Articles | Volume 12, issue 10
https://doi.org/10.5194/gmd-12-4275-2019
https://doi.org/10.5194/gmd-12-4275-2019
Methods for assessment of models
 | 
10 Oct 2019
Methods for assessment of models |  | 10 Oct 2019

What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models

Razi Sheikholeslami, Saman Razavi, and Amin Haghnegahdar

Related authors

A global assessment of nitrogen concentrations using spatiotemporal random forests
Razi Sheikholeslami and Jim W. Hall
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-618,https://doi.org/10.5194/hess-2021-618, 2022
Manuscript not accepted for further review
Short summary

Related subject area

Climate and Earth system modeling
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024,https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024,https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024,https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024,https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024,https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary

Cited articles

Annan, J. D., Hargreaves, J. C., Edwards, N. R., and Marsh, R.: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter, Ocean. Model., 8, 135–154, https://doi.org/10.1016/j.ocemod.2003.12.004, 2005. 
Asadzadeh, M., Razavi, S., Tolson, B. A., and Fay, D.: Pre-emption strategies for efficient multi-objective optimization: Application to the development of Lake Superior regulation plan, Environ. Modell. Softw., 54, 128–141, https://doi.org/10.1016/j.envsoft.2014.01.005, 2014. 
Beretta, L. and Santaniello, A.: Nearest neighbor imputation algorithms: a critical evaluation, BMC Med. Inform. Decis., 16, 74, https://doi.org/10.1186/s12911-016-0318-z, 2016. 
Burnash, R. J. C.: The NWS River forecast system-catchment modeling, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publication, Highlands Ranch, Colorado, USA, 311–366, 1995. 
Choudhury, B. J. and Idso, S. B.: An empirical model for stomatal resistance of field-grown wheat, Agr. Forest. Meteorol., 36, 65–82, https://doi.org/10.1016/0168-1923(85)90066-8, 1985. 
Download
Short summary
The ever-growing complexity of Earth and environmental system models can pose many types of software development and implementation issues such as parameter-induced simulation crashes, which are mainly caused by the violation of numerical stability conditions. Here, we introduce a new approach to handle crashed simulations when performing sensitivity analysis. Our results show that this approach can comply well with the dimensionality of the model, sample size, and the number of crashes.