Articles | Volume 13, issue 11
Geosci. Model Dev., 13, 5211–5228, 2020
https://doi.org/10.5194/gmd-13-5211-2020
Geosci. Model Dev., 13, 5211–5228, 2020
https://doi.org/10.5194/gmd-13-5211-2020

Development and technical paper 02 Nov 2020

Development and technical paper | 02 Nov 2020

Development of a submerged aquatic vegetation growth model in the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST v3.4) model

Tarandeep S. Kalra et al.

Related authors

Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)
Tarandeep S. Kalra, Alfredo Aretxabaleta, Pranay Seshadri, Neil K. Ganju, and Alexis Beudin
Geosci. Model Dev., 10, 4511–4523, https://doi.org/10.5194/gmd-10-4511-2017,https://doi.org/10.5194/gmd-10-4511-2017, 2017
Short summary

Related subject area

Numerical methods
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022,https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022,https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021,https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry
Rafael Lago, Thomas Gastine, Tilman Dannert, Markus Rampp, and Johannes Wicht
Geosci. Model Dev., 14, 7477–7495, https://doi.org/10.5194/gmd-14-7477-2021,https://doi.org/10.5194/gmd-14-7477-2021, 2021
Short summary
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki
Geosci. Model Dev., 14, 7411–7424, https://doi.org/10.5194/gmd-14-7411-2021,https://doi.org/10.5194/gmd-14-7411-2021, 2021
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, 1977. 
Beudin, A., Kalra, T. S., Ganju, N., K., and Warner, J. C.: Development of a Coupled Wave-Current-Vegetation Interaction, Comput. Geosci., 100, 76–86, 2017. 
Bissett, W. P., Carder, K. L., Walsh, J. J., and Dieterle, D. A.: Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes, Deep-Sea Res. Pt. I, 46, 205–269, 1999a. 
Bissett, W. P., Carder, K. L., Walsh, J. J., and Dieterle, D. A.: Carbon cycling in the upper waters of the Sargasso Sea: II. Numerical simulation of apparent and inherent optical properties, Deep-Sea Res. Pt. II, 46, 271–317, 1999b. 
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions, Part I, Model description and validation, J. Geophys. Res., 104, 7649–7666, 1999. 
Download
Short summary
The paper covers the description of a 3-D open-source model that dynamically couples the biophysical interactions between submerged aquatic vegetation (SAV), hydrodynamics (currents, waves), sediment dynamics, and nutrient loading. Based on SAV growth model, SAV can use growth or dieback while contributing and sequestering nutrients from the water column (modifying the biological environment) and subsequently affect the hydrodynamics and sediment transport (modifying the physical environment).