Articles | Volume 10, issue 9
https://doi.org/10.5194/gmd-10-3207-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-3207-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Practice and philosophy of climate model tuning across six US modeling centers
Gavin A. Schmidt
CORRESPONDING AUTHOR
NASA Goddard Institute for Space Studies, 2880 Broadway, New York, USA
David Bader
DOE Lawrence Livermore National Laboratory, Livermore, California, USA
Leo J. Donner
GFDL/NOAA, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, New Jersey, USA
Gregory S. Elsaesser
NASA Goddard Institute for Space Studies, 2880 Broadway, New York, USA
Columbia University, New York, New York, USA
Jean-Christophe Golaz
DOE Lawrence Livermore National Laboratory, Livermore, California, USA
Cecile Hannay
National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
Andrea Molod
Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland, USA
Richard B. Neale
National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
Suranjana Saha
Environmental Modeling Center, NCEP/NWS/NOAA, NCWCP College Park, Maryland, USA
Related authors
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
This article is included in the Encyclopedia of Geosciences
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
This article is included in the Encyclopedia of Geosciences
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, https://doi.org/10.5194/esd-10-91-2019, 2019
Short summary
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
This article is included in the Encyclopedia of Geosciences
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
This article is included in the Encyclopedia of Geosciences
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
This article is included in the Encyclopedia of Geosciences
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
This article is included in the Encyclopedia of Geosciences
E. Fischer, S. Nowicki, M. Kelley, and G. A. Schmidt
Geosci. Model Dev., 7, 883–907, https://doi.org/10.5194/gmd-7-883-2014, https://doi.org/10.5194/gmd-7-883-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
D. T. Shindell, O. Pechony, A. Voulgarakis, G. Faluvegi, L. Nazarenko, J.-F. Lamarque, K. Bowman, G. Milly, B. Kovari, R. Ruedy, and G. A. Schmidt
Atmos. Chem. Phys., 13, 2653–2689, https://doi.org/10.5194/acp-13-2653-2013, https://doi.org/10.5194/acp-13-2653-2013, 2013
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
This article is included in the Encyclopedia of Geosciences
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-262, https://doi.org/10.5194/gmd-2022-262, 2022
Preprint under review for GMD
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes, and thus increasingly important. However, uniformly reducing the grid size of global Earth system model is too computationally expensive. We overview the fully coupled Regionally Refined Model (RRM) of E3SMv2 and document a first-of-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid timestep strategy.
This article is included in the Encyclopedia of Geosciences
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
This article is included in the Encyclopedia of Geosciences
Walter Hannah, Kyle Pressel, Mikhail Ovchinnikov, and Gregory Elsaesser
Geosci. Model Dev., 15, 6243–6257, https://doi.org/10.5194/gmd-15-6243-2022, https://doi.org/10.5194/gmd-15-6243-2022, 2022
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
This article is included in the Encyclopedia of Geosciences
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
This article is included in the Encyclopedia of Geosciences
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022, https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Short summary
We document the model experiments for the future climate projection by E3SMv1.0. At the highest future emission scenario, E3SMv1.0 projects a strong surface warming with rapid changes in the atmosphere, ocean, sea ice, and land runoff. Specifically, we detect a significant polar amplification and accelerated warming linked to the unmasking of the aerosol effects. The impact of greenhouse gas forcing is examined in different climate components.
This article is included in the Encyclopedia of Geosciences
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
This article is included in the Encyclopedia of Geosciences
Ehud Strobach, Andrea Molod, Donifan Barahona, Atanas Trayanov, Dimitris Menemenlis, and Gael Forget
Geosci. Model Dev., 15, 2309–2324, https://doi.org/10.5194/gmd-15-2309-2022, https://doi.org/10.5194/gmd-15-2309-2022, 2022
Short summary
Short summary
The Green's functions methodology offers a systematic, easy-to-implement, computationally cheap, scalable, and extendable method to tune uncertain parameters in models accounting for the dependent response of the model to a change in various parameters. Herein, we successfully show for the first time that long-term errors in earth system models can be considerably reduced using Green's functions methodology. The method can be easily applied to any model containing uncertain parameters.
This article is included in the Encyclopedia of Geosciences
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
This article is included in the Encyclopedia of Geosciences
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
This article is included in the Encyclopedia of Geosciences
Qi Tang, Michael J. Prather, Juno Hsu, Daniel J. Ruiz, Philip J. Cameron-Smith, Shaocheng Xie, and Jean-Christophe Golaz
Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021, https://doi.org/10.5194/gmd-14-1219-2021, 2021
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
This article is included in the Encyclopedia of Geosciences
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
This article is included in the Encyclopedia of Geosciences
Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao
Atmos. Chem. Phys., 20, 8989–9030, https://doi.org/10.5194/acp-20-8989-2020, https://doi.org/10.5194/acp-20-8989-2020, 2020
Short summary
Short summary
High clouds are influential in tropical climate. Although reanalysis cloud fields are essentially model products, they are indirectly constrained by observations and offer global coverage with direct links to advanced water and energy cycle metrics, giving them many useful applications. We describe how high cloud fields are generated in reanalyses, assess their realism and reliability in the tropics, and evaluate how differences in these fields affect other aspects of the reanalysis state.
This article is included in the Encyclopedia of Geosciences
Daniel T. McCoy, Paul Field, Hamish Gordon, Gregory S. Elsaesser, and Daniel P. Grosvenor
Atmos. Chem. Phys., 20, 4085–4103, https://doi.org/10.5194/acp-20-4085-2020, https://doi.org/10.5194/acp-20-4085-2020, 2020
Short summary
Short summary
Incomplete understanding of how aerosol affects clouds degrades our ability to predict future climate. In particular, it is unclear how aerosol affects the lifetime of clouds. Does it increase or decrease it? This confusion is partially because causality flows from aerosol to clouds and clouds to aerosol, and it is hard to tell what is happening in observations. Here, we use simulations to tell us about how clouds affect aerosol and use this to interpret observations, showing increased lifetime.
This article is included in the Encyclopedia of Geosciences
Qi Tang, Stephen A. Klein, Shaocheng Xie, Wuyin Lin, Jean-Christophe Golaz, Erika L. Roesler, Mark A. Taylor, Philip J. Rasch, David C. Bader, Larry K. Berg, Peter Caldwell, Scott E. Giangrande, Richard B. Neale, Yun Qian, Laura D. Riihimaki, Charles S. Zender, Yuying Zhang, and Xue Zheng
Geosci. Model Dev., 12, 2679–2706, https://doi.org/10.5194/gmd-12-2679-2019, https://doi.org/10.5194/gmd-12-2679-2019, 2019
Grégory Cesana, Anthony D. Del Genio, Andrew S. Ackerman, Maxwell Kelley, Gregory Elsaesser, Ann M. Fridlind, Ye Cheng, and Mao-Sung Yao
Atmos. Chem. Phys., 19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019, https://doi.org/10.5194/acp-19-2813-2019, 2019
Short summary
Short summary
The response of low clouds to climate change (i.e., cloud feedbacks) is still pointed out as being the largest source of uncertainty in climate models. Here we use CALIPSO observations to discriminate climate models that reproduce observed interannual change of cloud fraction with SST forcings, referred to as a present-day cloud feedback. Modeling moist processes in the planetary boundary layer is crucial to produce large stratocumulus decks and realistic present-day cloud feedbacks.
This article is included in the Encyclopedia of Geosciences
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, https://doi.org/10.5194/esd-10-91-2019, 2019
Short summary
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
This article is included in the Encyclopedia of Geosciences
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
This article is included in the Encyclopedia of Geosciences
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.
This article is included in the Encyclopedia of Geosciences
Kai Zhang, Philip J. Rasch, Mark A. Taylor, Hui Wan, Ruby Leung, Po-Lun Ma, Jean-Christophe Golaz, Jon Wolfe, Wuyin Lin, Balwinder Singh, Susannah Burrows, Jin-Ho Yoon, Hailong Wang, Yun Qian, Qi Tang, Peter Caldwell, and Shaocheng Xie
Geosci. Model Dev., 11, 1971–1988, https://doi.org/10.5194/gmd-11-1971-2018, https://doi.org/10.5194/gmd-11-1971-2018, 2018
Short summary
Short summary
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model.
This article is included in the Encyclopedia of Geosciences
Daniel T. McCoy, Paul R. Field, Anja Schmidt, Daniel P. Grosvenor, Frida A.-M. Bender, Ben J. Shipway, Adrian A. Hill, Jonathan M. Wilkinson, and Gregory S. Elsaesser
Atmos. Chem. Phys., 18, 5821–5846, https://doi.org/10.5194/acp-18-5821-2018, https://doi.org/10.5194/acp-18-5821-2018, 2018
Short summary
Short summary
Here we use a combination of global convection-permitting models, satellite observations and the Holuhraun volcanic eruption to demonstrate that aerosol enhances the cloud liquid content and brightness of midlatitude cyclones. This is important because the strength of anthropogenic radiative forcing is uncertain, leading to uncertainty in the climate sensitivity consistent with observed temperature record.
This article is included in the Encyclopedia of Geosciences
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
This article is included in the Encyclopedia of Geosciences
Karen Yu, Christoph A. Keller, Daniel J. Jacob, Andrea M. Molod, Sebastian D. Eastham, and Michael S. Long
Geosci. Model Dev., 11, 305–319, https://doi.org/10.5194/gmd-11-305-2018, https://doi.org/10.5194/gmd-11-305-2018, 2018
Short summary
Short summary
Global simulations of atmospheric chemistry are generally conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it is unable to reproduce the GCM transport exactly. We investigate the cascade of errors associated with the off-line approach using the GEOS-5 GCM and GEOS-Chem CTM and discuss improvements in the use of archived meteorology.
This article is included in the Encyclopedia of Geosciences
Peter A. Bogenschutz, Andrew Gettelman, Cecile Hannay, Vincent E. Larson, Richard B. Neale, Cheryl Craig, and Chih-Chieh Chen
Geosci. Model Dev., 11, 235–255, https://doi.org/10.5194/gmd-11-235-2018, https://doi.org/10.5194/gmd-11-235-2018, 2018
Short summary
Short summary
This paper compares results of developmental versions of a widely used climate model. The simulations only differ in the choice of how to model the sub-grid-scale physics in the atmospheric model. This work is novel because it is the first time that a particular physics option has been tested in a fully coupled climate model. Here, we demonstrate that this physics option has the ability to produce credible coupled climate simulations, with improved metrics in certain fields.
This article is included in the Encyclopedia of Geosciences
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
This article is included in the Encyclopedia of Geosciences
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
This article is included in the Encyclopedia of Geosciences
Leo J. Donner, Travis A. O'Brien, Daniel Rieger, Bernhard Vogel, and William F. Cooke
Atmos. Chem. Phys., 16, 12983–12992, https://doi.org/10.5194/acp-16-12983-2016, https://doi.org/10.5194/acp-16-12983-2016, 2016
Short summary
Short summary
Uncertainties in both climate forcing and sensitivity limit the extent to which climate projections can meet society's needs for actionable climate science. Advances in observing and modeling atmospheric vertical velocities provide a potential breakthrough in understanding climate forcing and sensitivity, with concurrent reductions in uncertainty.
This article is included in the Encyclopedia of Geosciences
F. Paulot, P. Ginoux, W. F. Cooke, L. J. Donner, S. Fan, M.-Y. Lin, J. Mao, V. Naik, and L. W. Horowitz
Atmos. Chem. Phys., 16, 1459–1477, https://doi.org/10.5194/acp-16-1459-2016, https://doi.org/10.5194/acp-16-1459-2016, 2016
Short summary
Short summary
We characterize the sensitivity of NO3 optical depth (OD) to both the sources of its precursors (NH3 and HNO3) and to its surface sinks. Uncertainties in the heterogeneous chemistry of HNO3 and the near-surface volatilization of NH4NO3 can cause up to 25 % difference in the global NO3 OD. Simulated NO3 OD increases little (< 30 %) in response to changes in emissions (2010 to 2050). Better constraints on the tropical flux of NH3 into the free troposphere are needed to improve estimates of NO3 OD.
This article is included in the Encyclopedia of Geosciences
D. M. Westervelt, L. W. Horowitz, V. Naik, J.-C. Golaz, and D. L. Mauzerall
Atmos. Chem. Phys., 15, 12681–12703, https://doi.org/10.5194/acp-15-12681-2015, https://doi.org/10.5194/acp-15-12681-2015, 2015
Short summary
Short summary
Decreases in aerosols over the 21st century as projected by the Representative Concentration Pathways (RCPs) lead to increases up to 0.5 - 1 ºC in global temperature and up to 0.05 - 0.1 mm/day in global precipitation, depending strongly on present-day aerosol radiative forcing. In East Asia, future aerosol decreases could be responsible for 10-20% of the total temperature increase (30-40% with strong present-day aerosol forcing), even under the high greenhouse gas emissions scenario (RCP8.5).
This article is included in the Encyclopedia of Geosciences
A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. E. Eaton, J. Edwards, C. Hannay, S. A. Mickelson, R. B. Neale, D. Nychka, J. Shollenberger, J. Tribbia, M. Vertenstein, and D. Williamson
Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, https://doi.org/10.5194/gmd-8-2829-2015, 2015
Short summary
Short summary
Climate simulation codes are especially complex, and their ongoing state of development requires frequent software quality assurance to both
preserve code quality and instil model confidence. To formalize and simplify this previously subjective and expensive process, we
have developed a new tool for evaluating climate consistency.
The tool has proven its utility in detecting errors in software and hardware
environments and providing rapid feedback to model developers.
This article is included in the Encyclopedia of Geosciences
E. Fischer, S. Nowicki, M. Kelley, and G. A. Schmidt
Geosci. Model Dev., 7, 883–907, https://doi.org/10.5194/gmd-7-883-2014, https://doi.org/10.5194/gmd-7-883-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
D. T. Shindell, O. Pechony, A. Voulgarakis, G. Faluvegi, L. Nazarenko, J.-F. Lamarque, K. Bowman, G. Milly, B. Kovari, R. Ruedy, and G. A. Schmidt
Atmos. Chem. Phys., 13, 2653–2689, https://doi.org/10.5194/acp-13-2653-2013, https://doi.org/10.5194/acp-13-2653-2013, 2013
Related subject area
Climate and Earth system modeling
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1
The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Evaluation of native Earth system model output with ESMValTool v2.6.0
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Climate change projections of wet and dry extreme events in the Upper Jhelum Basin using a multivariate drought index: Evaluation of bias correction
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Importance of Ice Nucleation and Precipitation on Climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China
Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States
SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Impacts of the ice-particle size distribution shape parameter on climate simulations with the Community Atmosphere Model Version 6 (CAM6)
A modeling framework to understand historical and projected ocean climate change in large coupled ensembles
TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Pace v0.1: A Python-based Performance-Portable Implementation of the FV3 Dynamical Core
Transport parameterization of the Polar SWIFT model (version 2)
Effects of complex terrain on the shortwave radiative balance: A sub–grid scale parameterization for the GFDL Land Model version 4.2
Analog data assimilation for the selection of suitable general circulation models
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
This article is included in the Encyclopedia of Geosciences
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
This article is included in the Encyclopedia of Geosciences
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
This article is included in the Encyclopedia of Geosciences
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023, https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
Short summary
The traditional tropospheric zenith hydrostatic delay (ZHD) model's bias is usually thought negligible, yet it still reaches 10 mm sometimes and would lead to millimeter-level position errors for space geodetic observations. Therefore, we analyzed the bias’ characteristics and present a grid model to correct the traditional ZHD formula. When verifying the efficiency based on data from the ECMWF (European Centre for Medium-Range Weather Forecasts), ZHD biases were rectified by ~50 %.
This article is included in the Encyclopedia of Geosciences
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
This article is included in the Encyclopedia of Geosciences
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
This article is included in the Encyclopedia of Geosciences
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
This article is included in the Encyclopedia of Geosciences
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
This article is included in the Encyclopedia of Geosciences
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
This article is included in the Encyclopedia of Geosciences
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
This article is included in the Encyclopedia of Geosciences
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
This article is included in the Encyclopedia of Geosciences
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
This article is included in the Encyclopedia of Geosciences
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
This article is included in the Encyclopedia of Geosciences
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
This article is included in the Encyclopedia of Geosciences
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
This article is included in the Encyclopedia of Geosciences
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
This article is included in the Encyclopedia of Geosciences
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
This article is included in the Encyclopedia of Geosciences
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
This article is included in the Encyclopedia of Geosciences
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
This article is included in the Encyclopedia of Geosciences
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
This article is included in the Encyclopedia of Geosciences
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
This article is included in the Encyclopedia of Geosciences
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
This article is included in the Encyclopedia of Geosciences
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
This article is included in the Encyclopedia of Geosciences
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
This article is included in the Encyclopedia of Geosciences
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
This article is included in the Encyclopedia of Geosciences
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
This article is included in the Encyclopedia of Geosciences
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-237, https://doi.org/10.5194/gmd-2022-237, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Bias correction has become indispensable to climate model output as a post-processing step to render climate model output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX and CORDEX-CORE) for a multivariate drought index (i.e., Standardized Precipitation Evapotranspiration Index).
This article is included in the Encyclopedia of Geosciences
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
This article is included in the Encyclopedia of Geosciences
Laura Claire Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-277, https://doi.org/10.5194/gmd-2022-277, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult, however it is unclear whether TP exist in global climate models. Here we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic hosing model intercomparison project (NAHosMIP).
This article is included in the Encyclopedia of Geosciences
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
This article is included in the Encyclopedia of Geosciences
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
EGUsphere, https://doi.org/10.5194/egusphere-2022-980, https://doi.org/10.5194/egusphere-2022-980, 2022
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth System Models. These updates include the ability to run the scheme on Graphics Processing Units (GPUs) and changes to the numerical description of precipitation, as well as a correction to ice number. There are big improvements in computational performance that can be achieved with GPU acceleration.
This article is included in the Encyclopedia of Geosciences
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
This article is included in the Encyclopedia of Geosciences
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
This article is included in the Encyclopedia of Geosciences
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
This article is included in the Encyclopedia of Geosciences
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
This article is included in the Encyclopedia of Geosciences
Entao Yu, Rui Bai, Xia Chen, and Lifang Shao
Geosci. Model Dev., 15, 8111–8134, https://doi.org/10.5194/gmd-15-8111-2022, https://doi.org/10.5194/gmd-15-8111-2022, 2022
Short summary
Short summary
A large number of simulations are conducted to investigate how different physical parameterization schemes impact surface wind simulations under stable weather conditions over the coastal regions of North China using the Weather Research and Forecasting model with a horizontal grid spacing of 0.5 km. Results indicate that the simulated wind speed is most sensitive to the planetary boundary layer schemes, followed by short-wave/long-wave radiation schemes and microphysics schemes.
This article is included in the Encyclopedia of Geosciences
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, https://doi.org/10.5194/gmd-15-8135-2022, 2022
Short summary
Short summary
We focus on the recent development of a state-of-the-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the western USA. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
This article is included in the Encyclopedia of Geosciences
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
This article is included in the Encyclopedia of Geosciences
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
This article is included in the Encyclopedia of Geosciences
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
This article is included in the Encyclopedia of Geosciences
Wentao Zhang, Xiangjun Shi, and Chunsong Lu
Geosci. Model Dev., 15, 7751–7766, https://doi.org/10.5194/gmd-15-7751-2022, https://doi.org/10.5194/gmd-15-7751-2022, 2022
Short summary
Short summary
The two-moment bulk cloud microphysics scheme used in CAM6 was modified to consider the impacts of the ice-crystal size distribution shape parameter (μi). After that, how the μi impacts cloud microphysical processes and then climate simulations is clearly illustrated by offline tests and CAM6 model experiments. Our results and findings are useful for the further development of μi-related parameterizations.
This article is included in the Encyclopedia of Geosciences
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
This article is included in the Encyclopedia of Geosciences
Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf
Geosci. Model Dev., 15, 7489–7504, https://doi.org/10.5194/gmd-15-7489-2022, https://doi.org/10.5194/gmd-15-7489-2022, 2022
Short summary
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.
This article is included in the Encyclopedia of Geosciences
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
This article is included in the Encyclopedia of Geosciences
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
This article is included in the Encyclopedia of Geosciences
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
EGUsphere, https://doi.org/10.5194/egusphere-2022-943, https://doi.org/10.5194/egusphere-2022-943, 2022
Short summary
Short summary
It is hard for scientists to write efficient code which runs fast on all kinds of supercomputers. They like writing Python because it is easier to read and use. We re-wrote a Fortran code that simulates weather and climate into Python. The Python code re-writes itself to a much faster language to run on either normal processors or graphics cards. On one big computer system, our code is 3.5–4x faster on its graphics cards than the original code is on its processors.
This article is included in the Encyclopedia of Geosciences
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
This article is included in the Encyclopedia of Geosciences
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2022-770, https://doi.org/10.5194/egusphere-2022-770, 2022
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth System Models, where coarse grid cells hinder the description of fine scale land-atmosphere interactions. We adopt a clustering algorithm to partiton land domain in a set of homogeneous sub-grid “tiles”, and for each evaluate solar radiation receive by land based on terrain properties.
This article is included in the Encyclopedia of Geosciences
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
This article is included in the Encyclopedia of Geosciences
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
This article is included in the Encyclopedia of Geosciences
Cited articles
Alexander, M. and Dunkerton, T.: A spectral parameterization of mean-flow forcing due to breaking gravity waves, J. Atmos. Sci., 56, 4167–4182, 1999.
Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P.-L.: Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014gl060962, 2014.
Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017.
Benedict, J., Maloney, E., Sobel, A., Frierson, D., and Donner, L.: Tropical intraseasonal variability in Version 3 of the GFDL atmosphere model, J. Climate, 26, 426–449, https://doi.org/10.1175/JCLI-D-12-00103.1, 2013.
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model: description, control climate and evaluation, Aust. Met. Oceanogr. J., 63, 41–64, 2013.
Bogenschutz, P., Gettelman, A., Morrison, H., Larson, V., Craig, C., and Schanen, D.: Higher-order closure and its impact on climate simulations in the Community Atmosphere Model, J. Climate, 26, 9655–9676, https://doi.org/10.1175/JCLI-D-13-00075.1, 2013.
Bosilovich, M. G.: Regional Climate and Variability of NASA MERRA and Recent Reanalyses: U.S. Summertime Precipitation and Temperature, J. Appl. Meteorol. Clim., 52, 1939–1951, https://doi.org/10.1175/jamc-d-12-0291.1, 2013.
Bretherton, C., McCaa, J., and Grenier, H.: A new parameterization for shallow cumulus parameterization and its application to marine subtropical cloud-topped boundary layers, Mon. Weather Rev., 132, 864–882, 2004.
Cess, R., Potter, G., Blanchet, J., Boer, G., Genio, A. D., Déqué, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., Kiehl, J. T., Lacis, A. A., Le Treut, H., Li, Z.-X., Liang, X.-Z., McAvaney, B. J., Meleshko, V. P., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Rikus, L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, A., Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., and Zhang, M.-H.: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models, J. Geophys. Res., 95, 16601–16615, https://doi.org/10.1029/JD095iD10p16601, 1990.
Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J., and Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, L18601, https://doi.org/10.1029/2011GL048794, 2011.
Del Genio, A. D., Wu, J., Wolf, A. B., Chen, Y., Yao, M.-S., and Kim, D.: Constraints on Cumulus Parameterization from Simulations of Observed MJO Events, J. Climate, 28, 6419–6442, https://doi.org/10.1175/jcli-d-14-00832.1, 2015.
Dessler, A. E. and Davis, S. M.: Trends in tropospheric humidity from reanalysis systems, J. Geophys. Res., 115, D19127, https://doi.org/10.1029/2010jd014192, 2010.
Donner, L.: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects, J. Atmos. Sci., 50, 889–906, https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2, 1993.
Donner, L. J., Wyman, B., Hemler, R., Horowitz, L., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3, J. Climate, 24, 3484–3519, https://doi.org/10.1175/2011JCLI3955.1, 2011.
Feingold, G.: Modeling of the first indirect effect: Analysis of measurement requirements, Geophys. Res. Lett., 30, 1997, https://doi.org/10.1029/2003GL017967, 2003.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukaine, M.: Evaluation of Climate Models, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S., and Zelinka, M.: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models, J. Geophys. Res.-Atmos., 118, 1139–1150, https://doi.org/10.1002/jgrd.50174, 2013.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version-2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2016.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011jcli4083.1, 2011.
The GFDL Global Atmospheric Model Development Team: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations, J. Climate, 17, 4641–4673, https://doi.org/10.1175/JCLI-3223.1, 2004.
Golaz, J.-C., Salzmann, M., Donner, L., Horowitz, L., Ming, Y., and Zhao, M.: Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3, J. Climate, 24, 3145–3160, https://doi.org/10.1175/2010JCLI3945.1, 2011.
Golaz, J.-C., Horowitz, L., and Levy II, H.: Cloud tuning in a coupled climate model: Impact on 20th century warming, Geophys. Res. Lett., 40, 2246–2251, https://doi.org/10.1002/grl.50232, 2013.
Griffies, S., Winton, M., Donner, L., Horowitz, L., Downes, S., Farneti, R., Gnanadesikan, A., Hurlin, W. J., Lee, H., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N.: GFDL's CM3 coupled climate model: Characteristics of the ocean and sea ice simulations, J. Climate, 24, 3520–3544,https://doi.org/10.1175/2011JCLI3964.1, 2011.
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W., Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels, B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L., Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice Reference Experiments (COREs), Ocean Model., 26, 1–46, https://doi.org/10.1016/j.ocemod.2008.08.007, 2009.
Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russell, G., and Stone, P.: Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J. Geophys. Res., 93, 9341–9364, 1988.
Hansen, J., Lacis, A., Ruedy, R., and Sato, M.: Potential climate impact of Mount Pinatubo eruption, Geophys. Res. Lett., 19, 215–218, 1992.
Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A., and Tausnev, N. L.: Earth's Energy Imbalance: Confirmation and Implications, Science, 308, 1431–1435, https://doi.org/10.1126/science.1110252, 2005.
Hansen, J. E., Russell, G. L., Rind, D., Stone, P., Lacis, A., Ruedy, R., and Travis, L.: Efficient three-dimensional models for climatic studies, Mon. Weather Rev., 111, 609–662, https://doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2, 1983.
Hargreaves, J. C.: Skill and uncertainty in climate models, Wiley Interdisciplinary Reviews: Climate Change, 1, 556–564, https://doi.org/10.1002/wcc.58, 2010.
Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P., Joshi, M., Osborn, T. J., Masson-Delmotte, V., Mignot, J., Thorne, P., and van Oldenborgh, G. J.: Estimating changes in global temperature since the pre-industrial period, B. Am. Meteorol. Soc., https://doi.org/10.1175/bams-d-16-0007.1, online first, 2017.
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., Folini, D., Klocke, D. J. D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M., and Williamson, D.: The art and science of climate model tuning, B. Am. Meteorol. Soc., 98, 589–602, https://doi.org/10.1175/BAMS-D-15-00135.1, 2017.
Hurrell, J. W., Bader, D., Delworth, T., Kirtman, B., Meehl, J., Pan, H.-L., and Wielicki, B.: Seamless Prediction. White paper for the U.S. Inter-Agency Working Group on Climate Modeling, available at: http://www.cgd.ucar.edu/staff/jhurrell/docs/SeamlessModellingDraft03302007.pdf (last access: 21 August 2017), 2006.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/bams-d-12-00121.1, 2013.
Intemann, K.: Distinguishing between legitimate and illegitimate values in climate modeling, European Journal for Philosophy of Science, 5, 217–232, https://doi.org/10.1007/s13194-014-0105-6, 2015.
IPCC: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge/New York, 2013.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and Morice, C. P.: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011jd017139, 2012.
Kiehl, J. T.: Twentieth century climate model response and climate sensitivity, Geophys. Res. Lett., 34, L22710, https://doi.org/10.1029/2007GL031383, 2007.
Kim, D., Sobel, A. H., Del Genio, A. D., Chen, Y.-H., Camargo, S. J., Yao, M. S., Kelley, M., and Nazarenko, L.: The tropical subseasonal variability simulated in the NASA GISS general circulation model, J. Climate, 25, 4641–4659, https://doi.org/10.1175/JCLI-D-11-00447.1, 2012.
Knutti, R.: Should we believe model predictions of future climate change?, Philos. T. Roy. Soc. A, 366, 4647–4664, https://doi.org/10.1098/rsta.2008.0169, 2008.
Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P. J., Hewitson, B., and Mearns, L.: Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections, Tech. rep., IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, in: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., and Midgley, P. M., 2010.
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199, https://doi.org/10.1002/grl.50256, 2013.
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., and Eyring, V.: A climate model projection weighting scheme accounting for performance and interdependence, Geophys. Res. Lett., 44, 1909–1918, https://doi.org/10.1002/2016gl072012, 2017.
Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C.: Warming of the world ocean, Science, 287, 2225–2228, https://doi.org/10.1126/science.287.5461.2225, 2000.
Lin, J.-L.: The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis, J. Climate, 20, 4497–4525, https://doi.org/10.1175/jcli4272.1, 2007.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, NOAA Atlas NESDIS 73, U.S. Government Printing Office, Washington, D.C., edited by: Levitus, S. and Mishonov, A., 2013.
Loeb, N., Wielicki, B., Doelling, D., Smith, G., Keyes, D., Kato, S., Matalo-Smith, N., and Wong, T.: Toward optimal closure of the Earth's top-of-atmosphere radiation budget, J. Climate, 22, 748–766, https://doi.org/10.1175/2008JCLI2637.1, 2009.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Ma, H.-Y., Chuang, C. C., Klein, S. A., Lo, M.-H., Zhang, Y., Xie, S., Zheng, X., Ma, P.-L., Zhang, Y., and Phillips, T. J.: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models, J. Adv. Model. Earth Syst., 7, 1810–1827, https://doi.org/10.1002/2015ms000490, 2015.
Manabe, S. and Bryan, K.: Climate Calculations with a Combined Ocean-Atmosphere Model, J. Atmos. Sci., 26, 786–789, https://doi.org/10.1175/1520-0469(1969)026<0786:ccwaco>2.0.co;2, 1969.
Masson, D. and Knutti, R.: Climate model genealogy, Geophys. Res. Lett., 38, L08703, https://doi.org/10.1029/2011GL046864, 2011.
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global model, J. Adv. Model. Earth Syst., 4, M00A01, https://doi.org/10.1029/2012MS000154, 2012.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Meier, W. N., Stroeve, J., Barrett, A., and Fetterer, F.: A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present, The Cryosphere, 6, 1359–1368, https://doi.org/10.5194/tc-6-1359-2012, 2012.
Miller, R. L., Cakmur, R. V., Perlwitz, J., Geogdzhayev, I. V., Ginoux, P., Kohfeld, K. E., Koch, D., Prigent, C., Ruedy, R., Schmidt, G. A., and Tegen, I.: Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model, J. Geophys. Res., 111, D06208, https://doi.org/10.1029/2005JD005796, 2006.
Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Tausnev, N., Ruedy, R., Kelley, M., Lo, K. K., Aleinov, I., Bauer, M., Bauer, S., Bleck, R., Canuto, V., Cheng, Y., Clune, T. L., Del Genio, A., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Menon, S., Oinas, V., Perlwitz, J., Puma, M. J., Rind, D., Romanou, A., Russell, G. L., Sato, M., Shindell, D. T., Sun, S., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.: CMIP5 Historical Simulations (1850–2012) With GISS ModelE2, J. Adv. Model. Earth Syst., 6, 441–477, https://doi.org/10.1002/2013MS000266, 2014.
Ming, Y., Ramaswamy, V., Ginoux, P. A., Horowitz, L. W., and Russell, L.: Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulphate aerosol, J. Geophys. Res., 110, D22206, https://doi.org/10.1029/2005JD006161, 2005.
Ming, Y., Ramaswamy, V., Donner, L., and Phillips, V.: A new parameterization of cloud droplet activation applicable to general circulation models, J. Atmos. Sci., 63, 1348–1356, 2006.
Molod, A.: Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model, J. Climate, 25, 8341–8352, https://doi.org/10.1175/jcli-d-11-00412.1, 2012.
Molod, A., Suarez, M., and Partyka, G.: The impact of limiting ocean roughness on GEOS-5 AGCM tropical cyclone forecasts, Geophys. Res. Lett., 40, 411–416, https://doi.org/10.1029/2012gl053979, 2013.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Oueslati, B. and Bellon, G.: The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation, Clim. Dynam., 44, 585–607, https://doi.org/10.1007/s00382-015-2468-6, 2015.
Park, S.: A unfied convection scheme (UNICON), Part I: Formulation, J. Atmos. Sci., 71, 3902–3930, https://doi.org/10.1175/JAS-D-13-0233.1, 2014.
Pawlowska, H. and Brenguier, J.-L.: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations, J. Geophys. Res., 108, 8630, https://doi.org/10.1029/2002JD002679, 2003.
Phillips, N. A.: The general circulation of the atmosphere: A numerical experiment, Q. J. Roy. Meteor. Soc., 82, 123–164, https://doi.org/10.1002/qj.49708235202, 1956.
Pithan, F., Ackerman, A., Angevine, W. M., Hartung, K., Ickes, L., Kelley, M., Medeiros, B., Sandu, I., Steeneveld, G.-J., Sterk, H., Svensson, G., Vaillancourt, P. A., and Zadra, A.: Select strengths and biases of models in representing the Arctic winter boundary layer: The Larcform 1 single column model intercomparison, J. Adv. Model. Earth Syst., 8, 1345–1357, https://doi.org/10.1002/2016ms000630, 2016.
Reichler, T. and Kim, J.: How Well do Coupled Models Simulate Today's Climate?, B. Am. Meteorol. Soc., 89, 303–311, https://doi.org/10.1175/BAMS-89-3-303, 2008.
Richardson, M., Cowtan, K., Hawkins, E., and Stolpe, M. B.: Reconciled climate response estimates from climate models and the energy budget of Earth, Nature Climate Change, 6, 931–935, https://doi.org/10.1038/nclimate3066, 2016.
Rienecker, M., Suarez, M., Todling, R., J. Bacmeister, L. T., Liu, H.-C., Gu, W., Sienkiewicz, M., Koster, R. D., Gelaro, R., Stajner, I., and Nielsen, J.: The GEOS-5 Data Assimilation System – Documentation of versions 5.0.1 and 5.1.0, and 5.2.0., Tech. rep., 2008.
Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution approach to global ocean modeling, Ocean Model., 69, 211–232, https://doi.org/10.1016/j.ocemod.2013.04.010, 2013.
Rotstayn, L.: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I. Description and evaluation of microphysical processes, Q. J. Roy. Meteor. Soc., 123, 1227–1282, 1997.
Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., den Dool, H. M. V., Pan, H.-L., Moorthi, S., Behringer, D., Stokes, D., Peña, M., Lord, S., White, G., Ebisuzaki, W., Peng, P., and Xie, P.: The NCEP Climate Forecast System, J. Climate, 19, 3483–3517, https://doi.org/10.1175/jcli3812.1, 2006.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H. V. D., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010bams3001.1, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., ya Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/jcli-d-12-00823.1, 2014.
Schmidt, G. A. and Sherwood, S.: A practical philosophy of complex climate modelling, European Journal for Philosophy of Science, 5, 149–169, https://doi.org/10.1007/s13194-014-0102-9, 2014.
Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B., Canuto, V., Cheng, Y., Del Genio, A., Faluvegi, G., Friend, A. D., Hall, T. M., Hu, Y., Kelley, M., Kiang, N. Y., Koch, D., Lacis, A. A., Lerner, J., Lo, K. K., Miller, R. L., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Russell, G. L., Sato, M., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., Thresher, D., and Yao, M.-S.: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data, J. Climate, 19, 153–192, https://doi.org/10.1175/JCLI3612.1, 2006.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y., Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J., Puma, M. J., Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Model. Earth Syst., 6, 141–184, https://doi.org/10.1002/2013MS000265, 2014.
Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G. A.: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653–2689, https://doi.org/10.5194/acp-13-2653-2013, 2013.
Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of Parametric Assumptions for Shallow Cumulus Convection, J. Atmos. Sci., 52, 650–666, https://doi.org/10.1175/1520-0469(1995)052<0650:eopafs>2.0.co;2, 1995.
Suzuki, K., Golaz, J.-C., and Stephens, G.: Evaluating cloud tuning in a climate model with satellite observations, Geophys. Res. Lett., 40, 4464–4468, https://doi.org/10.1002/grl.50874, 2013.
Thompson, D. W. J., Kennedy, J. J., Wallace, J. M., and Jones, P. D.: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature, Nature, 453, 646–649, https://doi.org/10.1038/nature06982, 2008.
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Weather Rev., 40, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers, D., Champollion, N., Hansen, J., Josey, S. A., Loeb, N., Mathieu, P.-P., Meyssignac, B., and Wild, M.: An imperative to monitor Earth's energy imbalance, Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876, 2016.
Walsh, J. E., Fetterer, F., Stewart, J. S., and Chapman, W. L.: A database for depicting Arctic sea ice variations back to 1850, Geogr. Rev., 107, 89–107, 7 https://doi.org/10.1111/j.1931-0846.2016.12195.x, 2017.
Winsberg, E.: Values and Uncertainties in the Predictions of Global Climate Models, Kennedy Inst. Ethic. J., 22, 111–137, https://doi.org/10.1353/ken.2012.0008, 2012.
Yokohata, T., Annan, J. D., Collins, M., Jackson, C. S., Tobis, M., Webb, M. J., and Hargreaves, J. C.: Reliability of multi-model and structurally different single-model ensembles, Clim. Dynam., 39, 599–616, https://doi.org/10.1007/s00382-011-1203-1, 2012.
Zhao, M., Golaz, J.-C., Held, I. M., Ramaswamy, V., Lin, S.-J., Ming, Y., Ginoux, P., Wyman, B., Donner, L. J., Paynter, D., and Guo, H.: Uncertainty in Model Climate Sensitivity Traced to Representations of Cumulus Precipitation Microphysics, J. Climate, 29, 543–560, https://doi.org/10.1175/jcli-d-15-0191.1, 2016.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, NOAA Atlas NESDIS 74, U.S. Government Printing Office, Washington, D.C., edited by: Levitus, S. and Mishonov, A., 2013.
Short summary
The development of coupled ocean atmosphere climate models is a complex process that inevitably includes multiple calibration steps (sometimes called
tuning). Tuning uses degrees of freedom allowed by uncertainties in model approximations to modify parameters to make the simulation better align with some selected observed target(s). We describe how these tuning targets, parameters, and philosophy vary across six US modeling centers in order to increase the transparency of the practice.
The development of coupled ocean atmosphere climate models is a complex process that inevitably...