Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3365-2015
https://doi.org/10.5194/gmd-8-3365-2015
Model description paper
 | 
26 Oct 2015
Model description paper |  | 26 Oct 2015

CranSLIK v2.0: improving the stochastic prediction of oil spill transport and fate using approximation methods

R. Rutherford, I. Moulitsas, B. J. Snow, A. J. Kolios, and M. De Dominicis

Related authors

Data-Driven Surrogate Models for Real-Time Fatigue Monitoring of Chain Mooring Lines in Floating Wind Turbines
Azélice Ludot, Thor Heine Snedker, Athanasios Kolios, and Ilmas Bayati
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-162,https://doi.org/10.5194/wes-2024-162, 2025
Preprint under review for WES
Short summary
Population Based Structural Health Monitoring: Homogeneous Offshore Wind Model Development
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93,https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
A fully integrated optimization framework for designing a complex geometry offshore wind turbine spar-type floating support structure
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022,https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios
Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021,https://doi.org/10.5194/wes-6-677-2021, 2021
Short summary
Structural optimisation of wind turbine towers based on finite element analysis and genetic algorithm
Lin Wang, Athanasios Kolios, Maria Martinez Luengo, and Xiongwei Liu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-41,https://doi.org/10.5194/wes-2016-41, 2016
Preprint withdrawn
Short summary

Related subject area

Numerical methods
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary
Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0
Yuta Kawai and Hirofumi Tomita
Geosci. Model Dev., 18, 725–762, https://doi.org/10.5194/gmd-18-725-2025,https://doi.org/10.5194/gmd-18-725-2025, 2025
Short summary

Cited articles

Choi, S.-K., Grandhi, R. V., and Canfield, R. A.: Reliability-based Structural Design, Springer, London, 3rd edn., 2007.
Coppini, G., De Dominicis, M., Zodiatis, G., Lardner, R., Pinardi, N., Santoleri, R., Colella, S., Bignami, F., Hayes, D. R., Soloviev, D., Georgiou, G., and Kallos, G.: Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, July–August 2006, Marine Pollut. B., 62, 140–153, 2011.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Archetti, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations, Geosci. Model Dev., 6, 1871–1888, https://doi.org/10.5194/gmd-6-1871-2013, 2013a.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 1: Theory, Geosci. Model Dev., 6, 1851–1869, https://doi.org/10.5194/gmd-6-1851-2013, 2013b.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89–105, 2008.
Download
Short summary
CranSLIK is a model that predicts the movement and spread of a surface oil spill at sea via a statistical approach that takes into account the random, and hence unpredictable, nature, of the affecting parameters. CranSLIK v2.0 demonstrated significant forecasting improvements by capturing the oil spill accurately in real oil spill validation cases and also proved capable of simulating a broader range of oil spill scenarios, while maintaining the run-time efficiency of the method.
Share