Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3365-2015
https://doi.org/10.5194/gmd-8-3365-2015
Model description paper
 | 
26 Oct 2015
Model description paper |  | 26 Oct 2015

CranSLIK v2.0: improving the stochastic prediction of oil spill transport and fate using approximation methods

R. Rutherford, I. Moulitsas, B. J. Snow, A. J. Kolios, and M. De Dominicis

Related authors

Population Based Structural Health Monitoring: Homogeneous Offshore Wind Model Development
Innes Murdo Black, Moritz Werther Häckell, and Athanasios Kolios
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-93,https://doi.org/10.5194/wes-2022-93, 2022
Revised manuscript accepted for WES
Short summary
A fully integrated optimization framework for designing a complex geometry offshore wind turbine spar-type floating support structure
Mareike Leimeister, Maurizio Collu, and Athanasios Kolios
Wind Energ. Sci., 7, 259–281, https://doi.org/10.5194/wes-7-259-2022,https://doi.org/10.5194/wes-7-259-2022, 2022
Short summary
A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure
Peyman Amirafshari, Feargal Brennan, and Athanasios Kolios
Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021,https://doi.org/10.5194/wes-6-677-2021, 2021
Short summary
Structural optimisation of wind turbine towers based on finite element analysis and genetic algorithm
Lin Wang, Athanasios Kolios, Maria Martinez Luengo, and Xiongwei Liu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2016-41,https://doi.org/10.5194/wes-2016-41, 2016
Preprint withdrawn
Short summary
CranSLIK v1.0: stochastic prediction of oil spill transport and fate using approximation methods
B. J. Snow, I. Moulitsas, A. J. Kolios, and M. De Dominicis
Geosci. Model Dev., 7, 1507–1516, https://doi.org/10.5194/gmd-7-1507-2014,https://doi.org/10.5194/gmd-7-1507-2014, 2014

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Choi, S.-K., Grandhi, R. V., and Canfield, R. A.: Reliability-based Structural Design, Springer, London, 3rd edn., 2007.
Coppini, G., De Dominicis, M., Zodiatis, G., Lardner, R., Pinardi, N., Santoleri, R., Colella, S., Bignami, F., Hayes, D. R., Soloviev, D., Georgiou, G., and Kallos, G.: Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, July–August 2006, Marine Pollut. B., 62, 140–153, 2011.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Archetti, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 2: Numerical simulations and validations, Geosci. Model Dev., 6, 1871–1888, https://doi.org/10.5194/gmd-6-1871-2013, 2013a.
De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – Part 1: Theory, Geosci. Model Dev., 6, 1851–1869, https://doi.org/10.5194/gmd-6-1851-2013, 2013b.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89–105, 2008.
Download
Short summary
CranSLIK is a model that predicts the movement and spread of a surface oil spill at sea via a statistical approach that takes into account the random, and hence unpredictable, nature, of the affecting parameters. CranSLIK v2.0 demonstrated significant forecasting improvements by capturing the oil spill accurately in real oil spill validation cases and also proved capable of simulating a broader range of oil spill scenarios, while maintaining the run-time efficiency of the method.