Articles | Volume 13, issue 11
Geosci. Model Dev., 13, 5211–5228, 2020
https://doi.org/10.5194/gmd-13-5211-2020
Geosci. Model Dev., 13, 5211–5228, 2020
https://doi.org/10.5194/gmd-13-5211-2020

Development and technical paper 02 Nov 2020

Development and technical paper | 02 Nov 2020

Development of a submerged aquatic vegetation growth model in the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST v3.4) model

Tarandeep S. Kalra et al.

Related authors

Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)
Tarandeep S. Kalra, Alfredo Aretxabaleta, Pranay Seshadri, Neil K. Ganju, and Alexis Beudin
Geosci. Model Dev., 10, 4511–4523, https://doi.org/10.5194/gmd-10-4511-2017,https://doi.org/10.5194/gmd-10-4511-2017, 2017
Short summary

Related subject area

Numerical Methods
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021,https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
A framework to evaluate IMEX schemes for atmospheric models
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020,https://doi.org/10.5194/gmd-13-6467-2020, 2020
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020,https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example
Lauri Tuppi, Pirkka Ollinaho, Madeleine Ekblom, Vladimir Shemyakin, and Heikki Järvinen
Geosci. Model Dev., 13, 5799–5812, https://doi.org/10.5194/gmd-13-5799-2020,https://doi.org/10.5194/gmd-13-5799-2020, 2020
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, 1977. 
Beudin, A., Kalra, T. S., Ganju, N., K., and Warner, J. C.: Development of a Coupled Wave-Current-Vegetation Interaction, Comput. Geosci., 100, 76–86, 2017. 
Bissett, W. P., Carder, K. L., Walsh, J. J., and Dieterle, D. A.: Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes, Deep-Sea Res. Pt. I, 46, 205–269, 1999a. 
Bissett, W. P., Carder, K. L., Walsh, J. J., and Dieterle, D. A.: Carbon cycling in the upper waters of the Sargasso Sea: II. Numerical simulation of apparent and inherent optical properties, Deep-Sea Res. Pt. II, 46, 271–317, 1999b. 
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions, Part I, Model description and validation, J. Geophys. Res., 104, 7649–7666, 1999. 
Download
Short summary
The paper covers the description of a 3-D open-source model that dynamically couples the biophysical interactions between submerged aquatic vegetation (SAV), hydrodynamics (currents, waves), sediment dynamics, and nutrient loading. Based on SAV growth model, SAV can use growth or dieback while contributing and sequestering nutrients from the water column (modifying the biological environment) and subsequently affect the hydrodynamics and sediment transport (modifying the physical environment).