M., and Scheck-Wenderoth, M.:
Influence of the Main Border Faults on the 3D Hydraulic Field of the Central
Upper Rhine Graben, Geofluids, 7520714,
https://doi.org/10.1155/2019/7520714, 2019.
a,
b
Fridleifsson, I. B.: Geothermal energy for the benefit of the people, Renew.
Sust. Energ. Rev., 5, 299–312, 2001. a
Fridleifsson, I. B., Bertani, R., Huenges, E., Lund, J. W., Ragnarsson, A.,
and Rybach, L.: The possible role and contribution of geothermal energy
to the mitigation of climate change, in: Proceedings of the IPCC scoping meeting on renewable
energy sources, proceedings, 20 January 2008, Luebeck, Germany, 59–80,
2008. a
Fuchs, S. and Balling, N.: Improving the temperature predictions of subsurface
thermal models by using high-quality input data. Part 1: Uncertainty analysis
of the thermal-conductivity parameterization, Geothermics, 64, 42–54, 2016. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, 2013a.
a,
b
Giorgetta, M. A., Roeckner, E., Mauritsen, T., Bader, J., Crueger, T., Esch, M., Rast, S., Kornblueh, L., Schmidt, H., Kinne, S., Hohenegger, C., Möbis, B., Krismer, T., Wieners, K.-H., and Stevens, B.: The atmospheric
general circulation model ECHAM6-model description, available at:
https://pure.mpg.de/rest/items/item_1810480/component/file_1810481/content (last access: 20 June 2020), 2013b. a
Glassley, W. E.: Geothermal energy: renewable energy and the environment, CRC
press, Boca Raton, USA , 2014. a
Gosnold, W., Majorowicz, J., Klenner, R., and Hauk, S.: Implications of
post-glacial warming for northern hemisphere heat flow, GRC Transactions,
35, Report number: GRC1029332, 2011. a
Grepl, M. A. and Patera, A. T.: A posteriori error bounds for reduced-basis
approximations of parametrized parabolic partial differential equations,
ESAIM-Math. Model. Num., 39, 157–181, 2005. a
Hesthaven, J. S., Rozza, G., and Stamm, B.: Certified reduced basis methods
for parametrized partial differential equations, Springer Briefs in
Mathematics, Berlin, Germany, 2016.
a,
b,
c
Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A.,
Nádor, A., Koroknai, B., Pap, N., Tóth, T., and Wórum, G.:
Evolution of the Pannonian basin and its geothermal resources, Geothermics,
53, 328–352, 2015. a
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI-Earth system model in
different CMIP5 experimental realizations, J. Adv. Model.
Earth Sy., 5, 287–315, 2013. a
Jülich Supercomputing Centre: JUWELS: Modular Tier-0/1 Supercomputer at
the Jülich Supercomputing Centre, J. Large-Scale Res.
Facilities, 5, 135,
https://doi.org/10.17815/jlsrf-5-171, 2019.
a
Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and Von Storch, J.: Characteristics of the ocean
simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model.
Earth Sy., 5, 422–446, 2013. a
Khuri, A. I. and Mukhopadhyay, S.: Response surface methodology, WIRES Comput. Stat., 2, 128–149, 2010.
a,
b
Majorowicz, J. and Wybraniec, S.: New terrestrial heat flow map of Europe
after regional paleoclimatic correction application, Int. J.
Earth Sci., 100, 881–887, 2011. a
Maystrenko, Y. P., Bayer, U., and Scheck-Wenderoth, M.: Salt as a 3D element in
structural modeling – Example from the Central European
Basin System, Tectonophysics, 591, 62–82, 2013.
a,
b,
c,
d
Maystrenko, Y. P., Scheck-Wenderoth, M., and Anikiev, D.: 3D-CEBS: Three-dimensional lithospheric-scale structural model of the Central European Basin System and adjacent areas. V. 1, GFZ Data Services,
https://doi.org/10.5880/GFZ.4.5.2020.006, 2020.
a
Miao, T., Lu, W., Lin, J., Guo, J., and Liu, T.: Modeling and uncertainty
analysis of seawater intrusion in coastal aquifers using a surrogate model: a
case study in Longkou, China, Arab. J. Geosci., 12, 1,
https://doi.org/10.1007/s12517-018-4128-8, 2019.
a,
b,
c
Mo, S., Shi, X., Lu, D., Ye, M., and Wu, J.: An adaptive Kriging surrogate
method for efficient uncertainty quantification with an application to
geological carbon sequestration modeling, Comput. Geosci., 125, 69–77, 2019.
a,
b,
c
Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M.: Response Surface
Methodology: Process and Product Optimization Using Designed Experiments,
John Wiley and Sons, New York, USA, 2016.
a,
b
Navarro, M., Le Maître, O. P., Hoteit, I., George, D. L., Mandli, K. T.,
and Knio, O. M.: Surrogate-based parameter inference in debris flow model,
Comput. Geosci., 22, 1447–1463, 2018.
a,
b
Noack, V., Scheck-Wenderoth, M., and Cacace, M.: Sensitivity of 3D thermal
models to the choice of boundary conditions and thermal properties: a case
study for the area of Brandenburg (NE German Basin), Environ.
Earth Sci., 67, 1695–1711, 2012. a
Noack, V., Scheck-Wenderoth, M., Cacace, M., and Schneider, M.: Influence of
fluid flow on the regional thermal field: results from 3D numerical
modelling for the area of Brandenburg (North German Basin), Environ.
Earth Sci., 70, 3523–3544, 2013.
a,
b
Prud'homme, C., Rovas, D. V., Veroy, K., Machiels, L., Maday, Y., Patera,
A. T., and Turinici, G.: Reliable real-time solution of parametrized partial
differential equations: Reduced-basis output bound methods, J. Fluid.
Eng., 124, 70–80, 2002.
a,
b
Quarteroni, A., Manzoni, A., and Negri, F.: Reduced Basis Methods for Partial
Differential Equations: An Introduction, UNITEXT, Springer International
Publishing, Berlin, Germany, 2015. a
Saltelli, A.: Making best use of model evaluations to compute sensitivity
indices, Comput. Phys. Commun., 145, 280–297, 2002.
a,
b,
c
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola,
S.: Variance based sensitivity analysis of model output, Design and estimator
for the total sensitivity index, Comput. Phys. Commun., 181,
259–270, 2010.
a,
b,
c
Scheck-Wenderoth, M. and Maystrenko, Y. P.: Deep Control on Shallow Heat
in Sedimentary Basins, Energy Proced., 40, 266–275, 2013.
a,
b,
c,
d,
e
Scheck-Wenderoth, M., Cacace, M., Maystrenko, Y. P., Cherubini, Y., Noack, V.,
Kaiser, B. O., Sippel, J., and Björn, L.: Models of heat transport in the
Central European Basin System: Effective mechanisms at different
scales, Mar. Petrol. Geol., 55, 315–331, 2014.
a,
b,
c,
d
Schellschmidt, R., Hurter, S., Förster, A., and Huenges, E.: Atlas of
geothermal resources in Europe, Office for Official Publications of the
European Communities, Brussels, Belgium, 8 pp., 2002. a
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates, Math. Comput. Simulat., 55,
271–280, 2001.
a,
b,
c,
d
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric
component of the MPI-M Earth system model: ECHAM6, J. Adv.
Model. Earth Sy., 5, 146–172, 2013.
a,
b,
c
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University Press, Cambridge, UK, 2002.
a,
b,
c,
d,
e
Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q., and Birkholzer, J. T.:
Making sense of global sensitivity analyses, Comput. Geosci., 65,
84–94, 2014.
a,
b,
c
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., and van der Walt, S. J.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature methods, 17, 261–272, 2020. a
Westaway, R. and Younger, P. L.: Accounting for palaeoclimate and topography:
a rigorous approach to correction of the British geothermal dataset,
Geothermics, 48, 31–51, 2013. a