Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3365-2015
https://doi.org/10.5194/gmd-8-3365-2015
Model description paper
 | 
26 Oct 2015
Model description paper |  | 26 Oct 2015

CranSLIK v2.0: improving the stochastic prediction of oil spill transport and fate using approximation methods

R. Rutherford, I. Moulitsas, B. J. Snow, A. J. Kolios, and M. De Dominicis

Related authors

Data-Driven Surrogate Models for Real-Time Fatigue Monitoring of Chain Mooring Lines in Floating Wind Turbines
Azélice Ludot, Thor Heine Snedker, Athanasios Kolios, and Ilmas Bayati
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-162,https://doi.org/10.5194/wes-2024-162, 2025
Preprint under review for WES
Short summary
Population Based Structural Health Monitoring: Homogeneous Offshore Wind Model Development
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93,https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
A fully integrated optimization framework for designing a complex geometry offshore wind turbine spar-type floating support structure
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022,https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios
Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021,https://doi.org/10.5194/wes-6-677-2021, 2021
Short summary
Structural optimisation of wind turbine towers based on finite element analysis and genetic algorithm
Lin Wang, Athanasios Kolios, Maria Martinez Luengo, and Xiongwei Liu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-41,https://doi.org/10.5194/wes-2016-41, 2016
Preprint withdrawn
Short summary

Related subject area

Numerical methods
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary
CLAQC v1.0 – Country Level Air Quality Calculator: an empirical modeling approach
Stefania Renna, Francesco Granella, Lara Aleluia Reis, and Paulina Schulz-Antipa
Geosci. Model Dev., 18, 2373–2408, https://doi.org/10.5194/gmd-18-2373-2025,https://doi.org/10.5194/gmd-18-2373-2025, 2025
Short summary
Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Geosci. Model Dev., 18, 1395–1411, https://doi.org/10.5194/gmd-18-1395-2025,https://doi.org/10.5194/gmd-18-1395-2025, 2025
Short summary
Stabilized two-phase material point method for hydromechanical coupling problems in solid-fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
EGUsphere, https://doi.org/10.5194/egusphere-2025-707,https://doi.org/10.5194/egusphere-2025-707, 2025
Short summary

Cited articles

Choi, S.-K., Grandhi, R. V., and Canfield, R. A.: Reliability-based Structural Design, Springer, London, 3rd edn., 2007.
Coppini, G., De Dominicis, M., Zodiatis, G., Lardner, R., Pinardi, N., Santoleri, R., Colella, S., Bignami, F., Hayes, D. R., Soloviev, D., Georgiou, G., and Kallos, G.: Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, July–August 2006, Marine Pollut. B., 62, 140–153, 2011.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Archetti, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations, Geosci. Model Dev., 6, 1871–1888, https://doi.org/10.5194/gmd-6-1871-2013, 2013a.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 1: Theory, Geosci. Model Dev., 6, 1851–1869, https://doi.org/10.5194/gmd-6-1851-2013, 2013b.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89–105, 2008.
Download
Short summary
CranSLIK is a model that predicts the movement and spread of a surface oil spill at sea via a statistical approach that takes into account the random, and hence unpredictable, nature, of the affecting parameters. CranSLIK v2.0 demonstrated significant forecasting improvements by capturing the oil spill accurately in real oil spill validation cases and also proved capable of simulating a broader range of oil spill scenarios, while maintaining the run-time efficiency of the method.
Share